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Wireless Local Area Network (WLAN) interactions

» N nodes or particles accessing the medium in a wireless LAN
» State space for each particle: 2 ={0,1,---,r—1}

» Transitions: From state / to either i +1 or 0

Q0 00 0

» r: Maximum number of transmission attempts before discard

» Coupled dynamics: Transition rate for success or failure depends on
empirical distribution of nodes across states



Mean field dynamics
» Empirical measure upn(t): Fraction of nodes in each state

> X,EN)(t): state of nth particle at time t

N
Z Mgy € M31(Z), space of probability measures on Z

» A node transits from state / to state j at time t with rate
Aij(pn(t))

> In general, allowed transitions are specified by the directed edges £
on the vertex set Z



Example rate functions

This example comes from a discrete-time (slotted-ALOHA) model

» Slot size 1/N, access probability in each slot is ¢;/N when node is in
state 7/, with ¢ € R/,

» Assume three states r = 3.

With € € M;(Z), the rate matrix is

—() all-e) °
ANE) = | cec'¢ () o(l—e %)
ce <€ 0 ()

Interpretation: c'¢ is like a load factor when up(t) = &. Success
probability is e=<"€ if an attempt is made.



The Markov processes, big and small

(XM(-), 1< n < N)is Markov

v

N

v

State space grows exponentially with N: size r

v

Study un(-) instead, also a Markov process
Its state space size is at most (N + 1)", and is a subset of M;(Z)

v

We will focus mostly on pp(+)



The smaller Markov process
> un(-) is a Markov process
> The transition from & to £+ 4 e — & occurs with rate N(i)A j(€)
» For large N, changes are small, O(1/N), at higher rates, O(N).

» Familiar setting of Kurtz's theorem where i converges to a
deterministic limit given by an ODE.



The conditional expected drift in py
» For each k, _
§e= > &GNik(©) =& D M
itk itk

» With A(§) = [ \ij(§) ], we get

m & B lan(e+ B) — an(e) | n(e) = €] = A(©)" ¢



The conditional expected drift in py

» For each k,

§e= > &GNik(©) =& D M

ik ik
» With A(§) = [ \ij(§) ], we get

m & B lan(e+ B) — an(e) | n(e) = €] = A(©)" ¢

» First order approximation: ignore the randomness in uy(-), and set
it to its mean evolution given by

a(t) = Ap(e)* w(t), t>0 [McKean-Vlasov equation]

with initial condition 1(0) = pp(0).

» State space is a more familiar compact set, but evolution is nonlinear



Assumptions

» The graph with vertex set Z and edge set £ is irreducible.
Holds in our WLAN setting

» There exist positive constants ¢ > 0 and C < 400 such that, for
every (i,j) € £, we have

c<Aij()<C

» The mapping p +— A; j(1t) is Lipschitz continuous over M;(Z)



Kurtz's theorem

» Consider D([0, T], M1(Z)), cadlag, measure-valued paths, and
equip it with the metric

pr(&,8") = sup_|l£(t) — &' (1)[h

te[0,T]
where || - ||1 is the L' metric

» Finer than Skorohod topology; not separable

Theorem
Let un(0) — p(0) weakly. Let T > 0 be arbitrary, but finite. Then, for
every € > 0, we have

lim Pr{pr(un,p) >c} =0.

N——+oo

Approximation over finite time durations



Formally ...

» For any ¢ : M;(Z) — R that is bounded and continuous, the
conditional expected drift starting from &

W) = lim ¢ BOGm(t+ k) — Oun(®) | un(t) =
= 5 melse) o (4 o - o) - @)
(i) J#i

(vo.€)+0 ()

if ® has bounded second order derivatives.



Back to the individual particles

> Let u(-) be the solution to the McKean-Vlasov dynamics

» Tag a particle.

> It is likely to be in state i with probability p(t)(7).

> |ts evolution is described asymptotically by a Markov process with
time-dependent transition rates i j(u(t))

» Tag k particles.

> If their states are independent at time 0, then they evolve (in the
asymptotics of large N) independently of each other under the mean

field pu(+)



Large deviation principle?
» From simulations, exponentially fast concentration

> A large deviation principle holds for some class of Markov processes.
Shwartz and Weiss, Freidlin and Wentzell, Leonard, and others.

» The case under consideration does not satisfy the conditions
assumed in these works.



Large deviation principle (LDP)

» Definition: The sequence (p(N), N > 1) of probability measures on
the metric space D([0, T], M1(Z2)) satisfies the LDP with speed N
and good rate function Sy 77(p) if

> For every open set G and closed set F of the metric space
D([0, T], M1(Z)), we have

.. . log p™M(G) .

= 7 > —
AN Y =~ jnf Sen()
. log p™(F) .
limsup —="——-+* < —inf S
N—H»og N - nEF o11()

> For each a € [0, +00), the level sets {p : S, 77(1t) < a} are compact



Relative entropy between two inhomogenous Poisson point
processes

Let us understand a simpler case first ...

» P: Poisson point process on [0, T] with intensity n(t)
Q: Poisson point process on [0, T] with intensity {(t)

» Sanov's theorem: Sample N iid paths from Q. The probability that
the empirical measure is in a small neighbourhood near P is
~ e NI(PIIQ) where

P19y = [ [aertes g () +.)]

/[O,T] [{(t) T (% - 1)} dt

where 7*(u) = (u+ 1) log(u+1) —u, u> -1



Heuristics

» Find probability of being near a deviant path p, a solution to

v

Normal intensity for an (i, ) jump at time t is (u(t)(7)) % A j(1(t))

v

Empirical distribution should be near that of iid sampling from

(u(£)(7) x Aij(u(t))

v

But the path p appears to have intensity for (i, /) jump at time t
given by (u(t)(7)) x i j(t)

v

Add up the relative entropies for each jump process indexed by
(i,j)eé&

Sol) = [ [ 3 Go0u(o) = (50 1) Jae
T (h)eg J



Finite duration LDP

Theorem
Suppose that the initial conditions vy — v weakly.

Then the sequence (p,(,i\\,l), N > 1) satisfies the LDP on D([0, T], M1(Z2))
(with metric pt) with speed N and a good rate function Sy )(j1|v).



Proof steps

» Apply Sanov's theorem to noninteracting system on path space
» Use the Laplace-Varadhan principle to extract a path space LDP

» Then use the contraction principle (from an LDP for the empirical
measure in path space to an LDP for the law of pp(+)).



Proof steps

» Apply Sanov's theorem to noninteracting system on path space
» Use the Laplace-Varadhan principle to extract a path space LDP

» Then use the contraction principle (from an LDP for the empirical
measure in path space to an LDP for the law of pp(+)).

Corollary:

p,(ji\\,l) — 0,(.) weakly, where p(-) is the McKean-Vlasov solution



Assumptions again

» The graph with vertex set Z and edge set £ is irreducible
Holds in the our WLAN case

» There exist positive constants ¢ > 0 and C < 400 such that, for
every (i,j) € £, we have

c < )\,‘,j(-) < C

» The mapping p +— A; j(1t) is Lipschitz continuous over M;(Z)



Assumptions again

» The graph with vertex set Z and edge set £ is irreducible
Holds in the our WLAN case

» There exist positive constants ¢ > 0 and C < 400 such that, for
every (i,j) € £, we have

c < )\,‘,j(-) < C

» The mapping p +— A; j(1t) is Lipschitz continuous over M;(Z)

> Take lim;— oo limysqoo(- )
Assume that the McKean-Vlasov equation fi(t) = A(u(t))*p(t)

» Has a unique equilibrium & (i.e., A(&)*& = 0)
> The equilibrium & is globally asymptotically stable
Then lime_, o0 p(t) = & for any initial condition



When t — +o0 first ... large time behaviour

> Let the directed graph G(Z,&) be irreducible. Then, for a fixed N,
the Markov chain ppy is irreducible with a finite state space. It
therefore has a unique stationary distribution: p(") = Z;(jun(+00))

> Does V) — 5,7
(Stolyar 1989, Anantharam 1991, Anantharam and Benchekroun
1993, Bordenave et al. 2005/2007, Benaim and Le Boudec 2008)

» Decoupling approximation

> Large deviations from this limit?



Large deviations for the invariant measure

> If pn(400) is near &, then this is most likely due to an excursion
that began at &y, worked against the attractor &y, and took the
lowest cost path to & over all possible time durations



Large deviations for the invariant measure

> If pn(400) is near &, then this is most likely due to an excursion
that began at &y, worked against the attractor &y, and took the
lowest cost path to & over all possible time durations

» Looking backwards in time, the dynamics must be

~

at) = —L(t)*A(t),t > 0

with 2(0) = &, lim,_ o0 fi(t) = &, and L(t) is some family of rate
matrices. Define

O fy (3

(OGN is(A(D) 7 (— - 1) J a
(i,j)eé Alﬂj(u(t))
Theorem

Under the stated assumptions, the sequence (p(’v )N > 1) satisfies the
LDP with speed N and good rate function s(-).



Summary

» Asymptotics of mean field limits in WLANSs
» A finite duration LDP

» When there is a unique globally stable equilibrium &y for the
McKean-Vlasov equation, the invariant measure satisfies the LDP.
The rate function s(&) is characterised by the cost of an optimal
control that moves the system from £ to & in reversed time

» Extension to cases with multiple equilibria.

> arXiv:1107.4142



Proof steps

» Given vy — v, extract LDP for the laws for terminal state (finite
T), via contraction principle, with rate function

St(&lv) = inf {Sp,7y(ulv) | w(0) = v, u(T) = &}

» If the laws for initial states satisfy the LDP with a good rate
function s(v), argue that joint laws for initial and terminal states
satisfy the LDP with a good rate function s(v) + St (£|v). Then
apply contraction principle to get that the laws for the terminal
states satisfy the LDP with good rate function

inf 150+ Sr(n)}

» The invariant measures (p("), N > 1) live on a compact space. So,
given any subsequence, there is a further subsequential LDP with
appropriate speed, and with rate function s(£) that satisfies

s(§) = (v) + ST(Elv)}

inf {s
veMi(Z)



Proof steps continued

» By the assumption that & is a unique equilibrium that is globally
stable, we can show s(§p) = 0.

» Extract a single infinite duration path fi(-) that is optimal, i.e., it
attains the infimum for each duration [0, mT], (0) = &, and

satisfies
(&) = S(AMT)) + Smr(el), ¥m>1
= S(@(mT)) + /[ JRE

» The integrand in the second term is nonnegative; the second term
increases with m, and so the first term s(i(mT)) decreases with m.
Since s(-) is bounded below by 0, s(fi(mT)) must converge to a
constant as m — +00



Proof steps continued even further

: T4T
> So the increment [ "

w7 L'--]dt = 0in the second term, and in the
limit, integrand must be 0 a.e., which is a McKean-Vlasov path in
reversed time.

More precisely, fi(-) has an w-limit set that is positively invariant to

(McKean-Vlasov dynamics in reversed time)

at) = =N @(e))"a(t), t=0

» This limit set is also invariant to McKean-Vlasov dynamics. It is
further compact and bounded within M;(Z). The only such set
invariant set is {&}. So a(mT) — &.

» Taking limit as m — +o0,

5(§)=S(§o)+/[o+ )[---]dt:OJr/[OJr )[---]dt

This expression is the same regardless of the initial subsequence

» Thus every subsequence has a further subsequence that satisfies the
LDP with appropriate speed and the same rate function s(-).
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