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Standard Consensus Dynamics

» Network: n nodes {x{, x5, ..., x,}, edge set E
» Each node x; starts with a real number x;[0]
» Linear averaging dynamics:

xilk + 1] = wyx;[k] + z wijx;lK]
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» As long as the network is connected:
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The coefficients a; are nonnegative and sumto 1



Potential for Adversarial Behavior

» What happens if some nodes don’t follow the averaging
dynamics?
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Example: suppose some node keeps its value constant
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Resilient Consensus Objective

» Node set partitioned into two sets: N (normal nodes) and
A (adversarial nodes)

Sets N and A are unknown to normal nodes
Adversarial nodes are allowed to update their states arbitrarily
Normal nodes follow whatever dynamics we propose

» Consider the following (relaxed) objective:

“All normal nodes should asymptotically reach consensus on
some value that is between the smallest and largest initial
values of the normal nodes”

» Adversarial nodes should not be able to bias the consensus
value excessively



Local Filtering

» Natural strategy: Each normal node is “suspicious” of
extreme values in its neighborhood

» Mechanism:

At each time-step k, each node x; receives values from its
neighbors

x; removes the F highest and F lowest values in its

neighborhood, updates its state as a convex combination of
remaining values

xilk + 1] = wyx; k] + Z wijx;j|k]

jenbr(i) =~ Neighbors after removing
extreme values

F is a parameter indicating level of suspicion



Convergence

» Traditional graph metrics not useful to characterize convergence

v v e o o (N Fully-connected graph with n/2 nodes
Initial value O

~_| |
*°° One-to-one edges between sets
_—| T~
YRRV . o o VARV Fully-connected graph with n/2 nodes
%— \><\// Initial value 1

» Connectivity of graph is n/2, but no node ever uses a value
from opposite set
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Insufficiency of Connectivity as a Metric

» Connectivity is no longer a sufficient metric to characterize
behavior of purely local filtering mechanism

Graph contains sets where no node in any set has enough
neighbors outside the set

i.e., all outside information is filtered away by each node
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» Need a new topological property to characterize conditions
under which local filtering will succeed
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Robust Graphs

» We introduce the following definitions

A set S is r-reachable if it has a node that has at least r neighbors
outside the set
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Robust Graphs

» A graph is r-robust if for any two disjoint subsets, at least
one of the sets is r-reachable

3-robust graph:
Pick any two subsets of nodes, at least one is 3-reachable
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The Role of Robustness in Convergence

» Main result: If there are at most F adversarial nodes

Normal nodes will reach
Graph is (2F+1)-robust > consensus despite actions of

adversarial nodes

» Robustness is the key metric for purely local filtering/diffusion
mechanisms

» Recall: Can construct graphs that have very high connectivity
(n/2), but that are only 1-robust

» Question: What is the robustness of “complex networks”?
Will purely local filtering mechanisms work on these networks?

Zhang and Sundaram, ACC 2012; LeBlanc, Zhang, Koutsoukos and Sundaram, IEEE |SAC 201 3;
Vaidya et al., PODC 2012



Erdos-Renyi Graphs
» Erdos-Renyi graphs G(n,p(n)): Define

In(n) + (r — 1) Inln(n) + c(n)
p(n) =

n
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Phase Transition for Erdos-Renyi Graphs

» Threshold function:

In(n) + (r — 1) InIn(n)
t(n) =

n

ER graph experiences a phase transition for r-min degree, -
connectivity and r-robustness at this threshold

» Thereis a “triple jump” at this threshold [Zhang &
Sundaram, CDC 2012]

» “Double jump” for min degree and connectivity known
since [Erdos & Renyi, 1961]



Geometric Random Graphs

» For 1-d geometric graphs, we show:

[ If graph is (3 r)-connected, then it is at least r-robust ]

» Key point: highly connected 1-d geometric random graphs are
also highly robust



Preferential Attachment Networks

» One option to model graphs that grow over time:
Preferential Attachment process

» Start with a small group of nodes

» At each time-step, a new node comes in and attaches to r
existing nodes (Barabasi-Albert model)
Key point: prefer to attach to nodes that have a large degree
Produces a power law network

» If initial network is r-robust, we show:

Resulting Power-Law graph is r-connected and r-robust




Thanks!
(Come see poster for more details!)



Connectivity as a Metric for Robustness

» Traditional result: In fixed networks with up to F adversaries:

Any two nodes can reliably
Network has at least 2F+1 exchange initial values despite
actions of F adversarial nodes

Note: adversaries allowed to update their states arbitrarily
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» Requires normal nodes to know the entire network to
route/decode information to/from other nodes
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