THE LAWS OF SUPER-SCALABILITY IN PEER TO PEER NETWORKS

F. Baccelli

UT-Austin and INRIA-ENS

Joint work with F. Mathieu and I. Norros

Asymptotics of Large-Scale Interacting Networks, BIRS 2013

STRUCTURE OF THE TALK

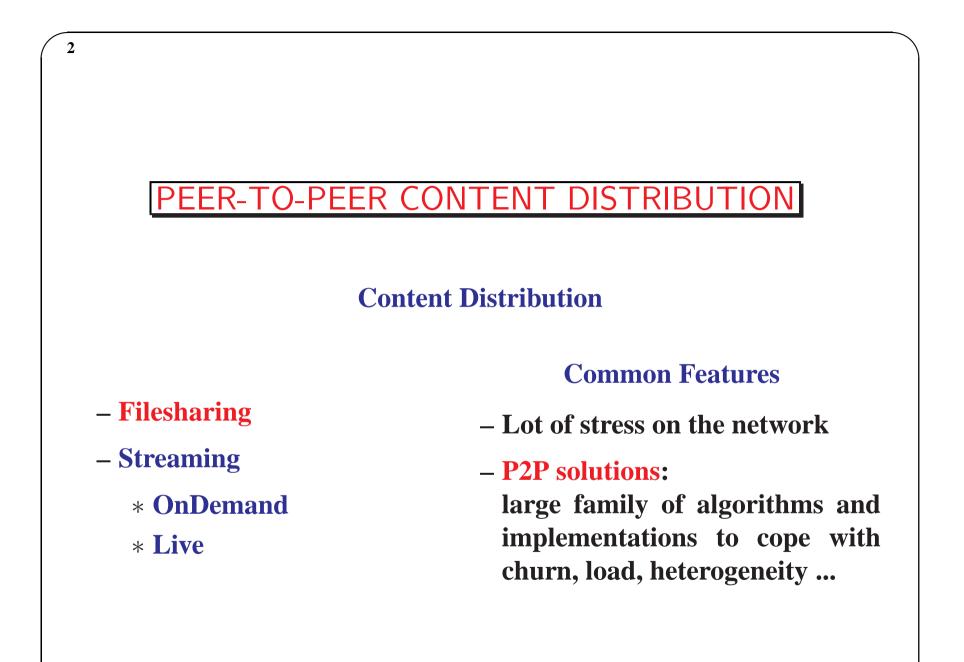
1. P2P Networking Motivations

1

- **2. Stochastic Model** $\exists!$
- **3. Dimensional Analysis**
 - 4. Stochastic Analysis

5. Simulation
6. Scaling
7. Limitations
8. Extensions

Focus on the ongoing research part (in red) today.



P2P STOCHASTIC NETWORK MODELING

State of the Art: Queuing Theory [Yang and De Veciana 04], [Qiu and Srikant 04]

Three main types of nodes

– Servers: provide, don't scale up

- Leechers: need, provide and scale
- Seeders: provide, scale

3

Assumptions

- Access-limited (physical/software)
- No network limitation
- Poisson arrivals

This presentation: New models with network rate limitations

SPATIAL BIRTH AND DEATH STOCHASTIC MODEL

- **Peers live in a finite subset** D of the Euclidean plane \mathbb{R}^2
- Dynamics: arrivals

4

- Poisson rain: new peers arrive according to a Poisson process with time space intensity $\lambda dx dt$ on $D \times I\!R$
- Service requirement: each peer p is born with an individual service requirement $F_p > 0$ i.i.d. exponential with mean F.

INTERACTION ?

Dynamics: service rate

5

- Bit rate function: two peers at locations x and y serve each other at rate f(||x y||), where f is the bit rate function (BRF)
- Service rate: the service rate of a peer at x in configuration ϕ is

$$\mu(x,\phi) = \sum_{y \in \phi \setminus \{x\}} f(||x-y||).$$

- Service completion: for a system with state history $\{\phi_t\}_t$, a peer p born at point x_p at time t_p leaves at time

$$\tau_p = \inf\{t > t_p : \int_{t_p}^t \mu(x_p, \phi_s) ds \ge F_p\}.$$

LARGE-SCALE?

- Natural extensions to the case where *D* is
 - A torus (approximation of the whole plane);
 - The whole Euclidean plane;

6

– General metric spaces (semantic spaces) e.g. $I\!R^d$.

SPATIAL BIRTH AND DEATH PROCESS

- $\blacksquare \ \mathcal{N}(D)$: the space of counting measures in (D,\mathcal{D})
- The state ϕ_t at time t is a Markov process living in the space $\mathcal{N}(D)$:
 - a peer has birth intensity λ at x

7

- a peer located at x has death intensity $\mu(x, \phi_t)/F$
- (New?) class of spatial birth-and-death process with a death rate defined as a shot-noise of the configuration.

EXISTENCE AND UNIQUENESS FINITE CASE

Lemma 1

8

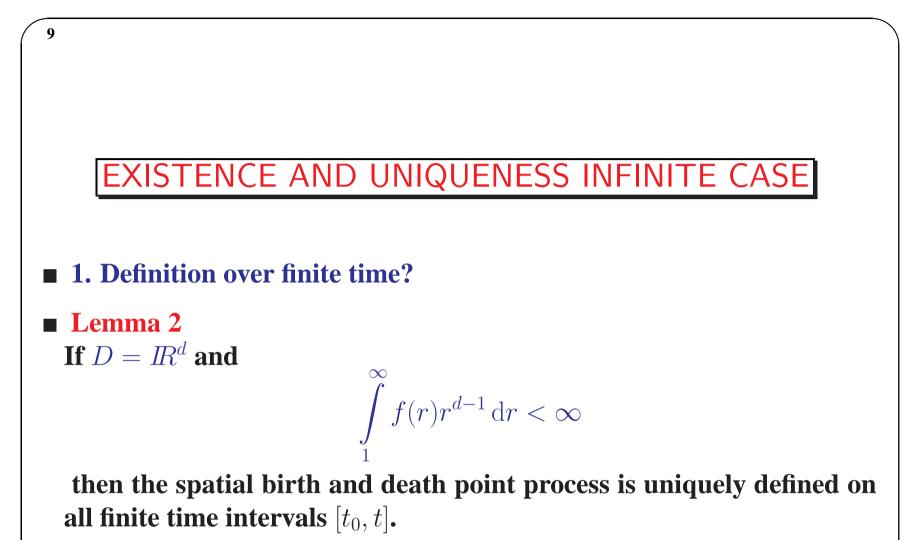
If D is compact and f is bounded from below by a positive constant on some non-degenerate interval, then the Markov process $\{\phi_t\}_t$ is ergodic for any birth rate $\lambda > 0$.

Proof

- stochastic domination: $M/M/\infty$ queue that is modified so that a lone customer cannot leave.
- petite set technique à la Tweedie

Remarks

- non monotonic dynamical system
- non reversible Markov process
- non Gibbsian point process



Proof: Random connection model definition of dynamics + existence and uniqueness of solution of a recursive equation.

EXISTENCE AND UNIQUENESS INFINITE CASE (continued)

• Ψ_{t_0} : space time arrival p.p. in $[t_0, t]$

Random connection model definition of the SBD process:

– exponential killing times T_{pq}

10

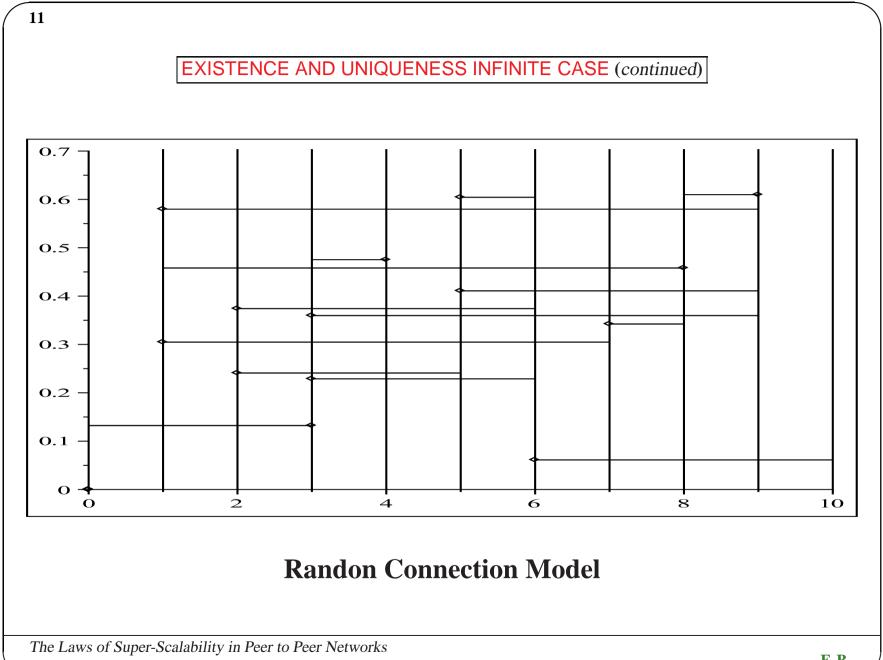
– Bernoulli directions of killing I_{pq}

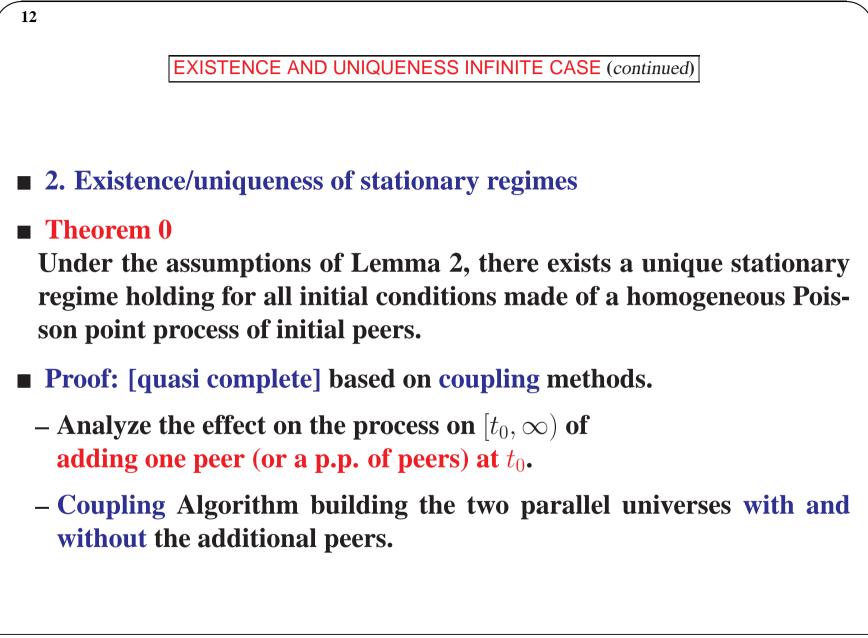
between all pairs p, q of points of the space time arrival p.p. Ψ_{t_0}

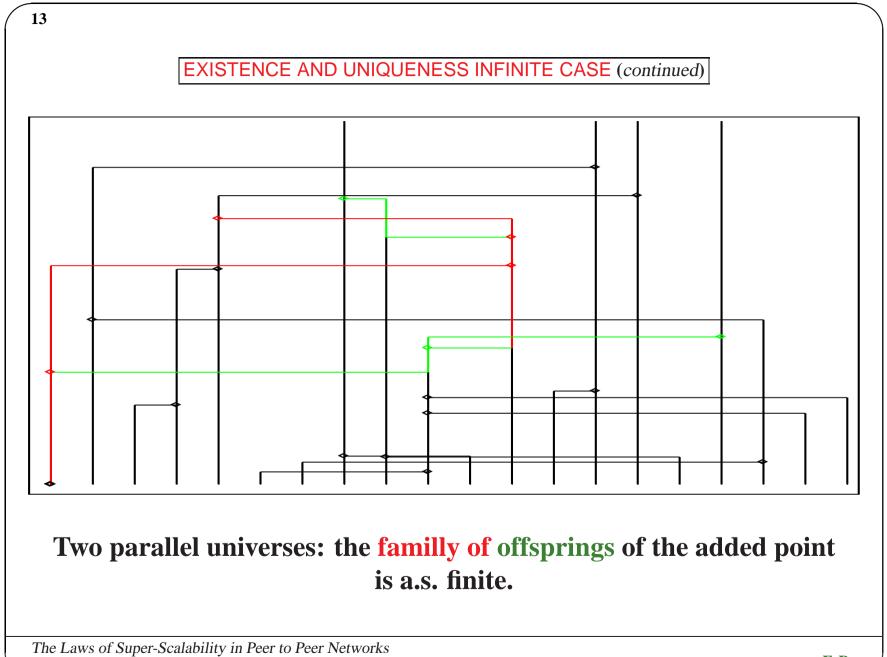
Death times solution of an infinite recursive equation

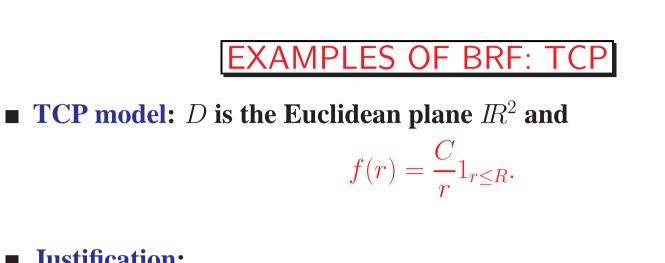
 $\delta_p = \inf \{ T_{pq} : q \in \Psi_{t_0}, \delta_q \ge T_{pq}, I_{pq} = 1 \}.$

In the above setting, for all $[t_0, t]$ for all p, we give an algorithm determining whether $\delta_p < t$ or the value of δ_p otherw. in a.s. finite time.









■ Justification:

14

- peers use TCP Reno
- on the path between two peers, if the packet loss probability is p and the round trip time is RTT, then the rate obtained on this path is

 $\frac{\eta}{\mathrm{RTT}\sqrt{p}}$

with $\eta = \sim 1.309$ square root formula

- the RTT is proportional to distance r
- only peers at distance less than R are retained.

15

EXAMPLES OF BRF: TCP (continued)

Variants

- Affine RTT model: RTT = ar + b, where *a* accounts for propagation delays in the Internet path and *b* for the mean access latency:

$$f(r) = \frac{C}{r+q} \mathbf{1}_{r \le R}$$

– Additional overhead cost: c bits per second:

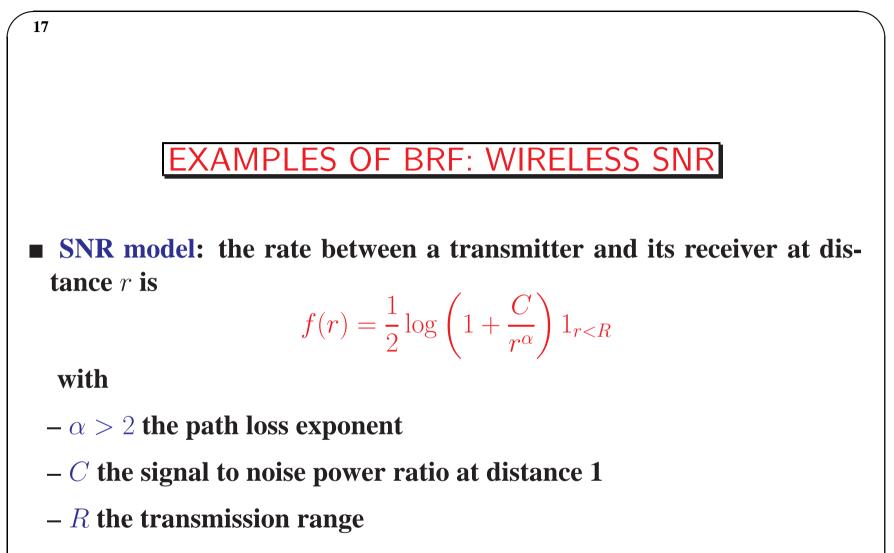
$$f(r) = \left(\frac{C}{r+q} - c\right)^+ \mathbf{1}_{r \le R}$$

- Upload (or Download) rate limitations:

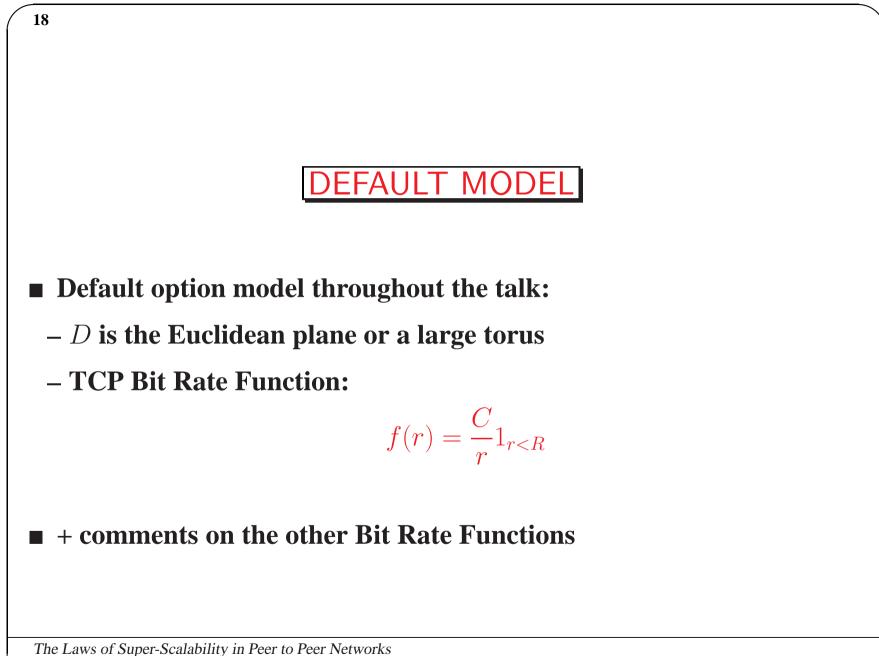
$$f(r) = \min\left(U, \left(\frac{C}{r+q} - c\right)^+\right) \mathbf{1}_{r \le R}$$

with U the individual rate limitation

16 **EXAMPLES OF BRF: UDP** ■ UDP assumptions: – D is the Euclidean plane $I\!R^2$ - only peers within distance R are retained – peers use UDP with prescribed rate C regardless of distance $f(r) = C1_{r < R}.$



Requirement: all point-to-point channels are mutually orthogonal



DIMENSIONAL ANALYSIS

- 4 basic parameters:
 - -R in meters (m),
 - -F in bits,

19

- $-\lambda$ in m $^{-2}$ per second (s)
- C in bit·m·s⁻¹.
- **Theorem** π -Theorem

In the TCP case, all system properties only depend on the parameter

 $\rho = \frac{\lambda F R^3}{C}.$

Extension for more general f s.t. $\int f(r)rdr < \infty$.

DIMENSIONAL ANALYSIS (continued)

Sketch of proof

20

- choose R as a new distance unit, then
 - * the arrival intensity becomes $l = \lambda R^2$

* the download constant becomes c = C/R

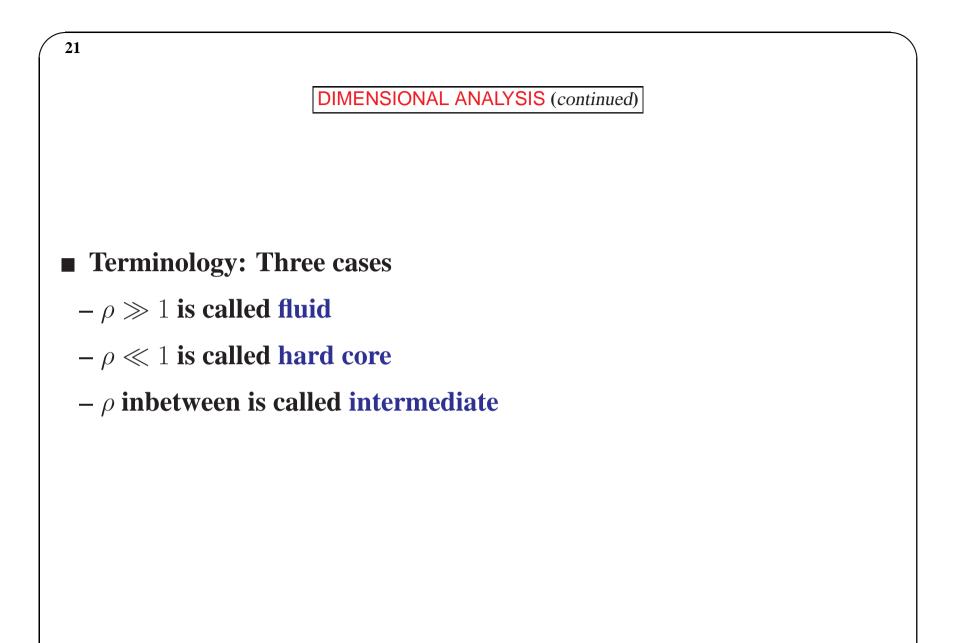
- now define F as an information unit, then

* the download speed constant becomes c = C/(RF)

– take a time unit such that the download speed constant is 1, then

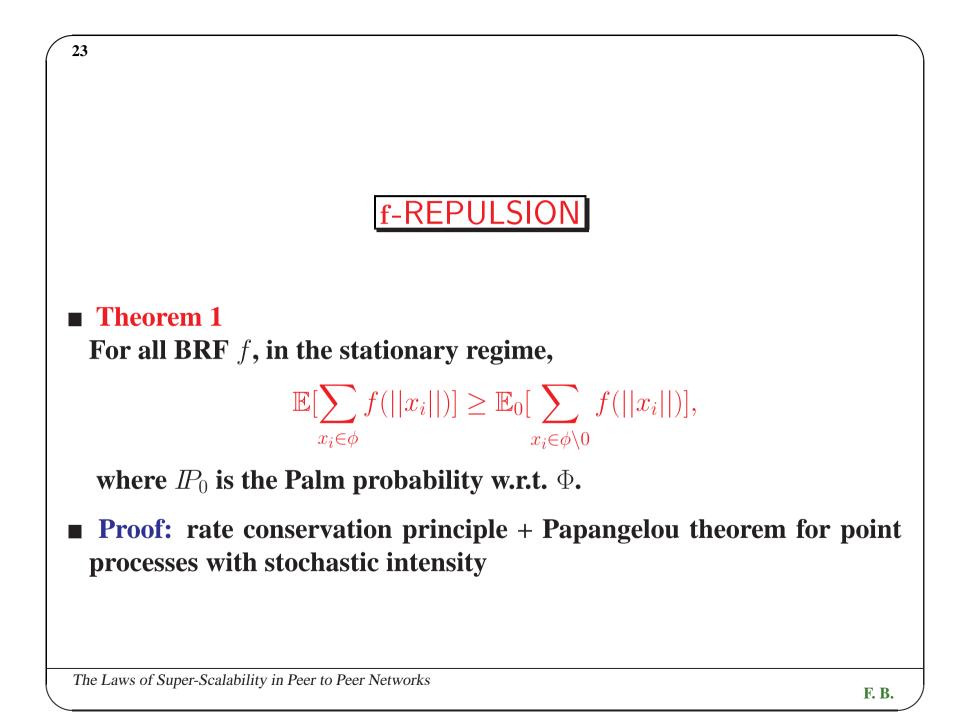
 \ast all parameters are equal to 1

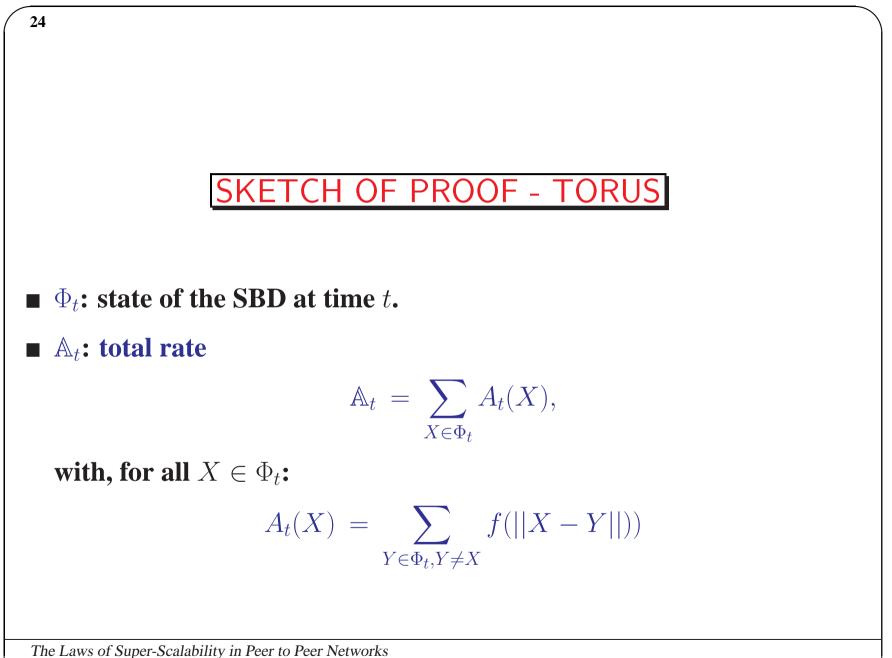
* the arrival rate becomes $l = \frac{\lambda F R^3}{C}$



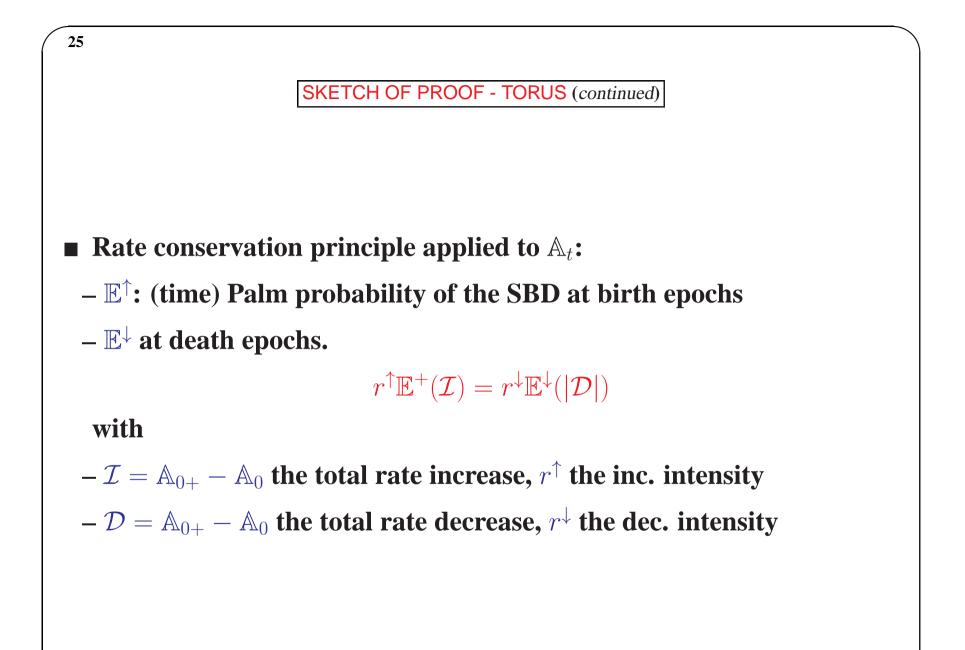
22 **ΟΙΑΓΙΟ** ■ In the steady state regime of the P2P dynamics: $-\beta_o$ the density of the peer point process – μ_o the mean rate of a typical peer $-W_o$ the mean latency of a typical peer

– N_o the mean number of peers in a ball of radius R around a typical peer





F. B.



SKETCH OF PROOF - TORUS (continued)

Since
$$r^{\uparrow} = r^{\downarrow}$$
,

$$\mathbb{E}^{\uparrow}(\mathcal{I}) = \mathbb{E}^{\downarrow}(\mathcal{D}).$$

From PASTA

26

$$\mathbb{E}^{\uparrow}(\mathcal{I}) = 2\mathbb{E}(n_0)\frac{a}{|D|}$$

with n_0 the total population and

$$a = \int_{T} f(||x||) m(\,\mathrm{d}x).$$

with T the torus of area |D|.

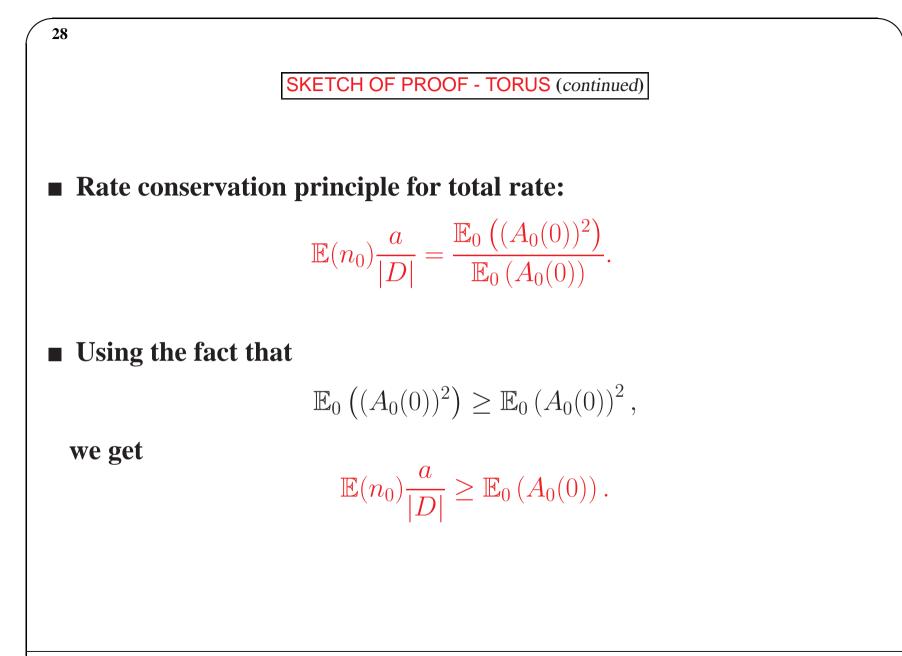
SKETCH OF PROOF - TORUS (continued)

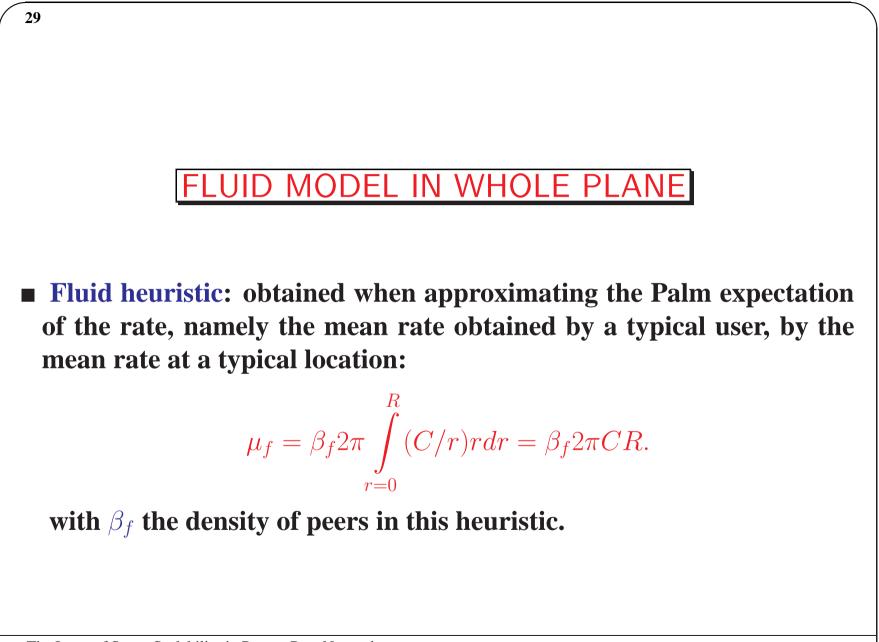
- The (total) death point process admits a stochastic intensity w.r.t. the filtration $\mathcal{F}_t = \sigma(\Phi_s, s \leq t)$ equal to \mathbb{A}_t .
- **From Papangelou's theorem** $\frac{d\mathbb{P}^{\downarrow}}{d\mathbb{P}} \mid_{\mathcal{F}_{0-}} = \frac{\mathbb{A}_0}{\mathbb{E}(\mathbb{A}_0)}.$
- Since the decrease (in state Φ_{0-}) is of magnitude $A_0(X)$ (w.r.t. Φ_{0-}) with probability $\frac{A_0(X)}{A_0}$ (w.r.t. Φ_{0-}),

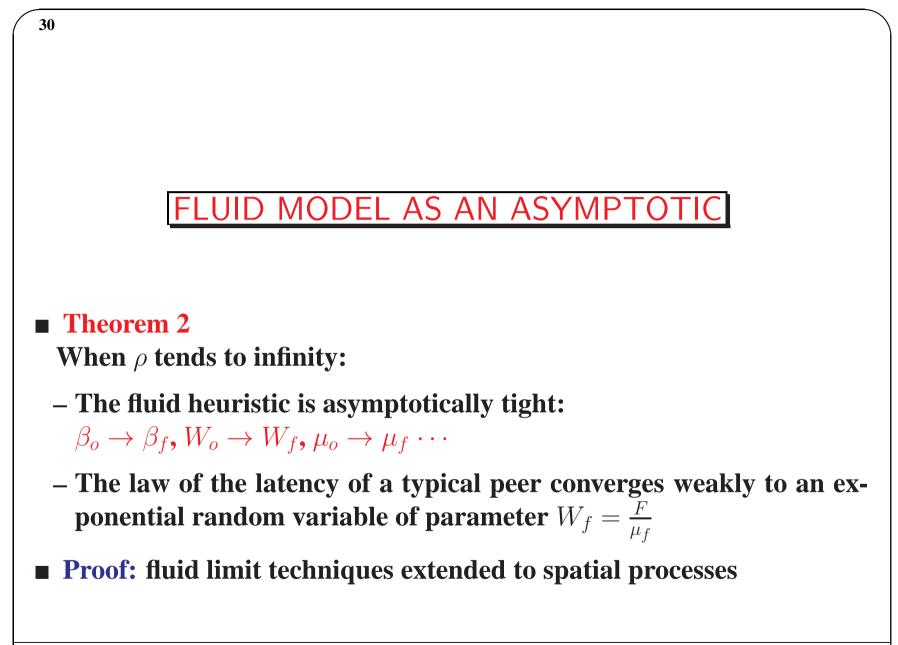
$$\mathbb{E}^{\downarrow}(|\mathcal{D}|) = 2\mathbb{E}\left(\frac{\mathbb{A}_{0}}{\mathbb{E}(\mathbb{A}_{0})}\sum_{X\in\Phi_{0}}\frac{A_{0}(X)}{\mathbb{A}_{0}}A_{0}(X)\right) = 2\frac{\mathbb{E}\left(\sum_{X\in\Phi_{0}}(A_{0}(X))^{2}\right)}{\mathbb{E}\left(\sum_{X\in\Phi_{0}}A_{0}(X)\right)}$$
$$= 2\frac{\mathbb{E}_{0}\left((A_{0}(0))^{2}\right)}{\mathbb{E}_{0}\left(A_{0}(0)\right)}$$

The Laws of Super-Scalability in Peer to Peer Networks

27







FLUID MODEL AS AN ASYMPTOTIC (continued)

In this heuristic/limit

31

$$\beta_f = \sqrt{\frac{\lambda F}{2\pi CR}},$$

$$\mu_f = \sqrt{\lambda F 2\pi CR},$$

$$W_f = \sqrt{\frac{F}{\lambda 2\pi CR}},$$

$$N_f = \sqrt{\frac{\pi}{2}} \sqrt{\frac{\lambda FR^3}{C}} = \sqrt{\frac{\pi}{2}} \sqrt{\rho}$$

Proof: $W_f = F/\mu_f$ and $\beta_f = \lambda W_f$ (Little's law) and $\mu_f = \beta_f 2\pi CR$. Hence

$$\beta_f \mu_f = \lambda F \quad \Leftrightarrow \quad \beta_f \beta_f 2\pi CR = \lambda F$$

COMMENTS ON FLUID ASYMPTOTIC

• ρ is large when

32

- either the arrival intensity, or the file size, or the range are large

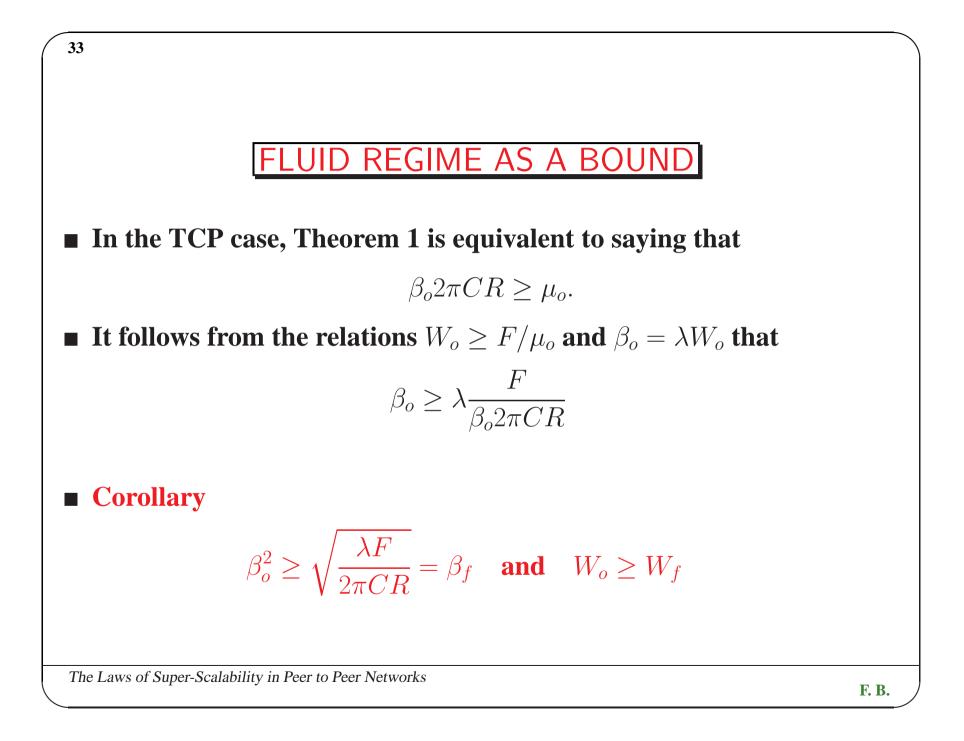
– or if the download speed constant ${\cal C}$ is small

• the time scale of a peer is $W_f = \sqrt{F/(\lambda 2\pi CR)}$. If two peers are at a distance r_0 such that

$$\frac{F}{\frac{C}{r_0}} \ll W_f = \sqrt{\frac{F}{\lambda 2\pi CR}} \iff r_0 \ll \sqrt{\frac{C}{2\pi \lambda FR}} = \frac{R}{\sqrt{2\pi\rho}}$$

then there is little chance to see these too peers in the steady state: hard exclusion below that scale.

• r_0 tends to 0 in configurations where ρ tends to infinity and R is fixed



HARD CORE REGIME

- A stationary point process is hard-core for balls of radius *R* if there are no other points in a ball of radius *R* centered on any point.
- **Conjecture** When ρ tends to 0,

34

- the stationary peer point process tends to a hard-core point process for balls of radius R with intensity β_h and latency W_h :

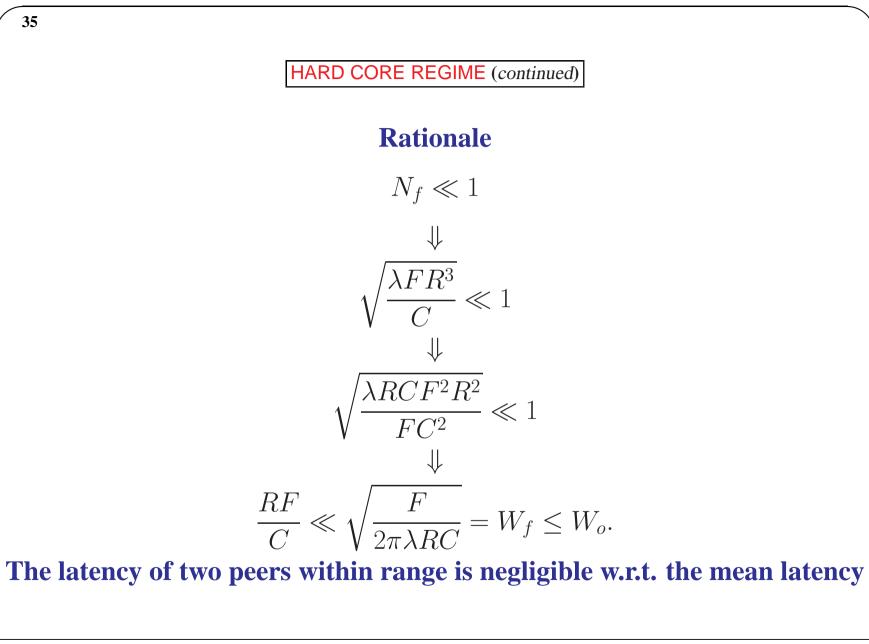
$$\beta_h = \frac{1}{\pi R^2}, \quad W_h = \frac{1}{\lambda \pi R^2}.$$

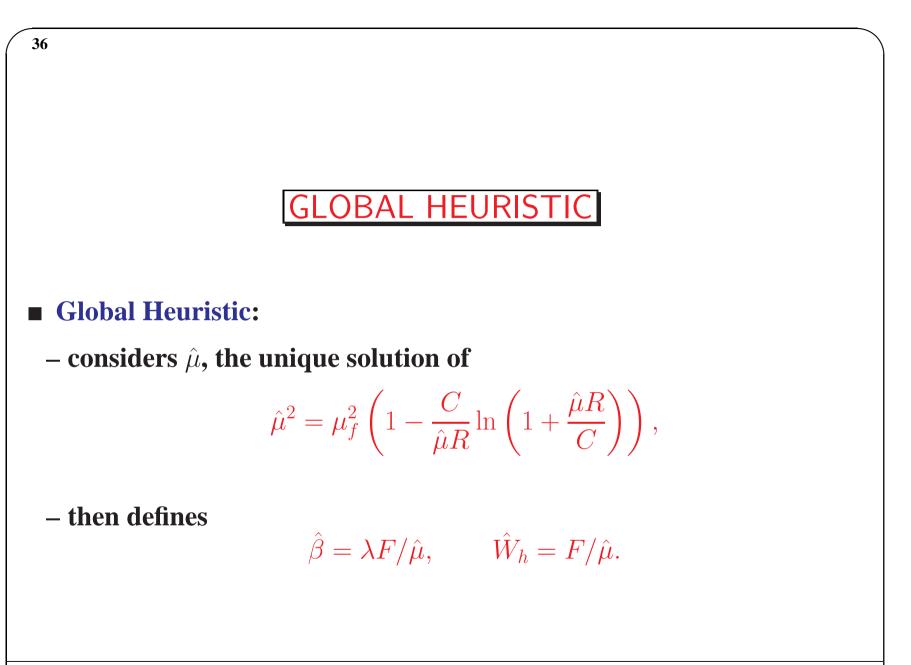
- the cdf of the latency converges weakly to

$$1 - \frac{e^{-\frac{t}{2W_h}}}{2}, \quad t > 0.$$

The Laws of Super-Scalability in Peer to Peer Networks

F. B.





GLOBAL HEURISTIC (continued)

- Factorization of the factorial moment measure of order 3
- Balance equation for the second order factorial moment density, which reads

$$2\beta_o \lambda = 2m_{[2]}(x,y) \frac{C}{F} \frac{1_{||x-y|| \le R}}{||x-y||} + \frac{C}{F} \int_D m_{[3]}(x,y,z) \left(\frac{1_{||x-z|| \le R}}{||x-z||} + \frac{1_{||y-z|| \le R}}{||y-z||}\right) dz,$$

for all x and y.

37

Approximations:

$$\begin{split} m_{[3]}(x,y,z) &\approx \frac{m_{[2]}(x,y)m_{[2]}(x,z)}{\beta_o} \\ m_{[3]}(x,y,z) &\approx \frac{m_{[2]}(x,y)m_{[2]}(y,z)}{\beta_o}. \end{split}$$

GLOBAL HEURISTIC (continued)

■ Then

38

$$\begin{split} \beta_o \lambda &\approx m_{[2]}(x,y) \frac{C}{F} \frac{1_{||x-y|| \le R}}{||x-y||} \\ &+ m_{[2]}(x,y) \frac{C}{F} \frac{1}{2} \int_D \frac{1_{||x-z|| \le R}}{||x-z||} \frac{m_{[2]}(x,z)}{\beta_o} dz \\ &+ m_{[2]}(x,y) \frac{C}{F} \frac{1}{2} \int_D \frac{1_{||y-z|| \le R}}{||y-z||} \frac{m_{[2]}(y,z)}{\beta_o} dz, \end{split}$$

that is

$$m_{[2]}(x,y) \approx \lambda F \frac{\beta_o}{\frac{C1_{||x-y|| \le R}}{||x-y||} + \mu_o}.$$

with
$$\mu_o =: C \int_{B(0,R)} \frac{m_{[2]}(0,z)}{\beta_o} \frac{1}{||z||} dz$$
.

GLOBAL HEURISTIC (continued)

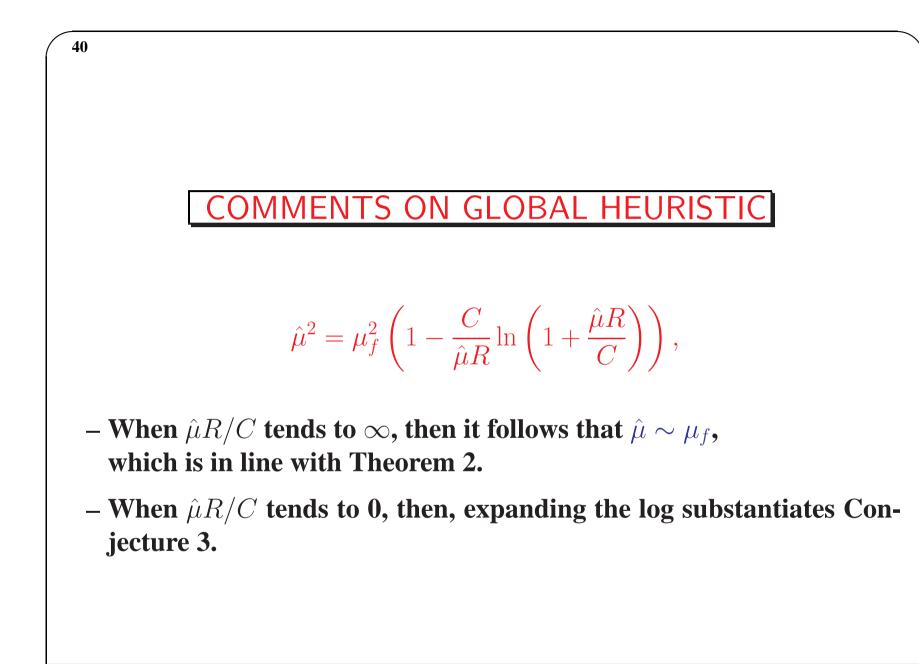
So

39

$$\mu_o \approx \lambda F 2\pi C \int_0^R \frac{1}{\mu_o + \frac{C}{r}} dr$$
$$= \lambda F 2\pi C \left(\frac{R}{\mu_o} - \frac{C}{\mu_o^2} \ln(1 + \frac{\mu_o R}{C}) \right).$$

and

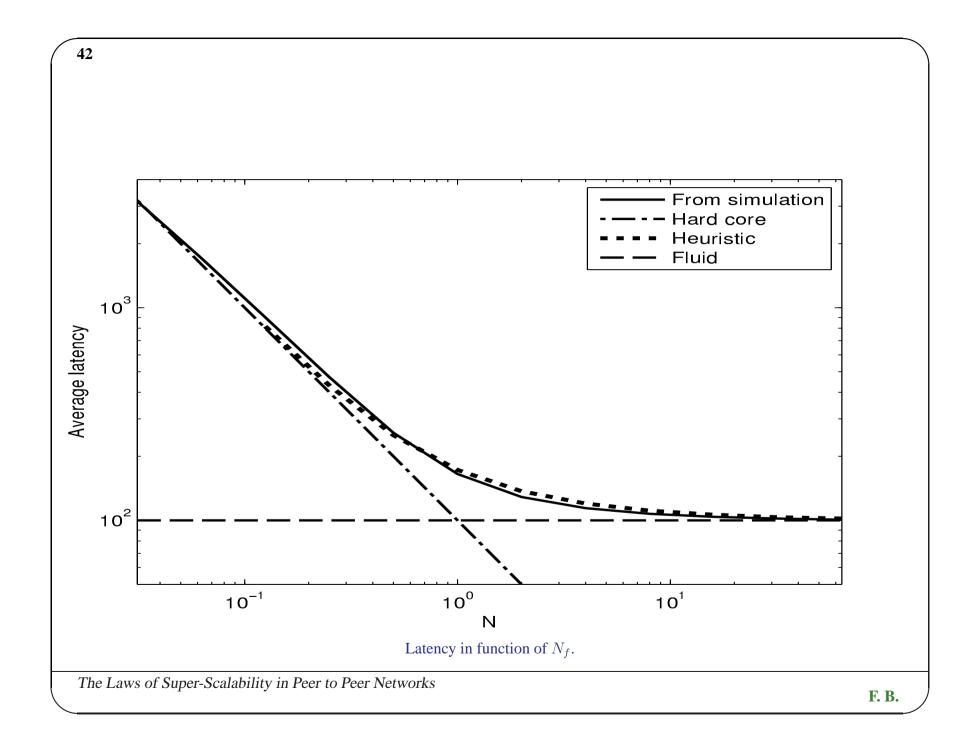
$$\hat{\mu}^2 = \mu_f^2 \left(1 - \frac{C}{\hat{\mu}R} \ln\left(1 + \frac{\hat{\mu}R}{C}\right) \right),\,$$

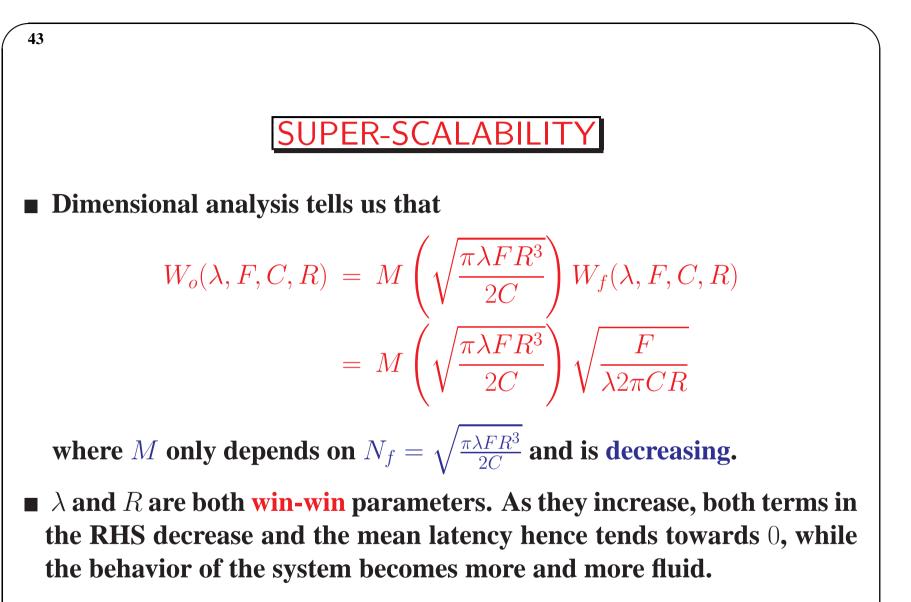


SIMULATION

- Fix 3 independent parameters and use the 4-rth one to run through all possible scenarios.
- The two first fixed parameters are R = .1 and C = 1.
- Set W_f to 100. This implies that for all simulations, the fluid model will predict the same mean latency.
- Then, we use N_f as the variable parameter: We use N_f instead of ρ as main dimensionless parameter
- The remaining input parameters of the system are then completely defined:

$$\lambda = \frac{N_f}{\pi R^2 W_f}, \quad F = \frac{2N_f C W_f}{R}$$





Super Scalability !

SCALABILITY & SUPER SCALABILITY

Single Server M/M/1 Queue Does not scale

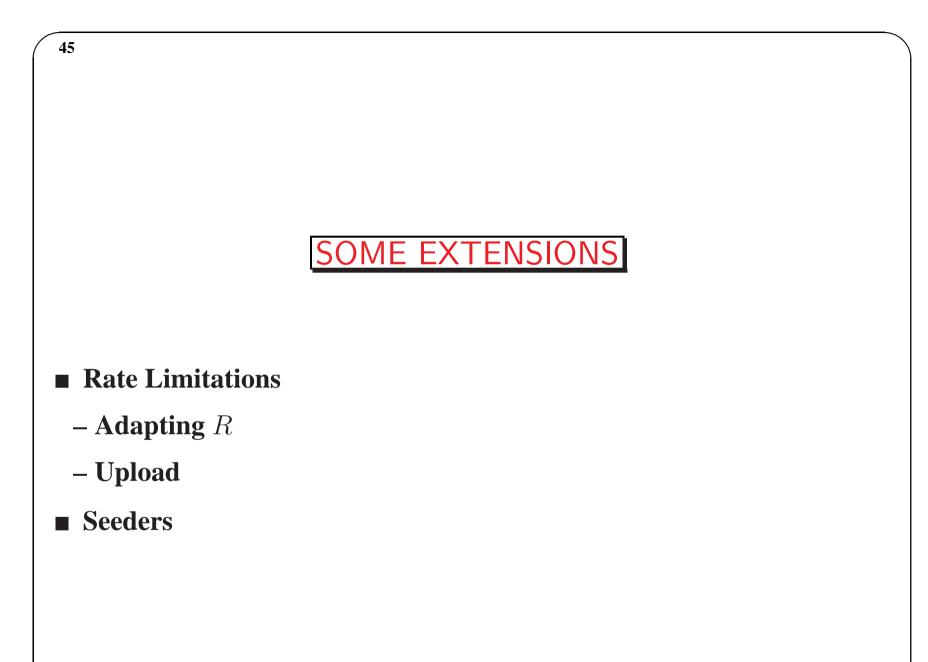
 $W = \frac{1}{\mu - \lambda}, \lambda < \mu$

44

Infinite Server M/M/∞ Queue Scales Network Limited P2P Spatial B & D P2P Super Scales

$$W = \frac{1}{\mu} \qquad \qquad W$$

$$W = \frac{m(\lambda)}{\sqrt{\lambda}}, m(\cdot) \downarrow$$



ADAPTING THE PEERING RADIUS

• Mean Constant Number of Nearest Peers: take as neighbors the peers in a ball with a radius R such that the mean number of other peers in the ball is L i.e. $\pi R^2 \beta_o = L$, where β_o is the (unknown) steady state intensity of the point process ϕ_t . Then

$$f(r) = \frac{C}{r} \mathbb{1}_{r \le R}, \quad R = \sqrt{\frac{L}{\pi \beta_o}}$$

General Case

46

$$f(r) = \frac{C}{r} \mathbf{1}_{r \le R}, \quad R = \kappa \beta_o^{-\alpha}$$

■ (DA) All system properties only depend on the parameter

$$\rho = \frac{\lambda F}{C} \kappa^{\frac{3}{1-2\alpha}}.$$

ADAPTING THE PEERING RADIUS (continued)

Fluid: in the general case $\mu_f = 2\pi C \kappa \beta_f^{1-\alpha}$, so that

$$\beta_f = \left(\frac{\lambda F}{2\pi C\kappa}\right)^{\frac{1}{2-\alpha}}$$
$$W_f = \lambda^{-\frac{1-\alpha}{2-\alpha}} F^{\frac{1}{2-\alpha}} (2\pi C\kappa)^{-\frac{1}{2-\alpha}}$$
$$\mu_f = (2\pi C\kappa)^{\frac{1}{2-\alpha}} (\lambda F)^{\frac{1-\alpha}{2-\alpha}}.$$

This is obtained when choosing a radius of the form

$$R = \kappa \left(\frac{\lambda F}{2\pi C\kappa}\right)^{\frac{\alpha}{\alpha-2}}$$

■ For instance in the constant number of nearest peers case

$$\beta_f = \frac{\left(\frac{\lambda F}{2C}\right)^{\frac{2}{3}}}{(\pi L)^{\frac{1}{3}}}, \ \mu_f = (2C)^{\frac{2}{3}} (\lambda F \pi L)^{\frac{1}{3}}, \ W_f = \frac{\left(\frac{F}{2C}\right)^{\frac{2}{3}}}{(\lambda \pi L)^{\frac{1}{3}}}$$

The Laws of Super-Scalability in Peer to Peer Networks

47

ASYMPTOTIC DESIGN

• General α case: $R = \kappa \beta^{-\alpha}$.

48

- \blacksquare think of all parameters fixed and let λ tend to infinity.
 - $-d = \frac{1}{2-\alpha}$ the density exponent: β is of the order λ^d
 - $-l = \frac{\alpha 1}{2 \alpha}$ the latency exponent: W is of the order λ^l
 - $r = \alpha/(\alpha 2)$ the radius exponent: r is of the order λ^r
- 2 regimes, both compatible with fluid:
 - For $\alpha > 2$, we get a peer density and a latency which both tend to 0 when λ tends to ∞ : Heaven's–flash
 - For $\alpha < \frac{1}{2}$, we get a peer density that tends to infinity and a latency which tends to zero when λ tends to ∞ : swarm-flash

