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Scaling as a device

Scaling is a mathematical device that allows us to characterize
the behavior of mathematical models that retain the essential
macroscopic facets of the model.

Typically scaling has come to mean some parameter becoming
"large" or going to infinity that involves characterizing the
asymptotic behavior.

This talk will focus on the probabilistic characterization of
models arising in wireless networks.
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Examples:
Space and time scaling- two approaches

SLLN approach characterizing a mean or average behavior
- useful for stability and convergence
CLT approach that is useful to characterize performance

Large population models- to provide tractability and take
advantage of averaging and mixing

Take advantage of independence- convolution of measures
Take advantage of dynamics of interaction- propagation of
chaos
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Broadcast and Multiple Access channels
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Rate constrained users
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BC Channel Model
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Structure of Solution
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Algorithm
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Solution-contd.

The solution depends on Pi = hiP where hi the channel
gain is random.
Solution is sample path or realization dependent
However: if we ask the question; what is the typical size of
m?

Answer can be obtained from scaling, i.e. when n is large a
typical behavior can be estimated with great accuracy
(concentration of measure).

Ravi Mazumdar Scaling laws 12/ 49



Introduction
Scaling in wireless networks: Many user scalings

Scaling result
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BC Different channel models
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Simulation results
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Concentration effects
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Asymptotic Sum Capacity of BC
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MAC Version
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Discussion

Scaling allows us to study typical behavior of systems.
Larger the number of users the better the concentration
but independence assumption is less likely to hold.
Channel gains are correlated.
Essentially related to the fact max{X1, X2, · · · , Xn} where
Xi are i.i.d. exponential (light tailed) concentrates at lnn
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Number of Simultaneously Transmitting Nodes
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Problem Formulation

Yi(t) = hii(t)Xi(t) +

m∑
j=1

j 6=i

hji(t)Xj(t) + Zi(t)

where hii(t) denotes the link fading channel between
transmitter i and receiver i for ti ∈ {1, . . . ,m} and m refers to
the number of active transmitters that are simultaneously
transmitting, hji(t) represents an interference channel for
receiver i, and Zi(t) ∼ CN (0, σ2) represents background noise
at node i.
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The achievable rate (in nats) of link i can be thus be written as

Ri ≤ ln


1 +

P |hii|2

σ2 +

m∑
j=1

j 6=i

P |hji|2


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Problem Formulation

Problem Formulation
Define:

A = {Links i : log(SINRi > Rmin}

we want to solve

maxA⊂Nn |A|
s.t. Ri > Rmin for i ∈ A (2.1)

i.e., #of maximum links supporting the minimum rate Rmin

Ravi Mazumdar Scaling laws 26/ 49



Introduction
Scaling in wireless networks: Many user scalings

Main Result

Theorem 1
Under the assumption of independent Rayleigh fading channels for
different source-destination pairs with channel gains htirj ∼ CN (0, 1);
i, j = 1, . . . , n, and the typical behavior of the maximum number
active links, Mn, determined by Rmin is bounded as

lim
n→∞

P (bβ1(n)c ≤Mn ≤ β2(n)) = 1,

where

β1(n) =

(
c1 ln(n)

eRmin

)2

β2(n) =

(
c2 ln(n)

eRmin

)2

and 0 < c1 < 1 and 1 < c2 <∞ are any arbitrary constants.
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Then the idea is to show that on defining the r.v. Xn as:

Xn
∆
= ln

1 +
P |hii|2 1[|hii|2≥h0]

σ2 +
∑

j∈A,j 6=i
P |hji|2 1[|hjj |2≥h0]


where 1A(ω) denotes the indicator function of event A (i.e.
equals one if ω ∈ A).
For any large integer m and ε > 0 small, define event Vn as

Vn
∆
=

ω :

∣∣∣∣∣∣∣∣
1

m− 1

m∑
k=1
k 6=i

(|hki|2 1[|hkk|2≥h0])− E
(
|h11|2

)
p0

∣∣∣∣∣∣∣∣ < ε

 .

Xn = Xn 1Vn +Xn 1Vcn
On Vn we have the required result and we can show that
XnVcn → 0 as n→∞
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Idea of Proof

Definitions

Let h0 = m(n)
1
2 eRmin where m(n) is an integer function of

network size n and

ξi =

{
1 if |hii|2 ≥ h0

0 if |hii|2 < h0

then Mn =
∑n

i=1 ξi counts the number of good links.
Let also p0 = P(ξi = 1) then

p0 = exp(−h0)

∼ n−c1

for m(n) ∼ β1(n) =
(
c1 log(n)/eRmin

)2
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Proof

Proof of First Part
Using Chernoff bound for a binomial B(n, p0) rv:

lim
n→∞

P(Mn ≥ m) ≥ lim
n→∞

(
1− exp

(
−(np0 −m+ 1)2

2np0

))
= 1

(2.2)
note that we have

np0 ∼ n1−c1 where c1 < 1

Let An denote the set of transmitters that transmit
simultaneously with i.
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Proof

Stochastic Rate
Define the stochastic rate Xi,n of link i in the network of n
communication links by

Xi,n = ln

(
1 +

P |hii|21[|hii|2>h0]

σ2 +
∑

j∈An,j 6=i |hji|21[|hjj |2>h0]

)
(2.3)

we want to show that Xi,n > Rmin for all i ∈ An.
Let Vεi,n ⊂ Ω such SLLN holds.
Then by Cramer’s theorem

P(Vcn) ≤ e−nI(ε)
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Lemma 2

The rate function of the random variable |hii|21[|hji|2>h0] is
determined by

I(ε) = (
√
ε−√p0)2 (2.4)

for x satisfying p0(1−
√
p0/ε)�

√
p0/ε where

p0 = P(|hji|2 > h0)

corollary

For ε ∼ (ln(n)−1) which satisfies the constraint, we have

I(ε) ∼ 1/ log(n) = m−0.5
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For
ω ∈ Vεi,n
i ∈ A

stochastic rate of link i

Xi,n(ω) = ln

(
1 +

P |hii|21[|hii|2>h0]

σ2 +
∑

j∈A,j 6=i |hji|21[|hji|2>h0]

)
a
≥ ln

(
1 +

Ph0

σ2 + P (m− 1)(p0 + ε)

)
= ln

(
1 +

Ph0

σ2 + P (m− 1)(e−h0 + ε)

)
b∼ ln

(
1 +

Pm0.5eRmin

P (m− 1)m−0.5

)
∼ ln

(
1 + eRmin

)
≥ Rmin
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A direct consequence of this along with Cramer’s theorem is

P(Xi,n < Rmin) < P((Vεi,n)c) < e−(m−1)I(ε) (2.5)

Therefore

P(Xi,n < Rmin, for some i ∈ A) ≤
∑
i∈A

P(Xi,n < Rmin)

a∼ ln(n)2P(Xi0,n < Rmin, i0 ∈ A)

b∼ ln(n)2e−(m−1)I(ε)

c∼ ln(n)2e−(ln(n)2)/ ln(n)

∼ ln(n)2/n→ 0

Ravi Mazumdar Scaling laws 34/ 49



Introduction
Scaling in wireless networks: Many user scalings

Simulation Results
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(a) Active links for Rmin =
100kbps
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(b) Active links for Rmin =
150kbps

Figure: Number of active links vs. total number for different minimum
rates
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Random Networks with Pathloss

Here the channel gains for j 6= i are given by:

hij = XijD
−α
ij

where Xij is exp(1) and Dij is a light tailed r.v. (tail is
exponential). For example if nodes are poisson distributed
nearest neighbours are exponentially distributed, 2-nd nearest
are Erlang (2), etc.,
In this case we can show the following:
Let h,X,D be random variables having the same distribution
as hij , Xij and Dij respectively. We will show that

P (h > z) ∼ c1

z1/α

for some constant c1 dependent only on the network
parameters α and λ and to be determined shortly.
In other words hij is heavy tailed Pareto like.
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Main Result

Theorem 3
For the pathloss model with randomly placed nodes and
Rayleigh fading:

P(Mn = O(n
1
3 )) ∼ 1 as n →∞

Key challenge: SLLN does not apply for heavy-tailed r.v’s.
Moreover max{X1, X2, . . . , , Xn} = n−

1
α .
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Idea of proof

Even if X is not integrable, ∃p < s.t. |X|p is integrable.

Theorem 4
Suppose that p ∈ (0, 2) and Sn =

∑n
i=1Xi where Xi are i.i.d.

random variables. The SLLN for heavytailed r.v’s:

n−1/p(Sn − an)→ 0, a.s. (2.6)

holds for some real constant a if and only if E|X|p <∞. If {Xn}
obeys the SLLN then we can choose

a = 0 if p < 1 (2.7)

Principle of single large value

P(X1 +X2 + · · ·+Xn > x) ∼ P( max
1≤k≤n

> x) ∼ n(1− F (x))n
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Simulation Results
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Figure: Number of active links vs. total number for different minimum
rates
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Discussion

Scaling allows us to study typical behavior of systems.
Larger the number of users the better the concentration
but independence assumption is less likely to hold.
Channel gains are correlated.
Essentially related to the fact max{X1, X2, · · · , Xn} where
Xi are i.i.d. exponential (light tailed) concentrates at lnn
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Caution !: Scaling needs to be treated with care!
Static Wireless Networks

Random ad hoc network model [Gupta and Kumar, IEEE
Trans IT 00]

Consider n nodes distributed within a disk of unit area
Average distance between source-destination of a bit is
O(1) - independent of n
Perfect links, muti-hop communication
Point-to-point communication - i.e., network layer notion of
capacity

Main Result: The per-node capacity scales as
Θ
(

1√
n logn

)
under the Protocol Model
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Protocol Model

Protocol Model of Gupta and Kumar (IEEE IT 2000) Node i
can communicate directly with node j at a rate of W bits
per second at time t, provided for all nodes k that are
simultaneously transmitting, we have

d(Xk
t , X

j
t ) ≥ (1 + ε)d(Xi

t , X
j
t )

T1

T3
R1

T2

R2

R3

r

εr(1+ )
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Model behavior

n nodes are uniformly distributed over a given area.
Density n

Area .
Scaling involves n→∞ implying nodes get closer and
closer.
For large n pathloss does not play a role since dij(n)→ 0.
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Static Wireless Networks (Contd.)

Why does per-node capacity scale as Θ
(

1√
n logn

)
?

The following two factors reduce the per-node throughput:
Multiple relaying: Each packet on an average goes through
Θ(1/rn) hops, where rn is the average per-hop distance.
Interference: Θ(nr2n) nodes in the vicinity of the receiver
must remain silent during the transmission.

Overall throughput is thus Θ(1/nrn)

rn must at least be Θ

(√
logn
n

)
for a.s. connectivity
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Static ad hoc networks - lossy links

In G-K model: links are ideal - either each transmission is
successful w.p.1 or infinite retransmissions
In reality link success prob. is an increasing function of
SINR, i.e. p = f(SINR) with p→ 1 as SINR→∞.
Main result [Mhatre, Mazumdar, and Rosenberg (IEEE IT
2009)]
Finite retransmissions, SINR <∞ =⇒ Capacity ∼ O( 1

n)

Kn re-transmissions/decrease in spatial reuse by a factor
of Kn (Kn →∞) =⇒ Capacity ∼ O( 1

Kn
√
n logn

)
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Why is this so?

Typical number of hops = Θ
(√

n
logn

)
If p is prob of success on a link, then end-to-end

p

√
n

logn = O

(√
logn
n

)
as n→∞

Hence combining: we obtain O
(

1
n

)
Main difficulty: to show there are a sufficient number of links
on which loss probability is positive.
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Discussion

What result should we use to guide us in a practical setting?
It turns out in these type of scaling results there is no
robustness because the limit model does not inherit the
macroscopic properties of the physical model.
Further problems:

Results do not hold when node placement is non-uniform
(Han+ Makowski JSAC 2009)
There are no monotonicity results and so is the result an
asymptotic equivalence, lower or upperbound on the
capacity?
Clearly one would not expect to see G-K behavior in
practical systems as any ARQ procedure only allows a
finite number of retransmissions. Also in reality the hops
are bounded so the other result is also questionable.
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Concluding Remarks

Discussed different types of scaling, when it works and
when it is just a formal procedure.
Scaling works well when there is an underlying invariance
principle at play- heavy traffic, many users involving
measure convolution or independence and concentration
Less useful when there are no attendant monotonicity
results as in G-K setting or even random mobility models
(for example BM is very different from random waypoint).
We need to move beyond scaling and try to show model
continuity and monotonicity.
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