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STRUCTURE OF THE TALK

1. P2P Networking Motivations
2. Stochastic Model∃!

3. Dimensional Analysis
4. Stochastic Analysis

5. Simulation
6. Scaling

7. Limitations
8. Extensions

Focus on the ongoing research part (inred) today.
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PEER-TO-PEER CONTENT DISTRIBUTION

Content Distribution

– Filesharing

– Streaming

∗ OnDemand

∗ Live

Common Features

– Lot of stress on the network

– P2P solutions:
large family of algorithms and
implementations to cope with
churn, load, heterogeneity ...

The Laws of Super-Scalability in Peer to Peer Networks
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P2P STOCHASTIC NETWORK MODELING

State of the Art: Queuing Theory
[Yang and De Veciana 04], [Qiu and Srikant 04]

Three main types of nodes

– Servers: provide, don’t scale up

– Leechers: need, provide and
scale

– Seeders: provide, scale

Assumptions

– Access-limited
(physical/software)

– No network limitation

– Poisson arrivals

This presentation: New models withnetwork rate limitations

The Laws of Super-Scalability in Peer to Peer Networks
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SPATIAL BIRTH AND DEATH STOCHASTIC MODEL

Peers live in afinite subsetD of the Euclidean planeIR2

Dynamics: arrivals

– Poisson rain: new peers arrive according to a Poisson process with
time space intensityλdxdt on D × IR

Service requirement: each peerp is born with an individual service
requirement Fp > 0 i.i.d. exponential with meanF .

The Laws of Super-Scalability in Peer to Peer Networks
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INTERACTION ?

Dynamics: service rate

– Bit rate function : two peers at locationsx and y serve each other at
rate f(||x− y||), wheref is thebit rate function (BRF)

– Service rate: the service rate of a peer atx in configuration φ is

µ(x, φ) =
∑

y∈φ\{x}
f(||x− y||).

– Service completion: for a system with state history {φt}t, a peerp
born at point xp at time tp leaves at time

τp = inf{t > tp :

t
∫

tp

µ(xp, φs)ds ≥ Fp}.

The Laws of Super-Scalability in Peer to Peer Networks
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LARGE-SCALE?

Natural extensions to the case whereD is

– A torus (approximation of the whole plane);

– The whole Euclidean plane;

– General metric spaces (semantic spaces) e.g.IRd.

The Laws of Super-Scalability in Peer to Peer Networks
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SPATIAL BIRTH AND DEATH PROCESS

N (D): the space of counting measures in(D,D)

The stateφt at time t is aMarkov processliving in the spaceN (D):

– a peer hasbirth intensity λ at x

– a peer located atx hasdeath intensityµ(x, φt)/F

(New?) class of spatial birth-and-death processwith a death rate
defined as ashot-noiseof the configuration.

The Laws of Super-Scalability in Peer to Peer Networks
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EXISTENCE AND UNIQUENESS FINITE CASE

Lemma 1
If D is compact andf is bounded from below by a positive constant
on some non-degenerate interval, then the Markov process{φt}t is
ergodic for any birth rate λ > 0.

Proof

– stochastic domination: M/M/∞ queue that is modified so that a
lone customer cannot leave.

– petite set techniquèa la Tweedie

Remarks

– non monotonic dynamical system

– non reversible Markov process

– non Gibbsian point process
The Laws of Super-Scalability in Peer to Peer Networks
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EXISTENCE AND UNIQUENESS INFINITE CASE

1. Definition over finite time?

Lemma 2
If D = IRd and ∞

∫

1

f(r)rd−1 dr < ∞

then the spatial birth and death point process is uniquely defined on
all finite time intervals [t0, t].

Proof: Random connection model definition of dynamics + existence
and uniqueness of solution of a recursive equation.

The Laws of Super-Scalability in Peer to Peer Networks
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EXISTENCE AND UNIQUENESS INFINITE CASE (continued)

Ψt0: space time arrival p.p. in [t0, t]

Random connection model definition of the SBD process:

– exponential killing timesTpq

– Bernoulli directions of killing Ipq

between all pairsp, q of points of the space time arrival p.p.Ψt0

Death times solution of aninfinite recursive equation

δp = inf {Tpq : q ∈ Ψt0, δq ≥ Tpq, Ipq = 1} .

In the above setting, for all [t0, t] for all p, we give an algorithm deter-
mining whether δp < t or the value of δp otherw. in a.s.finite time.

The Laws of Super-Scalability in Peer to Peer Networks
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EXISTENCE AND UNIQUENESS INFINITE CASE (continued)

Randon Connection Model

The Laws of Super-Scalability in Peer to Peer Networks
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EXISTENCE AND UNIQUENESS INFINITE CASE (continued)

2. Existence/uniqueness of stationary regimes

Theorem 0
Under the assumptions of Lemma 2, there exists a unique stationary
regime holding for all initial conditions made of a homogeneous Pois-
son point process of initial peers.

Proof: [quasi complete]based oncoupling methods.

– Analyze the effect on the process on[t0,∞) of
adding one peer (or a p.p. of peers) att0.

– Coupling Algorithm building the two parallel universes with and
without the additional peers.

The Laws of Super-Scalability in Peer to Peer Networks
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EXISTENCE AND UNIQUENESS INFINITE CASE (continued)

Two parallel universes: thefamilly of offsprings of the added point
is a.s. finite.

The Laws of Super-Scalability in Peer to Peer Networks
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EXAMPLES OF BRF: TCP

TCP model: D is the Euclidean planeIR2 and

f(r) =
C

r
1r≤R.

Justification:

– peers useTCP Reno

– on the path between two peers, if the packet loss probability is p and
the round trip time is RTT, then the rate obtained on this path is

η

RTT
√
p

with η =∼ 1.309 square root formula

– the RTT is proportional to distance r

– only peers at distance less thanR are retained.
The Laws of Super-Scalability in Peer to Peer Networks

F. B.& %



' $
15

EXAMPLES OF BRF: TCP (continued)

Variants

– Affine RTT model: RTT = ar+ b, wherea accounts for propagation
delays in the Internet path andb for the mean access latency:

f(r) =
C

r + q
1r≤R

– Additional overhead cost: c bits per second:

f(r) =

(

C

r + q
− c

)+

1r≤R

– Upload (or Download) rate limitations:

f(r) = min

(

U,

(

C

r + q
− c

)+
)

1r≤R

with U the individual rate limitation
The Laws of Super-Scalability in Peer to Peer Networks
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EXAMPLES OF BRF: UDP

UDP assumptions:

– D is the Euclidean planeIR2

– only peers within distanceR are retained

– peers use UDP with prescribed rateC regardless of distance

f(r) = C1r≤R.

The Laws of Super-Scalability in Peer to Peer Networks
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EXAMPLES OF BRF: WIRELESS SNR

SNR model: the rate between a transmitter and its receiver at dis-
tancer is

f(r) =
1

2
log

(

1 +
C

rα

)

1r<R

with

– α > 2 the path loss exponent

– C the signal to noise power ratio at distance 1

– R the transmission range

Requirement: all point-to-point channels are mutually orthogonal

The Laws of Super-Scalability in Peer to Peer Networks
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DEFAULT MODEL

Default option model throughout the talk:

– D is the Euclidean plane or a large torus

– TCP Bit Rate Function:

f(r) =
C

r
1r<R

+ comments on the other Bit Rate Functions

The Laws of Super-Scalability in Peer to Peer Networks
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DIMENSIONAL ANALYSIS

4 basic parameters:

– R in meters (m),

– F in bits,

– λ in m−2 per second (s)

– C in bit ·m·s−1.

π-Theorem
In the TCP case, all system properties only depend on the parameter

ρ =
λFR3

C
.

Extension for more generalf s.t.
∫

f(r)rdr < ∞.
The Laws of Super-Scalability in Peer to Peer Networks
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DIMENSIONAL ANALYSIS (continued)

Sketch of proof

– chooseR as a new distance unit, then

∗ the arrival intensity becomesl = λR2

∗ the download constant becomesc = C/R

– now defineF as an information unit, then

∗ the download speed constant becomesc = C/(RF )

– take a time unit such that the download speed constant is1, then

∗ all parameters are equal to1

∗ the arrival rate becomesl = λFR3

C

The Laws of Super-Scalability in Peer to Peer Networks
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DIMENSIONAL ANALYSIS (continued)

Terminology: Three cases

– ρ ≫ 1 is calledfluid

– ρ ≪ 1 is calledhard core

– ρ inbetween is calledintermediate

The Laws of Super-Scalability in Peer to Peer Networks
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NOTATION

In the steady state regime of the P2P dynamics:

– βo the density of the peer point process

– µo the mean rate of a typical peer

– Wo the mean latency of a typical peer

– No the mean number of peers in a ball of radiusR around a typical
peer

The Laws of Super-Scalability in Peer to Peer Networks
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f-REPULSION

Theorem 1
For all BRF f , in the stationary regime,

E[
∑

xi∈φ
f(||xi||)] ≥ E0[

∑

xi∈φ\0
f(||xi||)],

where IP0 is the Palm probability w.r.t. Φ.

Proof: rate conservation principle + Papangelou theorem for point
processes with stochastic intensity

The Laws of Super-Scalability in Peer to Peer Networks
F. B.& %
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SKETCH OF PROOF - TORUS

Φt: state of the SBD at timet.

At: total rate

At =
∑

X∈Φt

At(X),

with, for all X ∈ Φt:

At(X) =
∑

Y ∈Φt,Y 6=X

f(||X − Y ||))

The Laws of Super-Scalability in Peer to Peer Networks
F. B.& %
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SKETCH OF PROOF - TORUS (continued)

Rate conservation principle applied toAt:

– E
↑: (time) Palm probability of the SBD at birth epochs

– E
↓ at death epochs.

r↑E+(I) = r↓E↓(|D|)
with

– I = A0+ − A0 the total rate increase,r↑ the inc. intensity

– D = A0+ − A0 the total rate decrease,r↓ the dec. intensity

The Laws of Super-Scalability in Peer to Peer Networks
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SKETCH OF PROOF - TORUS (continued)

Sincer↑ = r↓,
E
↑(I) = E

↓(D).

From PASTA
E
↑(I) = 2E(n0)

a

|D|.

with n0 the total population and

a =

∫

T

f(||x||)m( dx).

with T the torus of area|D|.

The Laws of Super-Scalability in Peer to Peer Networks
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SKETCH OF PROOF - TORUS (continued)

The (total) death point process admits a stochastic intensity w.r.t. the
filtration Ft = σ(Φs, s ≤ t) equal toAt.

From Papangelou’s theoremdP↓
dP |F0−=

A0
E(A0)

.

Since the decrease (in stateΦ0−) is of magnitudeA0(X) (w.r.t. Φ0−)
with probability A0(X)

A0
(w.r.t. Φ0−),

E
↓(|D|) = 2E





A0

E(A0)

∑

X∈Φ0

A0(X)

A0
A0(X)



 = 2

E

(

∑

X∈Φ0

(A0(X))2

)

E

(

∑

X∈Φ0

A0(X)

)

= 2
E0

(

(A0(0))
2
)

E0 (A0(0))

The Laws of Super-Scalability in Peer to Peer Networks
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SKETCH OF PROOF - TORUS (continued)

Rate conservation principle for total rate:

E(n0)
a

|D| =
E0

(

(A0(0))
2
)

E0 (A0(0))
.

Using the fact that

E0

(

(A0(0))
2
)

≥ E0 (A0(0))
2 ,

we get
E(n0)

a

|D| ≥ E0 (A0(0)) .

The Laws of Super-Scalability in Peer to Peer Networks
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FLUID MODEL IN WHOLE PLANE

Fluid heuristic : obtained when approximating the Palm expectation
of the rate, namely the mean rate obtained by a typical user, by the
mean rate at a typical location:

µf = βf2π

R
∫

r=0

(C/r)rdr = βf2πCR.

with βf the density of peers in this heuristic.

The Laws of Super-Scalability in Peer to Peer Networks
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FLUID MODEL AS AN ASYMPTOTIC

Theorem 2
When ρ tends to infinity:

– The fluid heuristic is asymptotically tight:
βo → βf , Wo → Wf , µo → µf · · ·

– The law of the latency of a typical peer converges weakly to an ex-
ponential random variable of parameterWf =

F
µf

Proof: fluid limit techniques extended to spatial processes

The Laws of Super-Scalability in Peer to Peer Networks
F. B.& %
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FLUID MODEL AS AN ASYMPTOTIC (continued)

In this heuristic/limit

βf =

√

λF

2πCR
,

µf =
√
λF2πCR,

Wf =

√

F

λ2πCR
,

Nf =

√

π

2

√

λFR3

C
=

√

π

2

√
ρ.

Proof: Wf = F/µf and βf = λWf (Little’s law) and µf = βf2πCR.
Hence

βfµf = λF ⇔ βfβf2πCR = λF

The Laws of Super-Scalability in Peer to Peer Networks
F. B.& %
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COMMENTS ON FLUID ASYMPTOTIC

ρ is large when

– either the arrival intensity, or the file size, or the range are large

– or if the download speed constantC is small

the time scale of a peer isWf =
√

F/(λ2πCR).
If two peers are at a distancer0 such that

F
C
r0

≪ Wf =

√

F

λ2πCR
⇔ r0 ≪

√

C

2πλFR
=

R√
2πρ

,

then there is little chance to see these too peers in the steady state:
hard exclusionbelow that scale.

r0 tends to 0 in configurations whereρ tends to infinity and R is fixed

The Laws of Super-Scalability in Peer to Peer Networks
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FLUID REGIME AS A BOUND

In the TCP case, Theorem 1 is equivalent to saying that

βo2πCR ≥ µo.

It follows from the relations Wo ≥ F/µo and βo = λWo that

βo ≥ λ
F

βo2πCR

Corollary

β2
o ≥

√

λF

2πCR
= βf and Wo ≥ Wf

The Laws of Super-Scalability in Peer to Peer Networks
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HARD CORE REGIME

A stationary point process ishard–core for balls of radius R if there
are no other points in a ball of radiusR centered on any point.

Conjecture When ρ tends to 0,

– the stationary peer point process tends to a hard–core point process
for balls of radius R with intensity βh and latencyWh:

βh =
1

πR2
, Wh =

1

λπR2
.

– the cdf of the latency converges weakly to

1− e
− t

2Wh

2
, t > 0.

The Laws of Super-Scalability in Peer to Peer Networks
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HARD CORE REGIME (continued)

Rationale

Nf ≪ 1

⇓
√

λFR3

C
≪ 1

⇓
√

λRCF 2R2

FC2
≪ 1

⇓
RF

C
≪
√

F

2πλRC
= Wf ≤ Wo.

The latency of two peers within range is negligible w.r.t. the mean latency

The Laws of Super-Scalability in Peer to Peer Networks
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GLOBAL HEURISTIC

Global Heuristic:

– considersµ̂, the unique solution of

µ̂2 = µ2
f

(

1− C

µ̂R
ln

(

1 +
µ̂R

C

))

,

– then defines
β̂ = λF/µ̂, Ŵh = F/µ̂.

The Laws of Super-Scalability in Peer to Peer Networks
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GLOBAL HEURISTIC (continued)

Factorization of the factorial moment measure of order 3

Balance equation for the second order factorial moment density,
which reads

2βoλ = 2m[2](x, y)
C

F

1||x−y||≤R

||x− y||
+
C

F

∫

D

m[3](x, y, z)

(

1||x−z||≤R

||x− z|| +
1||y−z||≤R

||y − z||

)

dz,

for all x and y.

Approximations:

m[3](x, y, z) ≈ m[2](x, y)m[2](x, z)

βo

m[3](x, y, z) ≈ m[2](x, y)m[2](y, z)

βo
.

The Laws of Super-Scalability in Peer to Peer Networks
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GLOBAL HEURISTIC (continued)

Then

βoλ ≈ m[2](x, y)
C

F

1||x−y||≤R

||x− y||
+m[2](x, y)

C

F

1

2

∫

D

1||x−z||≤R

||x− z||
m[2](x, z)

βo
dz

+m[2](x, y)
C

F

1

2

∫

D

1||y−z||≤R

||y − z||
m[2](y, z)

βo
dz,

that is
m[2](x, y) ≈ λF

βo
C1||x−y||≤R

||x−y|| + µo

.

with µo =: C
∫

B(0,R)

m[2](0,z)

βo
1

||z||dz.

The Laws of Super-Scalability in Peer to Peer Networks
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GLOBAL HEURISTIC (continued)

So

µo ≈ λF2πC

R
∫

0

1

µo +
C
r

dr

= λF2πC

(

R

µo
− C

µ2
o

ln(1 +
µoR

C
)

)

.

and

µ̂2 = µ2
f

(

1− C

µ̂R
ln

(

1 +
µ̂R

C

))

,

The Laws of Super-Scalability in Peer to Peer Networks
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COMMENTS ON GLOBAL HEURISTIC

µ̂2 = µ2
f

(

1− C

µ̂R
ln

(

1 +
µ̂R

C

))

,

– When µ̂R/C tends to∞, then it follows that µ̂ ∼ µf ,
which is in line with Theorem 2.

– When µ̂R/C tends to 0, then, expanding the log substantiates Con-
jecture 3.

The Laws of Super-Scalability in Peer to Peer Networks
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SIMULATION

Fix 3 independent parameters and use the 4-rth one to run through
all possible scenarios.

The two first fixed parameters areR = .1 and C = 1.

SetWf to 100. This implies that for all simulations, the fluid model
will predict the same mean latency.

Then, we useNf as the variable parameter: We useNf instead ofρ
as main dimensionless parameter

The remaining input parameters of the system are then completely
defined:

λ =
Nf

πR2Wf
, F =

2NfCWf

R

The Laws of Super-Scalability in Peer to Peer Networks
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SUPER-SCALABILITY

Dimensional analysis tells us that

Wo(λ, F,C,R) = M

(
√

πλFR3

2C

)

Wf(λ, F,C,R)

= M

(
√

πλFR3

2C

)
√

F

λ2πCR

whereM only depends onNf =
√

πλFR3

2C
and isdecreasing.

λ andR are both win-win parameters. As they increase, both terms in
the RHS decrease and the mean latency hence tends towards0, while
the behavior of the system becomes more and more fluid.

Super Scalability !

The Laws of Super-Scalability in Peer to Peer Networks
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SCALABILITY & SUPER SCALABILITY

Single Server
M/M/1 Queue
Does not scale

W =
1

µ− λ
, λ < µ

Infinite Server
M/M/ ∞ Queue

Scales

W =
1

µ

Network Limited P2P
Spatial B & D P2P

Super Scales

W =
m(λ)√

λ
,m(·) ↓

The Laws of Super-Scalability in Peer to Peer Networks
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SOME EXTENSIONS

Rate Limitations

– Adapting R

– Upload

Seeders

The Laws of Super-Scalability in Peer to Peer Networks
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ADAPTING THE PEERING RADIUS

Mean Constant Number of Nearest Peers: take as neighbors the
peers in a ball with a radius R such that the mean number of other
peers in the ball isL i.e. πR2βo = L, whereβo is the (unknown) steady
state intensity of the point processφt. Then

f(r) =
C

r
1r≤R, R =

√

L

πβo

General Case
f(r) =

C

r
1r≤R, R = κβ−α

o

(DA) All system properties only depend on the parameter

ρ =
λF

C
κ

3
1−2α .

The Laws of Super-Scalability in Peer to Peer Networks
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ADAPTING THE PEERING RADIUS (continued)

Fluid : in the general caseµf = 2πCκβ1−α
f , so that

βf =

(

λF

2πCκ

) 1
2−α

Wf = λ−1−α
2−αF

1
2−α(2πCκ)−

1
2−α

µf = (2πCκ)
1

2−α(λF )
1−α
2−α .

This is obtained when choosing a radius of the form

R = κ

(

λF

2πCκ

) α
α−2

.

For instance in the constant number of nearest peers case

βf =

(

λF
2C

)
2
3

(πL)
1
3

, µf = (2C)
2
3(λFπL)

1
3 , Wf =

(

F
2C

)
2
3

(λπL)
1
3

.

The Laws of Super-Scalability in Peer to Peer Networks
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ASYMPTOTIC DESIGN

Generalα case:R = κβ−α.

think of all parameters fixed and let λ tend to infinity.

– d = 1
2−α the density exponent: β is of the order λd

– l = α−1
2−α

the latency exponent: W is of the order λl

– r = α/(α− 2) the radius exponent: r is of the order λr

2 regimes, both compatible with fluid:

– For α > 2, we get a peer density and a latency which both tend to 0
whenλ tends to∞: Heaven’s–flash

– For α < 1
2, we get a peer density that tends to infinity and a latency

which tends to zero whenλ tends to∞: swarm–flash

The Laws of Super-Scalability in Peer to Peer Networks
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UPLOAD AND NETWORK LIMITATIONS

U : average upload capacity of a peer;

The average rate in the fluid limit should be such that

µf =
√
λF2πCR ≤ U.

A natural dimensioning rule: choose

R =
U 2

λF2πC

in order to use all the available upload capacity and not more.

The Laws of Super-Scalability in Peer to Peer Networks
F. B.& %



' $
50

SEEDERS

When a leecher has obtained all its file, rather than leaving,it be-
comes a seeder and remains such for a durationTS

Fluid limit with seeders

µf = (βf + λTS)2πCR.

UsingF = Wfµf and βfµf = λF , we get

W 2
f +WfTS = W 2

f0
, with Wf0 =

√

F

λ2πCR
.

The positive solution of this equation is

Wf =

√

W 2
f0
+

(

TS

2

)2

− TS

2
.

The Laws of Super-Scalability in Peer to Peer Networks
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CONCLUSION

A new, non Gibbsian point processmodel with many open challenges

– Hard core regime

– Intermediate regime

Design implications

– Laws of Super-Scalabilityfor future P2P

– First understanding of theassumptions for these laws to hold

Ongoing work

– Chunk level model→ INFOCOM 13

– Math paper in preparation

– http://hal.inria.fr/inria-00615523/en

The Laws of Super-Scalability in Peer to Peer Networks
F. B.& %


