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Wireless Local Area Network (WLAN) interactions

◮ N nodes or particles accessing the medium in a wireless LAN

◮ State space for each particle: Z = {0, 1, · · · , r − 1}

◮ Transitions: From state i to either i + 1 or 0

0 1 i i + 1 r - 1

◮ r : Maximum number of transmission attempts before discard

◮ Coupled dynamics: Transition rate for success or failure depends on
empirical distribution of nodes across states



Mean field dynamics

◮ Empirical measure µN(t): Fraction of nodes in each state

◮ X
(N)
n (t): state of nth particle at time t

µN(t) =
1

N

N∑

n=1

δ
{X

(N)
n (t)}

∈ M1(Z), space of probability measures on Z

◮ A node transits from state i to state j at time t with rate
λi ,j(µN(t))

◮ In general, allowed transitions are specified by the directed edges E
on the vertex set Z



Example rate functions

This example comes from a discrete-time (slotted-ALOHA) model

◮ Slot size 1/N , access probability in each slot is ci/N when node is in
state i , with c ∈ R

r
+

◮ Assume three states r = 3.

With ξ ∈ M1(Z), the rate matrix is

Λ(ξ) =







−(·) c1(1 − e−cTξ) 0

c2e
−cTξ −(·) c2(1− e−cTξ)

c3e
−cTξ 0 −(·)






.

Interpretation: cT ξ is like a load factor when µN(t) = ξ. Success

probability is e−cTξ if an attempt is made.



The Markov processes, big and small

◮ (X
(N)
n (·), 1 ≤ n ≤ N) is Markov

◮ State space grows exponentially with N : size rN

◮ Study µN(·) instead, also a Markov process
Its state space size is at most (N + 1)r , and is a subset of M1(Z)

◮ We will focus mostly on µN(·)



The smaller Markov process

◮ µN(·) is a Markov process

◮ The transition from ξ to ξ+ 1
N
ej −

1
N
ei occurs with rate Nξ(i)λi ,j(ξ)

◮ For large N , changes are small, O(1/N), at higher rates, O(N).

◮ Familiar setting of Kurtz’s theorem where µN converges to a
deterministic limit given by an ODE.



The conditional expected drift in µN

◮ For each k ,
ξ̇k =

∑

i :i 6=k

ξiλi ,k(ξ)− ξk
∑

i :i 6=k

λk,i

◮ With Λ(ξ) = [ λi ,j(ξ) ], we get

lim
h↓0

1

h
E [µN(t + h)− µN(t) | µN(t) = ξ] = Λ(ξ)∗ ξ

◮ First order approximation: ignore the randomness in µN(·), and set
it to its mean evolution given by

µ̇(t) = Λ(µ(t))∗ µ(t), t > 0 [McKean-Vlasov equation]

with initial condition µ(0) = µN(0).

◮ State space is a more familiar compact set, but evolution is nonlinear
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Assumptions

◮ The graph with vertex set Z and edge set E is irreducible.
Holds in our WLAN setting

◮ There exist positive constants c > 0 and C < +∞ such that, for
every (i , j) ∈ E , we have

c ≤ λi ,j(·) ≤ C

◮ The mapping µ 7→ λi ,j(µ) is Lipschitz continuous over M1(Z)



Kurtz’s theorem

◮ Consider D([0,T ],M1(Z)), cadlag, measure-valued paths, and
equip it with the metric

ρT (ξ, ξ
′) = sup

t∈[0,T ]

||ξ(t)− ξ′(t)||1

where || · ||1 is the L1 metric

◮ Finer than Skorohod topology; not separable

Theorem
Let µN(0) → µ(0) weakly. Let T > 0 be arbitrary, but finite. Then, for
every ε > 0, we have

lim
N→+∞

Pr {ρT (µN , µ) > ε} = 0.

Approximation over finite time durations



Formally ...

◮ For any Φ : M1(Z) → R that is bounded and continuous, the
conditional expected drift starting from ξ

ΩNΦ(ξ) = lim
h↓0

1

h
E [Φ(µN(t + h))− Φ(µN(t)) | µN(t) = ξ]

=
∑

(i ,j):j 6=i

Nξ(i)λi ,j(ξ)

[

Φ

(

ξ +
1

N
ej −

1

N
ei

)

− Φ(ξ)

]

=
〈

∇Φ(ξ), ξ̇
〉

+ O

(

1

N

)

if Φ has bounded second order derivatives.



Back to the individual particles

◮ Let µ(·) be the solution to the McKean-Vlasov dynamics

◮ Tag a particle.

◮ It is likely to be in state i with probability µ(t)(i).

◮ Its evolution is described asymptotically by a Markov process with
time-dependent transition rates λi,j(µ(t))

◮ Tag k particles.

◮ If their states are independent at time 0, then they evolve (in the
asymptotics of large N) independently of each other under the mean
field µ(·)



Large deviation principle?

◮ From simulations, exponentially fast concentration

◮ A large deviation principle holds for some class of Markov processes.
Shwartz and Weiss, Freidlin and Wentzell, Leonard, and others.

◮ The case under consideration does not satisfy the conditions
assumed in these works.



Large deviation principle (LDP)

◮ Definition: The sequence (p(N),N ≥ 1) of probability measures on
the metric space D([0,T ],M1(Z)) satisfies the LDP with speed N
and good rate function S[0,T ](µ) if

◮ For every open set G and closed set F of the metric space
D([0,T ],M1(Z)), we have

lim inf
N→+∞

log p(N)(G)

N
≥ − inf

µ∈G
S[0,T ](µ)

lim sup
N→+∞

log p(N)(F )

N
≤ − inf

µ∈F
S[0,T ](µ)

◮ For each a ∈ [0,+∞), the level sets {µ : S[0,T ](µ) ≤ a} are compact



Relative entropy between two inhomogenous Poisson point

processes

Let us understand a simpler case first ...

◮ P : Poisson point process on [0,T ] with intensity η(t)
Q: Poisson point process on [0,T ] with intensity ζ(t)

◮ Sanov’s theorem: Sample N iid paths from Q. The probability that
the empirical measure is in a small neighbourhood near P is
≈ e−NI (P||Q) where

I (P ||Q) =

∫

[0,T ]

[

η(t) log
η(t)

ζ(t)
− η(t) + ζ(t)

]

dt

=

∫

[0,T ]

[

ζ(t) τ∗
(

η(t)

ζ(t)
− 1

)

]

dt

where τ∗(u) = (u + 1) log(u + 1)− u, u ≥ −1



Heuristics

◮ Find probability of being near a deviant path µ, a solution to

µ̇(t) = L(t)∗µ(t).

◮ Normal intensity for an (i , j) jump at time t is (µ(t)(i))× λi ,j(µ(t))

◮ Empirical distribution should be near that of iid sampling from
(µ(t)(i)) × λi ,j(µ(t))

◮ But the path µ appears to have intensity for (i , j) jump at time t
given by (µ(t)(i)) × li ,j(t)

◮ Add up the relative entropies for each jump process indexed by
(i , j) ∈ E

S[0,T ](µ|ν) =

∫

[0,T ]

[

∑

(i ,j)∈E

(µ(t)(i))λi ,j (µ(t)) τ
∗

(

li ,j(t)

λi ,j(µ(t))
− 1

)

]

dt.



Finite duration LDP

Theorem
Suppose that the initial conditions νN → ν weakly.

Then the sequence (p
(N)
νN ,N ≥ 1) satisfies the LDP on D([0,T ],M1(Z))

(with metric ρT ) with speed N and a good rate function S[0,T ](µ|ν).



Proof steps

◮ Apply Sanov’s theorem to noninteracting system on path space

◮ Use the Laplace-Varadhan principle to extract a path space LDP

◮ Then use the contraction principle (from an LDP for the empirical
measure in path space to an LDP for the law of µN(·)).

Corollary:

p
(N)
νN → δµ(·) weakly, where µ(·) is the McKean-Vlasov solution
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Assumptions again

◮ The graph with vertex set Z and edge set E is irreducible
Holds in the our WLAN case

◮ There exist positive constants c > 0 and C < +∞ such that, for
every (i , j) ∈ E , we have

c ≤ λi ,j(·) < C

◮ The mapping µ 7→ λi ,j(µ) is Lipschitz continuous over M1(Z)

◮ Take limt→+∞ limN→+∞(· · · )
Assume that the McKean-Vlasov equation µ̇(t) = Λ(µ(t))∗µ(t)

◮ Has a unique equilibrium ξ0 (i.e., Λ(ξ0)
∗ξ0 = 0)

◮ The equilibrium ξ0 is globally asymptotically stable

Then limt→+∞ µ(t) = ξ0 for any initial condition
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When t → +∞ first ... large time behaviour

◮ Let the directed graph G(Z, E) be irreducible. Then, for a fixed N ,
the Markov chain µN is irreducible with a finite state space. It
therefore has a unique stationary distribution: ℘(N) = Lst(µN(+∞))

◮ Does ℘(N) → δξ0?
(Stolyar 1989, Anantharam 1991, Anantharam and Benchekroun
1993, Bordenave et al. 2005/2007, Benaim and Le Boudec 2008)

◮ Decoupling approximation

◮ Large deviations from this limit?



Large deviations for the invariant measure

◮ If µN(+∞) is near ξ, then this is most likely due to an excursion
that began at ξ0, worked against the attractor ξ0, and took the
lowest cost path to ξ over all possible time durations

◮ Looking backwards in time, the dynamics must be

˙̂µ(t) = −L̂(t)∗µ̂(t), t ≥ 0

with µ̂(0) = ξ, limt→+∞ µ̂(t) = ξ0, and L̂(t) is some family of rate
matrices. Define

s(ξ) = inf
µ̂

∫

[0,+∞)

[

∑

(i ,j)∈Ê

(µ̂(t)(j))λ̂i ,j (µ̂(t)) τ
∗

(

l̂i ,j(t)

λ̂i ,j(µ̂(t))
− 1

)

]

dt

Theorem
Under the stated assumptions, the sequence (℘(N),N ≥ 1) satisfies the
LDP with speed N and good rate function s(·).
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Summary

◮ Asymptotics of mean field limits in WLANs

◮ A finite duration LDP

◮ When there is a unique globally stable equilibrium ξ0 for the
McKean-Vlasov equation, the invariant measure satisfies the LDP.
The rate function s(ξ) is characterised by the cost of an optimal
control that moves the system from ξ to ξ0 in reversed time

◮ Extension to cases with multiple equilibria.

◮ arXiv:1107.4142



Proof steps

◮ Given νN → ν, extract LDP for the laws for terminal state (finite
T ), via contraction principle, with rate function

ST (ξ|ν) = inf {S[0,T ](µ|ν) | µ(0) = ν, µ(T ) = ξ}

◮ If the laws for initial states satisfy the LDP with a good rate
function s(ν), argue that joint laws for initial and terminal states
satisfy the LDP with a good rate function s(ν) + ST (ξ|ν). Then
apply contraction principle to get that the laws for the terminal
states satisfy the LDP with good rate function

inf
ν∈M1(Z)

{s(ν) + ST (ξ|ν)}

◮ The invariant measures (℘(N),N ≥ 1) live on a compact space. So,
given any subsequence, there is a further subsequential LDP with
appropriate speed, and with rate function s(ξ) that satisfies

s(ξ) = inf
ν∈M1(Z)

{s(ν) + ST (ξ|ν)}



Proof steps continued

◮ By the assumption that ξ0 is a unique equilibrium that is globally
stable, we can show s(ξ0) = 0.

◮ Extract a single infinite duration path µ̂(·) that is optimal, i.e., it
attains the infimum for each duration [0,mT ], µ̂(0) = ξ, and
satisfies

s(ξ) = s(µ̂(mT )) + SmT (ξ|ν), ∀m ≥ 1

= s(µ̂(mT )) +

∫

[0,mT ]

[· · · ] dt

◮ The integrand in the second term is nonnegative; the second term
increases with m, and so the first term s(µ̂(mT )) decreases with m.
Since s(·) is bounded below by 0, s(µ̂(mT )) must converge to a
constant as m → +∞



Proof steps continued even further

◮ So the increment
∫ mT+T

mT
[· · · ]dt → 0 in the second term, and in the

limit, integrand must be 0 a.e., which is a McKean-Vlasov path in
reversed time.
More precisely, µ̂(·) has an ω-limit set that is positively invariant to
(McKean-Vlasov dynamics in reversed time)

µ̂(t) = −Λ(µ̂(t))∗µ̂(t), t ≥ 0

◮ This limit set is also invariant to McKean-Vlasov dynamics. It is
further compact and bounded within M1(Z). The only such set
invariant set is {ξ0}. So µ̂(mT ) → ξ0.

◮ Taking limit as m → +∞,

s(ξ) = s(ξ0) +

∫

[0,+∞)

[· · · ] dt = 0 +

∫

[0,+∞)

[· · · ] dt

This expression is the same regardless of the initial subsequence

◮ Thus every subsequence has a further subsequence that satisfies the
LDP with appropriate speed and the same rate function s(·).
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