Motivation

Stochastic processing networks: Design simple & efficient scheduling policies

Consider simplest set-up: Jackson-like queueing network

Back-pressure is maximally stable Delay can be really bad Fixes within frame-work exist

Can we approach design differently?

Details

- Discrete-time queueing network
- Set of *N* queues
- F is the set of flows: source s(f) & destination d(f) for flow f ∈ F
- $Q_n^f(t)$ be the queue-length of flow f at node n (at time t)
- Rate matrix *R*: number of (whole) packets that can be received in each time-unit
- Assume no interference constraints
- Max amount served from n of flow f at t to m: $\min(Q_n^f(t), R_{nm})$
- Stochastic arrivals

Back-pressure

• At every node *n* define for flow *f* and node *m*

$$W_{n,m}^f(t) = R_{nm} \left(Q_t^f(n) - Q_t^f(m) \right).$$

Use this to define a per-flow metric

$$F_n^f(t) = \max_{m \in N} W_{n,m}^f(t)$$

with the maximiser given by $m_{f,n}^*(t)$.

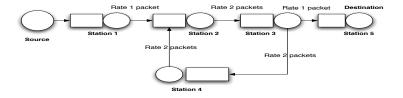
Now define a node metric

$$G_n(t) = \max_{f \in F} F_n^f(t)$$

with the maximiser given by $f_n^*(t)$.

- Scheduling algorithm: At node n
 - If $G_n(t) > 0$, serve flow $f_n^*(t)$ and route $\min \left(Q_n^{f_n^*(t)}(t), R_{nm_{f_n^*(t),n}^*}\right)$ packets to $m_{f_n^*(t),n}^*(t)$.
 - Else serve no flow.

Issues



- Will transmit packets to nodes not connected to destination node
- Cannot recognize loops so delay performance can be bad

Alternate Policy¹

At node *n* for flow *f* define metric $V_t^f(n)$ as follows:

- If n = d(f), then $V_t^f(d(f)) = 0$.
- If *n* communicates with d(f), then $V_t^f(n) = \min_{m \in N} \frac{Q_n^f(t)}{R_{nm}} + V_t^f(m)$.
- Else $V_t^f(n) = +\infty$.

Comments:

- Vs surrogate to draining time
- Vs measure of net downstream load
- Uses shortest-path ideas

 $^{^1\}mbox{S}.$ and Leith, Draining-time based scheduling algorithm, CDC'07

New Algorithm

Similar to Back-Pressure perform the following computations

• At every node *n* define for flow *f* and node *m*

$$W^f_{n,m}(t) = egin{cases} R_{nm}\left(V^f_t(n) - V^f_t(m)
ight) & V^f_t(n), V^f_t(m) < +\infty, \ R_{nm} > 0 \ -\infty & ext{else} \end{cases}$$

- Use this to define a flow metric $F_n^f(t) = \max_{m \in N} W_{n,m}^f(t)$ Maximiser given by $m_{f,n}^*(t)$.
- Now define a node metric

$$G_n(t) = \max_{f \in F} F_n^f(t)$$

with the maximiser given by $f_n^*(t)$.

Scheduling algorithm:

• If
$$G_n(t) > 0$$
, serve flow $f_n^*(t)$ & route

$$\min \left(Q_n^{f_n^*(t)}(t), R_{nm_{f_n^*(t),n}^*}\right) \text{ packets to } m_{f_n^*(t),n}^*(t).$$

Else serve no flow at node n

Alternate View

Alternate View:

- If *n* communicates with d(f), then $F_n^f(t) = \max_{m \in N} W_{n,m}^f(t) = Q_n^f(t)$, and $G_n(t) = \max_{f \in F} Q_n^f(t)$
- Scheduling Policy serve longest queue at every node.

Alternate View

Alternate View:

- If *n* communicates with d(f), then $F_n^f(t) = \max_{m \in N} W_{n,m}^f(t) = Q_n^f(t)$, and $G_n(t) = \max_{f \in F} Q_n^f(t)$
- Scheduling Policy serve longest queue at every node.
- For every node *n* we have $m_{f,n}^*(t) = \arg\min_{m \in M} \frac{Q_n^f(t)}{R_{nm}} + V_t^f(m)$
- Routing Policy route along dynamic shortest paths to destination with link metric Q_n^f(t) R_m
- This is work-conserving

Open problem: Is this maximally stable?

Comments

S. & Leith, CDC'07: simple cases, quadratic Lyapunov fn exists

Comments

S. & Leith, CDC'07: simple cases, quadratic Lyapunov fn exists

Quadratic Lyapunov functions will not work in general

Tandem queues: 1 flow, work-conserving FCFS Maximally stable

Quadratic Lyapunov fns will not show this KumarMeyn, Trans. AC, 1995

Piece-wise linear Lyapunov fns work DownMeyn, QueueingSystems, 1997

Comments

S. & Leith, CDC'07: simple cases, quadratic Lyapunov fn exists

Quadratic Lyapunov functions will not work in general

Tandem queues: 1 flow, work-conserving FCFS Maximally stable

Quadratic Lyapunov fns will not show this KumarMeyn, Trans. AC, 1995

Piece-wise linear Lyapunov fns work DownMeyn, QueueingSystems, 1997

 $R \equiv \text{constant}$, piece-wise quadratic Lyapunov works NaghshvarZhuangJavidi, Trans. IT, 2012 DiekerShin'12 (arxiv) could be related

Open problem: If maximally stable, Lyapunov fn?