A Conjecture on the Distribution of Balanced Load in a Large Network

B. Hajek

Department of Electrical and Computer Engineering and the Coordinated Science Laboratory University of Illinois at Urbana-Champaign

February 28, 2013

This note recalls a conjecture appearing in [1] about the distribution of balanced load in a large network.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The load balancing model

- ▶ Undirected multigraph with *M* nodes (locations of a resource)
- αM edges (representing consumers)
- One unit of load associated with each edge
- Load of an edge is to be assigned to endpoints, splitting allowed
- ▶ Load is *balanced* if for any edge incident on *u* and *v*, if the load at *u* is strictly larger than the load at *v*, the entire load of the edge must be assigned to *v*.

Illustration of a balanced load

Figure: Illustration of a balanced load.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Random graph model

- The endpoints of each of the αM edges are selected independently, uniformly at random, from among all (^M₂) pairs of nodes.
- ► Tables 1 and 2 below show the results of a simulation for M = 10000 and α = 2.
- For Table 1 the load of each edge is split evenly
- ▶ For Table 2 the loads are balanced.
- Let F(τ; α) denote the CDF of limiting load distribution as M→∞.

Table:	1.	Sample	load	distribution	before	balancing	$(\alpha = 2, M =$	10000).
--------	----	--------	------	--------------	--------	-----------	--------------------	---------

τ	$load \! \leq \! \tau$	$load = \tau$	
0.0	201	201	
0.5	921	720	
1.0	2382	1461	
1.5	4299	1917	
2.0	6291	1992	
2.5	7896	1605	
3.0	8899	1003	
3.5	9472	573	
4.0	9778	306	
4.5	9912	134	
5.0	9962	50	
5.5	9987	25	
6.0	10000	13	

au	load $\leq \tau$	$load = \tau$	product
0.00000000	201	201	0
0.50000000	223	22	11
1.00000000	992	769	769
1.25000000	996	4	5
1.33333333	1023	27	36
1.50000000	1239	216	324
1.60000000	1244	5	8
1.66666667	1313	69	115
1.75000000	1353	40	70
1.77777778	1362	9	16
1.80000000	1392	30	54
1.83333333	1398	6	11
1.85714286	1405	7	13
1.92307692	1418	13	25
2.00000000	3316	1898	3796
2.07692308	3329	13	27
2.11111111	3338	9	19
2.12500000	3362	24	51
2.14285714	3404	42	90
2.16666667	3440	36	78
2.18181818	3462	22	48
2.20000000	3562	100	220
2.20782852	10000	6438	14214

Table: 2. Sample load distribution *after* balancing ($\alpha = 2, M = 10000$).

Poisson tree network

- The mean number of edges incident on a given node is λ = 2α.
- For *M* large the neighborhood of a fixed node v_o becomes like a Poisson(2α) tree network rooted at v_o.
- If the loads of the tree network at distance k from v_o are clamped at a specific value, the distribution of the load at v_o (after balancing) can be computed [1].
- Let F_T(τ; 2α) denote the limiting load distribution obtained as k → ∞.
- Numerical values of $F_T(\tau; 2\alpha)$ for $\alpha = 2$ are shown in Table 3.

Table: 3. Numerical calculations of $F_T(\tau, 2\alpha)$ for $\alpha = 2$.

τ	$a(\tau; 2\alpha)$	$F_T(\tau; 2\alpha)$	$\int_0^{\tau} 1 - F_T(u; 2\alpha) du$
0	0.01832	0.01832	0
0.0833	0.00000	0.01832	0.08181 - 0.08181
0.1667	0.00000	0.01832	0.16361 - 0.16361
0.2500	0.00000	0.01832	0.24542 - 0.24542
0.3333	0.00000	0.01832	0.32723 - 0.32723
0.4167	0.00000	0.01832	0.40904 - 0.40904
0.5000	0.00134	0.01966	0.49084 - 0.49084
0.5833	0.00000	0.01966	0.57254 - 0.57254
0.6667	0.00015	0.01980	0.65423 - 0.65423
0.7500	0.00002	0.01982	0.73592 - 0.73592
0.8333	0.00000	0.01983	0.81760 - 0.81760
0.9167	0.00000	0.01983	0.89928 - 0.89928
1.0000	0.07774	0.09756	0.98096 - 0.98096
1.0833	0.00000	0.09756	1.05616 - 1.05616
1.1667	0.00000	0.09757	1.13136 - 1.13136
1.2500	0.00026	0.09785	1.20657 - 1.20657
1.3333	0.00246	0.10031	1.28174 - 1.28175
1.4167	0.00000	0.10050	1.35670 - 1.35672
1.5000	0.02180	0.12232	1.43166 - 1.43168
1.5833	0.00000	0.12240	1.50479 - 1.50482
1.6667	0.00920	0.13236	1.57786 - 1.57795
1.7500	0.00462	0.13728	1.65014 - 1.65026
1.8333	0.00150	0.14151	1.72181 - 1.72215
1.9167	0.00012	0.14399	1.79315 - 1.79369
2.0000	0.19107	0.33533	1.86446 - 1.86502
2.0833	0.00024	0.33598	1.91982 - 1.92041
2.1667	0.00554	0.34945	1.97449 - 1.97575
2.2500	0.02083	0.38899	2.02715 - 2.02996
2.3333	0.04704	0.47013	2.07522 - 2.08088
2.4167	0.00000	1.00000	2.07522 - 2.12503
2 5000	0 00000	1 00000	2 07522 - 2 12503

A comparison plot

Figure: Comparison of $F(\tau; \alpha, M)$ (open circles) and $F_T(\tau, 2\alpha)$ (filled circles) for $\alpha = 2$ and M = 10000.

Matching the mean

Load at fixed node in limit M → ∞ is less than limiting load for infinite tree network with load at boundary clamped at infinity: F(τ; α) ≥ F_T(τ; 2α) for all τ ≥ 0.

• Mean for CDF $F(\tau; \alpha)$ is $2\alpha : \alpha = \int_0^\infty 1 - F(\tau; 2\alpha) d\tau$

• But
$$\int_0^\infty 1 - F_T(\tau; 2\alpha) d\tau > \alpha$$

Truncation of distribution Let $\triangle(\alpha)$ be defined by $\alpha = \int_0^{\triangle(\alpha)} 1 - F_T(\tau; 2\alpha) d\tau$

Table: Some numerical values of $\triangle(\alpha)$ and $1 - F_T(\triangle(\alpha) -; 2\alpha)$.

α	$\triangle(\alpha)$	$1 - F_T(\triangle(\alpha) -; 2\alpha)$
0.2	1	0
0.4	1	0
0.6	1.07235 - 1.08333	0.00000 - 0.03520
0.8	1.22226 - 1.22794	0.11913 – 0.14205
1.0	1.37544 – 1.37757	0.25944 – 0.26825
1.2	1.52653 - 1.53595	0.35094 – 0.37209
1.4	1.68945 - 1.69542	0.46912 - 0.49171
1.6	1.84892 - 1.85339	0.58498 – 0.60966
1.8	2.00525 - 2.00764	0.50888 – 0.50975
2.0	2.20438 - 2.20593	0.63826 – 0.65055
4.0	4.07933 - 4.07937	0.87073 – 0.87074
6.0	6.03571 – 6.03575	0.94613 – 0.94615
8.0	8.01720 - 8.01721	0.97578 – 0.97578
10.0	10.00857 - 10.00857	0.98855 – 0.98855

Giant component

- Moment method shows that for α not too small, as M → ∞, there is a giant component of the graph with all nodes in the component having the maximum load.
- Suggests that load at leaves of Poisson tree be clamped to maximum load expected, Δ(α).

The conjecture

Conjecture. For all $\tau, \alpha \geq 0$,

$$\lim_{M \to \infty} F(\tau; M, \alpha) = \begin{cases} F_T(\tau; 2\alpha) & \text{if } \tau < \triangle(\alpha) \\ 1 & \text{if } \tau \ge \triangle(\alpha). \end{cases}$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Furthermore,

$$\lim - \inf - \operatorname{prob.}_{M \to \infty} \frac{|\widehat{A}|}{M} = 1 - F_{\mathcal{T}}(\triangle(\alpha) -; 2\alpha).$$

The conjecture is true if either 0 $\leq \tau <$ 1 or 0 $\leq \alpha \leq$ 0.5.

B. Hajek, "Performance of global load balancing by local adjustment," *IEEE Trans. Information Theory*, Vol. 36, Nov. 1990. pp. 1398 - 1414.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?