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Network Inverse Problems and High-
dimensional Statistics 



Network Inverse Problems 

Generative assumptions 
about networks  

Forward Problems 

e.g. Scheduling & routing, 
 consensus/gossip, mixing,  
 epidemics and rumor  
mongering, peer-to-peer … 

Inverse Problems e.g. finding the network graph, 
finding influential nodes, … 

Network structure, node 
behavior 

Especially: network implications 
of high-dimensional statistics 



Graph Clustering 

Given a graph 
Partition the nodes so that  
there is higher density within 
partitions, and lower across 

Applications: Community detection, recommendations, identifying bottlenecks / 
 vulnerabilities … 



Sparse Graph Clustering 

Sparsity makes the problem harder  
         (because “SNR” is lower) 



Planted Partition / Stochastic Block Model 

p q
A classic model for random 
graphs with clustering 

Using an underlying partition 
of the nodes, make a random  
graph 

Clustering Task: given the  
graph, find the underlying 
Partition (upto every last node) 

K

Quantities governing the  
difficulty: p, q,K

Min cluster size 



Some intuition ... 

SLINK: i, j in same cluster , N(i) \N(j) > ⌧

K

n�K

p

q

E[N(i) \N(j)] = Kp2 + (n�K)q2

Var[N(i) \N(j)] ⇡ Kp2 + (n�K)q2

For two nodes in the same partition 

For two nodes in different partitions 

E[N(i) \N(j)] = 2Kpq + (n� 2K)q2



Some intuition ... 

E[same� di↵erent] = K(p� q)2

Var[same] ⇡ Kp2 + (n�K)q2

⇡ np2

Assuming 
 
And  

K << n

p ⇡ q

For there to exist a threshold with a high likelihood of success, need 
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A classic observation 

+ 

Given adjacency matrix cluster matrix Perturbation/Error matrix 

Note: low-rank 

A Y S



“Generic” Spectral Algorithm 

(1) Find top      eigenvectors of      via SVD 

(2) Represent each node as a point in eigenvalue space, and do “simple, local” 
      clustering + rounding 

Ar

The eigenspace becomes noisier as graph parameters become harder 



The Spectral SNR 

“Signal” =  

Leading eigenvector is    , so lets center the matrix 

baij = aij � (q +K(p� q)/n)
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“Noise” = largest eigenvalue of “iid” random matrix where every element has 
  variance  ⇥(p)
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“Noise” = largest eigenvalue of “iid” random matrix where every element has 
  variance  ⇥(p)

⇡ p
np

So, spectral algorithms need p� q
p
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However, no spectral algorithm has been demonstrated to achieve this. 
Main result of our paper: we do ! 
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Existing Work in this Model 



Maximum Likelihood 

Y is a cluster matrix 

yij = 1 , i, j in same cluster 

max

Y
log Pr(A|Y )

Pr(A|Y ) =

Simplifying … 

Y

(i,j):yij=1

paij (1� p)1�aij

Y

(i,j):yij=0

qaij (1� q)1�aij

In-cluster edges Across-cluster edges 

(assume for now          known) p, q



Key Step 

Rewriting the maximum likelihood via regrouping terms 

Pr(A|Y ) =
Y

(i,j):yij=1

paij (1� p)1�aij

Y

(i,j):yij=0

qaij (1� q)1�aij

=
Y

(i,j):aij=1

pyijq1�yij
Y

(i,j):aij=0

(1� p)yij (1� q)1�yij

⌘
Y

(i,j):aij=0

✓
1� p

1� q

◆yijY

(i,j):aij=1

✓
p

q

◆yij



Optimization problem 
(still combinatorial)  

Thus maximum (log) likelihood becomes 

Y is a cluster matrix 

max

Y
c1

0

@
X

aij=1

yij

1

A � c2

0

@
X

aij=0

yij

1

A

c1 = log

p

q
c2 = log

1� q

1� p

Where 



Our Algorithm 

Replacing the “cluster constraint” with a penalty, and relaxing integrality 

max

Y
c1

0

@
X

aij=1

yij

1

A � c2

0

@
X

aij=0

yij

1

A � �kY k⇤

0  yij  1

Nuclear/trace 
Norm 
= sum of singular 
   values 

Note: cluster matrices also satisfy                . However, adding this 
 
(a) Makes the convex program harder to solve 

(b) < and We do not know how to use this to get better performance results ..> 

Y ⌫ 0

Convex ! 



Performance Analysis 

Under what conditions on 
 
will the (unrounded, un post-processed)  
 
optimum of the convex program recover 
 
the true cluster matrix exactly ? 

p, q,K p q

K

Parameters: linearize using 

c2 = log

1� q

1� p
⇡ p� q

1� p
c1 = log

p

q
⇡ p� q

q

log x ⇡ x� 1

� = 48

p
n log nAlso: 



Main Result 

Theorem: 
 
 
The true cluster matrix is the unique optimum of our convex program, provided 

p� q � ↵

p
p(1� q)n

K
log

2 n

In the paper: a way to estimate           from the graph itself …. 
 
… and an overall theorem guaranteeing that using estimated parameters also  
works 

p, q



Remarks 

 
•  If                    then algorithm can cluster even when 

 - close to the connectivity threshold, matches previous results   

K 2 ⇥(n) p, q ⇡ log

4 n

n

•  If                                  , our method works with 

 
 - previous best result needed  

K 2 ⌦(

p
n log

2 n) p� q 2 ⇥

✓
n log

4 n

K2

◆

p� q 2 ⇥

✓
n2

K3

◆

•  Ours is the first result on weighted sparse + low-rank (in any setting) 

 - shows order-wise better performance than unweighted. 



Proof Technique 

A point     is the optimum of  
a convex function 

Zero lies in the (sub) gradient 
of      at  

x
f

�f(x)
f x�



Proof Technique 

Our approach: make a new, different sufficient (not necessary) condition for  
 optimality 

So, idea 0: show that, w.h.p., 
 
 

  when   

0 2 @f(Y ⇤)

p� q � ↵

p
p(1� q)n

K
log

2 n

This is hard to do ! 



Empirical Performance 
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Algorithm: Estimating Parameters 

p q

K

E[A] has following e-values: 

�1 = K(p� q) + nq



Extensions 

Lemma: (monotonicity) 
 
Consider a realization       , and let       be the optimum of the algorithm.  
 
Then, consider an arbitrary perturbation       of     , obtained as follows: 
 
(a) Choose some pairs          for which                  but                ,  
 

 and set  
 
(b) Choose some pairs        for which                 but                , 
 

 and set 
 
Then, if the algorithm is run with      , the optimum will still be  

A

eA

bY

A

i, j aij = 0 byij = 1

eaij = 1

i, j

eaij = 0

byij = 0aij = 1

eA bY

Direct implication: Heterogenous edge probabilities allowed 



Extensions 

p q

K

Outliers: 
 
Nodes that are not part of any 
cluster. 
 
If every edge out of such a node 
has probability upper bounded by 
    ,  
 
Then algorithm will still find the 
clusters. 

q



Implications: Hierarchical Clustering 

q

p =  lower bound on top-level cluster’s  
 probability 

= upper bound on every other level’s 
   probability 

If we run algorithm with 

then will find all top level clusters. 
 … and can repeat hierarchically. 



•  New algorithm for clustering sparse graphs 
 - maximum-likelihood, with regularization replacing combinatorial  
 - convex program, with fast specialized algorithms 

 
•  Beats all previous performance bounds 

 Close to “fundamental spectral limit” (?) 

•  Extends to hierarchical clustering 

•  Similar results can be shown for dense graph clustering, planted coloring etc. 
 
Open problem: 
 
Lower bounds – none known for case of more than two clusters. 

Summary 

Thanks + Questions  


