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Standard Consensus Dynamics 
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 Network:  𝑛 nodes 𝑥1, 𝑥2, … , 𝑥𝑛 , edge set 𝐸 

 Each node 𝑥𝑖 starts with a real number 𝑥𝑖 0  

 Linear averaging dynamics: 

 

 

 As long as the network is connected: 

 
 

 The coefficients 𝛼𝑖 are nonnegative and sum to 1 

 

 

 

 

 

 

 

  𝑥𝑖 𝑘 + 1 = 𝑤𝑖𝑖𝑥𝑖 𝑘 +  𝑤𝑖𝑗𝑥𝑗[𝑘]

𝑗∈𝑛𝑏𝑟 𝑖

 

lim
𝑘→∞
𝑥𝑖 𝑘 = 𝛼𝑖𝑥𝑖[0]

𝑛

𝑖=1

, ∀𝑖 ∈ {1,2, … , 𝑛} 



 What happens if some nodes don’t follow the averaging 
dynamics? 

 Example: suppose some node keeps its value constant  

 

 

Potential for Adversarial Behavior 
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No adversaries One stubborn adversary 



Resilient Consensus Objective 

4 

 Node set partitioned into two sets:  𝑵 (normal nodes) and      
𝑨 (adversarial nodes) 
 Sets 𝑁 and 𝐴 are unknown to normal nodes 

 Adversarial nodes are allowed to update their states arbitrarily 

 Normal nodes follow whatever dynamics we propose 

 

 Consider the following (relaxed) objective: 

 “All normal nodes should asymptotically reach consensus on 
some value that is between the smallest and largest initial 

values of the normal nodes” 

 

 Adversarial nodes should not be able to bias the consensus 
value excessively 



Local Filtering 
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 Natural strategy: Each normal node is “suspicious” of 
extreme values in its neighborhood 

 Mechanism: 

 At each time-step k, each node 𝑥𝑖  receives values from its 
neighbors 

 𝑥𝑖 removes the F highest and F lowest values in its 
neighborhood, updates its state as a convex combination of 
remaining values  

 

 

 

 F is a parameter indicating level of suspicion 

 

 

 

Neighbors after removing 

extreme values 

  𝑥𝑖 𝑘 + 1 = 𝑤𝑖𝑖𝑥𝑖 𝑘 +  𝑤𝑖𝑗𝑥𝑗[𝑘]

𝑗∈𝑛𝑏𝑟(𝑖) 

 



Convergence 
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 Traditional graph metrics not useful to characterize convergence 

 

 

 

 

 

 

 

 
 Connectivity of graph is 𝑛 2 , but no node ever uses a value 

from opposite set 

Fully-connected graph with 𝑛 2  nodes 

Initial value 0 

Fully-connected graph with 𝑛 2  nodes 

Initial value 1 

One-to-one edges between sets  



Insufficiency of Connectivity as a Metric 
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 Connectivity is no longer a sufficient metric to characterize 
behavior of purely local filtering mechanism 
 Graph contains sets where no node in any set has enough 

neighbors outside the set 

 i.e., all outside information is filtered away by each node 

 

 

 

 

 

 

 

 Need a new topological property to characterize conditions 
under which local filtering will succeed 

 

 

 

 

 



 We introduce the following definitions 

 A set S is 𝒓-reachable if it has a node that has at least 𝑟 neighbors 
outside the set 
 

 

Robust Graphs 
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 We introduce the following definitions 

 A set S is 𝒓-reachable if it has a node that has at least 𝑟 neighbors 
outside the set 
 

 

Robust Graphs 
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Robust Graphs 
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 A graph is 𝒓-robust if for any two disjoint subsets, at least 
one of the sets is 𝑟-reachable 
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3-robust graph:   
Pick any two subsets of nodes, at least one is 3-reachable 



Robust Graphs 
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 A graph is 𝒓-robust if for any two disjoint subsets, at least 
one of the sets is 𝑟-reachable 
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3-robust graph:   
Pick any two subsets of nodes, at least one is 3-reachable 



The Role of Robustness in Convergence 
 

 Main result:  If there are at most F adversarial nodes 

 

 

 
 

 Robustness is the key metric for purely local filtering/diffusion 
mechanisms 

 

 Recall:  Can construct graphs that have very high connectivity 
(𝑛 2 ), but that are only 1-robust 

 

 Question:  What is the robustness of “complex networks”? 
 Will purely local filtering mechanisms work on these networks? 

 

Graph is (2F+1)-robust 
Normal nodes will reach 

consensus despite actions of 
adversarial nodes 

Zhang and Sundaram,  ACC 2012;  LeBlanc, Zhang, Koutsoukos and Sundaram, IEEE JSAC 2013;  

Vaidya et al.,  PODC 2012 



Erdos-Renyi Graphs 

 Erdos-Renyi graphs 𝐺(𝑛, 𝑝 𝑛 ):  Define 
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𝑝 𝑛 =  
ln 𝑛 + 𝑟 − 1 ln ln 𝑛 + 𝑐(𝑛)

𝑛
 

𝐺(𝑛, 𝑝 𝑛 ) almost surely has 
min degree, connectivity and 

robustness less than r  as 𝑛 → ∞ 

𝐺(𝑛, 𝑝 𝑛 ) almost surely has 
min degree, connectivity and 

robustness at least 𝒓 as  
𝑛 → ∞ 

If 𝑐 𝑛 → −∞ as 

𝑛 → ∞  

If 𝑐 𝑛 → ∞ as 

𝑛 → ∞ 



Phase Transition for Erdos-Renyi Graphs 

 Threshold function: 

 

 
 ER graph experiences a phase transition for 𝑟-min degree, 𝑟-

connectivity and 𝑟-robustness at this threshold 

 

 There is a “triple jump” at this threshold [Zhang & 
Sundaram, CDC 2012] 

 

 “Double jump” for min degree and connectivity known 
since [Erdos & Renyi, 1961] 
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𝑡 𝑛 =  
ln 𝑛 + 𝑟 − 1 ln ln 𝑛

𝑛
 



Geometric Random Graphs 
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 For 1-d geometric graphs, we show:   

 

 

 

 

 Key point:  highly connected 1-d geometric random graphs are 
also highly robust 

If graph is 
3

2
𝑟 -connected, then it is at least r-robust 



Preferential Attachment Networks 

 One option to model graphs that grow over time:  
Preferential Attachment process 

 

 Start with a small group of nodes 

 At each time-step, a new node comes in and attaches to 𝑟 
existing nodes (Barabasi-Albert model) 

 Key point:  prefer to attach to nodes that have a large degree 

 Produces a power law network 

 

 If initial network is 𝑟-robust, we show:  

Resulting Power-Law graph is 𝑟-connected and 𝑟-robust 
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Thanks! 
(Come see poster for more details!) 



Connectivity as a Metric for Robustness 
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 Traditional result:  In fixed networks with up to F adversaries: 

 

 

 

 Note:  adversaries allowed to update their states arbitrarily 

 

 

 

 

 

 Requires normal nodes to know the entire network to 
route/decode information to/from other nodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Network has at least 2F+1 
Any two nodes can reliably 

exchange initial values despite 
actions of F adversarial nodes 
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