Large-Scale Sparse PCA through Low-rank Approximations

Alex Dimakis
UT Austin

Based on Joint work with:
Dimitris Papailiopoulos

Overview: PCA and Sparse PCA

- Principal Component Analysis (PCA) is a classical algorithm for dimensionality reduction, clustering etc.
- Sparse PCA is a very useful variant because of interpretability
- We present a new algorithm for Sparse PCA that is fast for large data sets.
- We present novel approximation guarantees.
- We test on a large twitter data set (millions of tweets).

Tweets to vectors

Each tweet as a long (50K), super-sparse vector (5-10 non-zeros) with 1 s in word indices

Data Sample Matrix

We collect all tweet vectors in a sample matrix of size $n \times m$
m tweets

Correlation matrix

$$
A=S S^{T}
$$

vanilla PCA

$\arg \max x^{T} A x$
 $$
\|x\|_{2}=1
$$

Largest Eigenvector.
Maximizes ‘explained variance’ of the data set
Very useful for dimensionality reduction
Easy to compute

PCA finds An `EigenTweet’

Finds a vector that closely matches most tweets

i.e, a vector that maximizes the sum of projections with each tweet

$$
\max \left\|\mathbf{x}^{T} \mathbf{S}\right\|^{2}
$$

The problem with PCA

- Top Eigenvector will be dense!

Dense =
A tweet with thousands of words
(makes no sense)

Eurovision	0.1
Protests	0.02
Greece	\cdot
Morning	\cdot
Deals	\cdot
Engage	
Offers	
Uprising	
Protest	
Elections	
teachers	
Summer	
support	
Schools	
\cdot	
\cdot	
Crisis	
Earthquake	
IMF	0.001

The problem with PCA

- Top Eigenvector will be dense!

Dense =
A tweet with thousands of words
(makes no sense)

Eurovision	0.1
Protests	0.02
Greece	\cdot
Morning	\cdot
Deals	\cdot
Engage	
Offers	
Uprising	
Protest	
Elections	
teachers	
Summer	
support	
Schools	
\cdot	
\cdot	
Crisis	
Earthquake	
IMF	0.001

- We want super sparse

Sparse = Interpretable

Sparse PCA

$$
x_{*}=\underset{\|x\|_{2}=1,\|x\|_{0}=k}{\arg \max } x^{T} A x .
$$

Sparse PCA

$x_{*}=\quad \arg \max \quad x^{T} A x$. $\|x\|_{2}=1,\|x\|_{0}=k$

NP hard (Moghaddam et al., 2006)
Algorithms: Kaiser 1958, Jolliffe 1995, Jolliffe et al. 2003, Zhou et al. 2006, Moghaddam et al. 2006, Sriperumbudur et al. 2007, Shen and Huang 2008, d'Aspermont et al. 2007, d'Aspermont et al. 2008, Yuan and Zhang 2011, Zhang et al. 2012, Asteris et al. 2011

Sparse PCA

$x_{*}=\quad \arg \max \quad x^{T} A x$. $\|x\|_{2}=1,\|x\|_{0}=k$

NP hard (Moghaddam et al., 2006)
Algorithms: Kaiser 1958, Jolliffe 1995, Jolliffe et al. 2003, Zhou et al. 2006, Moghaddam et al. 2006, Sriperumbudur et al. 2007, Shen and Huang 2008, d'Aspermont et al. 2007, d'Aspermont et al. 2008, Yuan and Zhang 2011, Zhang et al. 2012, Asteris et al. 2011

Very few approximation guarantees (Amini \& Wainwright 2008, Yuan \& Zhang 2011, d'Aspermont et al. 2012).

Our result

We present a novel combinatorial algorithm for sparse PCA. Obtain general provable approximation guarantees.

$$
x_{*}=\underset{\|x\|_{2}=1,\|x\|_{0}=k}{\arg \max } x^{T} A x
$$

Theorem: For any desired accuracy parameter d, our Spannogram algorithm runs in time $O\left(n^{d}\right)$ and constructs a k-sparse vector X_{d} such that:

$$
\begin{aligned}
& x_{d}^{T} A x_{d} \geq\left(1-\epsilon_{d}\right) x_{*}^{T} A x_{*} \\
& \epsilon_{d} \leq \min \left\{\frac{n}{k} \cdot \frac{\lambda_{d+1}}{\lambda_{1}}, \frac{\lambda_{d+1}}{\lambda_{1}^{(1)}}\right\}
\end{aligned}
$$

Corollaries

Theorem: For any desired accuracy parameter d, our Spannogram algorithm runs in time $O\left(n^{d}\right)$ and constructs a k-sparse vector X_{d} such that:

$$
\begin{aligned}
& x_{d}^{T} A x_{d} \geq\left(1-\epsilon_{d}\right) x_{*}^{T} A x_{*} \\
& \epsilon_{d} \leq \min \left\{\frac{n}{k} \cdot \frac{\lambda_{d+1}}{\lambda_{1}}, \frac{\lambda_{d+1}}{\lambda_{1}^{(1)}}\right\}
\end{aligned}
$$

Cor1: If there is any decay in the eigenvalues, i.e. $\lambda_{1}>\lambda_{d}$ then there exists a constant δ s.t. for all linear size supports $k>\delta n$ we obtain
a constant factor approximation to sparse PCA.

Corollaries

Theorem: For any desired accuracy parameter d, our Spannogram algorithm runs in time $O\left(n^{d}\right)$ and constructs a k-sparse vector X_{d} such that:

$$
\begin{aligned}
& x_{d}^{T} A x_{d} \geq\left(1-\epsilon_{d}\right) x_{*}^{T} A x_{*} \\
& \epsilon_{d} \leq \min \left\{\frac{n}{k} \cdot \frac{\lambda_{d+1}}{\lambda_{1}}, \frac{\lambda_{d+1}}{\lambda_{1}^{(1)}}\right\}
\end{aligned}
$$

Cor2: If there is a power law decay in the eigenvalues:

$$
\lambda_{i}=C i^{-\alpha}
$$

Then for any ε we can approximate Sparse PCA within a factor of ε in time polynomial in n, k
(but not in $1 / \varepsilon$) (PTAS approximation guarantees)

how it works

- 1. Approximate A by best rank d approximation $A_{d}(S V D)$

how it works

- 1. Approximate A by best rank d approximation A_{d} (SVD)
- 2. Use A_{d} to obtain n^{d} candidate supports (Spannogram)

how it works

- 1. Approximate A by best rank d approximation A_{d} (SVD)
- 2. Use A_{d} to obtain n^{d} candidate supports (Spannogram)
- 3. Try n^{d} candidate supports on A and choose the best one.
- 4. Prove approximation guarantees

how it works for Rank d

If we knew the support of the sparse PC , it's easy.
(Zero out everything except $\mathrm{k} \times \mathrm{k}$ submatrix of A , find largest eigenvector of that).

how it works for Rank d

If we knew the support of the sparse PC, it's easy.
(Zero out everything except $\mathrm{k} \times \mathrm{k}$ submatrix of A , find largest eigenvector of that).

We can naively solve sparse PCA by testing all (n choose k) supports.

how it works for Rank d

If we knew the support of the sparse PC, it's easy.
(Zero out everything except $\mathrm{k} \times \mathrm{k}$ submatrix of A , find largest eigenvector of that).

We can naively solve sparse PCA by testing all (n choose k) supports.
Key lemma: If the matrix is rank d , only O (n choose d) supports must be tested.

Rank $d=1$

Say $d=1$, i.e. A_{d} is rank 1.

$$
\begin{gathered}
A=\lambda_{1} v_{1} v_{1}^{T} \\
x^{T} A x=\lambda_{1} x^{T} v_{1} v_{1}^{T} x=\lambda_{1}\left(v_{1}^{T} x\right)^{2}
\end{gathered}
$$

Rank d=1

Say $d=1$, i.e. A_{d} is rank 1 .

$$
\begin{gathered}
A=\lambda_{1} v_{1} v_{1}^{T} \\
x^{T} A x=\lambda_{1} x^{T} v_{1} v_{1}^{T} x=\lambda_{1}\left(v_{1}^{T} x\right)^{2}
\end{gathered}
$$

Q:find a k-sparse vector that maximizes the inner product with a given vector v 1 .

Sort the absolute entries of v 1 and keep the k largest.

Rank d=1

Say $d=1$, i.e. A_{d} is rank 1 .

$$
\begin{gathered}
A=\lambda_{1} v_{1} v_{1}^{T} \\
x^{T} A x=\lambda_{1} x^{T} v_{1} v_{1}^{T} x=\lambda_{1}\left(v_{1}^{T} x\right)^{2}
\end{gathered}
$$

Q:find a k -sparse vector that maximizes the inner product with a given vector v 1 .

Sort the absolute entries of v 1 and keep the k largest.
Thresholding the largest eigenvector is a well-known heuristic for sparse PCA which is optimal when A is rank 1.

There is one candidate top-k support, the support of the k largest entries of V_{1}

Rank d=2

$$
A_{2}=\lambda_{1} v_{1} v_{1}^{T}+\lambda_{2} v_{2} v_{2}^{T}
$$

Rank d=2

$$
A_{2}=\lambda_{1} v_{1} v_{1}^{T}+\lambda_{2} v_{2} v_{2}^{T}
$$

Observation: There is a special vector v_{C} in the span of $\mathrm{v}_{1}, \mathrm{v}_{2}$ such that

$$
x^{T} A x=\left(v_{c}^{T} x\right)^{2}
$$

Rank d=2

$$
A_{2}=\lambda_{1} v_{1} v_{1}^{T}+\lambda_{2} v_{2} v_{2}^{T}
$$

Observation: There is a special vector v_{c} in the span of $\mathrm{v}_{1}, \mathrm{v}_{2}$ such that

$$
x^{T} A x=\left(v_{c}^{T} x\right)^{2}
$$

We only need to find the support of the top k elements of v_{c} How many top-k supports can there be in a two dimensional subspace? (n choose k)?

key combinatorial fact (2 dimensions)

$$
v_{c}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}
$$

key combinatorial fact (2 dimensions)

$$
v_{c}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}
$$

if $c 1=1, c 2=0$, we get one top- k set, the top- k elements of $v 1$. If $\mathrm{c} 1=0, \mathrm{c} 1=1$, we get one more, the top- k elements of v 2 .

key combinatorial fact (2 dimensions)

$$
v_{c}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}
$$

if $c 1=1, c_{2}=0$, we get one top- k set, the top- k elements of $v 1$. If $\mathrm{c} 1=0, \mathrm{c} 1=1$, we get one more, the top- k elements of v 2 .

As $\mathrm{c}=[\mathrm{c} 1 \mathrm{c} 2]$ is changing how many other top-k sets can appear?

$$
\binom{n}{k}
$$

key combinatorial fact (2 dimensions)

$$
v_{c}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}
$$

if $c 1=1, c 2=0$, we get one top- k set, the top- k elements of $v 1$. If $\mathrm{c} 1=0, \mathrm{c} 1=1$, we get one more, the top- k elements of v 2 .

As $\mathrm{c}=[\mathrm{c} 1 \mathrm{c} 2]$ is changing how many other top-k sets can appear?

$$
4\binom{n}{2}
$$

key combinatorial fact (2 dimensions)

$$
v_{c}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}
$$

Use spherical variable transformation

$$
\mathbf{c}=\left[\begin{array}{ll}
\sin \phi & \cos \phi
\end{array}\right]^{T}
$$

$$
v_{c}=\left[\mathbf{v}_{1} \mathbf{v}_{2}\right] \mathbf{c}
$$

key combinatorial fact (2 dimensions)

$$
v_{c}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}
$$

Use spherical variable transformation

$$
\begin{gathered}
\mathbf{c}=[\sin \phi \cos \phi]^{T} \\
v_{c}=\left[\mathbf{v}_{1} \mathbf{v}_{2}\right] \mathbf{c}=\left[\begin{array}{c}
v_{1}(1) \sin (\phi)+v_{2}(1) \cos (\phi) \\
\vdots \\
v_{1}(n) \sin (\phi)+v_{2}(n) \cos (\phi)
\end{array}\right]
\end{gathered}
$$

The Spannogram

$$
\mathbf{v}(\phi)=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]^{T} \mathbf{c}(\phi)=\left[\begin{array}{c}
v_{1}(1) \sin (\phi)+v_{2}(1) \cos (\phi) \\
\vdots \\
v_{1}(n) \sin (\phi)+v_{2}(n) \cos (\phi)
\end{array}\right]
$$

- Each element is a continuous curve in ϕ

The Spannogram

$$
\mathbf{v}(\phi)=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]^{T} \mathbf{c}(\phi)=\left[\begin{array}{c}
v_{1}(1) \sin (\phi)+v_{2}(1) \cos (\phi) \\
\vdots \\
v_{1}(n) \sin (\phi)+v_{2}(n) \cos (\phi)
\end{array}\right]
$$

- Each element is a continuous curve in ϕ

$$
n=5, k=3
$$

$$
\text { Top k set: }\{2,5,1\}
$$

The Spannogram

$$
\mathbf{v}(\phi)=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]^{T} \mathbf{c}(\phi)=\left[\begin{array}{c}
v_{1}(1) \sin (\phi)+v_{2}(1) \cos (\phi) \\
\vdots \\
v_{1}(n) \sin (\phi)+v_{2}(n) \cos (\phi)
\end{array}\right]
$$

- Each element is a continuous curve in ϕ

$n=5, k=3$
Top k set: $\{5,2,1\}$

The Spannogram

- Lets count top-k sets.

- n lines
- every pair of lines intersects in exactly 2 points.
$2\binom{n}{2}$ Intersection points

general Rank d

$$
v_{c}=c_{1} v_{1}+c_{2} v_{2}+\ldots c_{d} v_{d}
$$

How many top-k supports can there be in a d-dimensional subspace of R^{n}

Theorem: There are at most

$$
2^{d-1}\binom{d}{\lceil d / 2\rceil}\binom{ n}{d}
$$

top k -sets in a general position d-dimensional subspace.

general Rank d

$$
v_{c}=c_{1} v_{1}+c_{2} v_{2}+\ldots c_{d} v_{d}
$$

How many top-k supports can there be in a d-dimensional subspace of R^{n} ?
$\mathrm{O}\left(\mathrm{n}^{d}\right)$ and the spannogram algorithm constructs them explicitly.

Experiments

	*japan	$1-5$ May 2011	May 2011
$m \times n$ k	$12 \mathrm{k} \times 15 \mathrm{k}$	$267 \mathrm{k} \times 148 \mathrm{k}$	1.9 mil $\times 222 \mathrm{k}$
$\mathrm{k}=10$	$k=4$	$k=5$	
$\# \mathrm{PCs}$	5	7	3
Rank-1	0.600	0.815	0.885
TPower	0.595	0.869	0.915
Rank-2	$\mathbf{0 . 9 4 0}$	0.934	0.885
Rank-3	$\mathbf{0 . 9 4 0}$	$\mathbf{0 . 9 3 6}$	$\mathbf{0 . 9 5 4}$
FullPath	0.935	0.886	0.953

3 experiments on a large-twitter data set.
(1.9M Tweets total over a few months).

Experiments (5 days in May 2011)

$k=10$, top 4 sparse PCs for the data set (65,000 tweets)

```
skype, microsoft, acquisition, billion, acquired, acquires, buy, dollars, acquire, google
eurovision greece lucas finals final stereo semifinal contest greek watching
love received greek know damon amazing hate twitter great sweet
```

downtown athens murder years brutal stabbed incident camera year crime

Experiments (5 days in May 2011)

$k=10$, top 4 sparse PCs for the data set (65,000 tweets)

```
skype, microsoft, acquisition, billion, acquired, acquires, buy, dollars, acquire, google
eurovision greece lucas finals final stereo semifinal contest greek watching
love received greek know damon amazing hate twitter great sweet
downtown athens murder years brutal stabbed incident camera year crime
FullPath:
eurovision finals greek greece lucas semifinal final contest stereo watching
love received damon greek hate know amazing sweet great songs
skype microsoft billion acquisition acquires acquired buying dollars official google
Twitter facebook welcome account good followers census population home starts
```


Experiments (5 days in May 2011)

k=10, top 4 sparse PCs for the data set (65,000 tweets)

```
skype, microsoft, acquisition, billion, acquired, acquires, buy, dollars, acquire, google
eurovision greece lucas finals final stereo semifinal contest greek watching
love received greek know damon amazing hate twitter great sweet
downtown athens murder years brutal stabbed incident camera year crime
FullPath:
eurovision finals greek greece lucas semifinal final contest stereo watching
love received damon greek hate know amazing sweet great songs
skype microsoft billion acquisition acquires acquired buying dollars official google
Twitter facebook welcome account good followers census population home starts
```

Tpower:
greece greece love loukas finals athens final stereo country sailing
Rank1:
greece love lucas finals greek athens finals stereo country camera

Feature elimination

$$
\mathbf{v}(\phi)=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]^{T} \mathbf{c}(\phi)=\left[\begin{array}{c}
v_{1}(1) \sin (\phi)+v_{2}(1) \cos (\phi) \\
\vdots \\
v_{1}(n) \sin (\phi)+v_{2}(n) \cos (\phi)
\end{array}\right]
$$

- Each element is a continuous curve in ϕ

Red line has no hope of being in a top-k set for $k=2$.

Conclusions

- We presented a novel combinatorial algorithm for Sparse PCA

Conclusions

- We presented a novel combinatorial algorithm for Sparse PCA
- Constant factor approximation for any reasonable matrix
- Arbitrary approximation for power-law decay

Conclusions

- We presented a novel combinatorial algorithm for Sparse PCA
- Constant factor approximation for any reasonable matrix
- Arbitrary approximation for power-law decay
- General spectral bound

Conclusions

- We presented a novel combinatorial algorithm for Sparse PCA
- Constant factor approximation for any reasonable matrix
- Arbitrary approximation for power-law decay
- General spectral bound
- Empirically outperfoms previous state of the art
- Parallel Mapreduce implementation?
fin

The Spanogram

- Lets revisit the "variable vector"

$$
\mathbf{v}(\phi)=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]^{T} \mathbf{c}(\phi)=\left[\begin{array}{c}
v_{1}(1) \sin (\phi)+v_{2}(1) \cos (\phi) \\
\vdots \\
v_{1}(n) \sin (\phi)+v_{2}(n) \cos (\phi)
\end{array}\right]
$$

- Each element is a continuous curve in ϕ

Rank-2 Approximation

- Rank-2 Approximation $\mathbf{R}_{2}=\mathbf{v}_{1} \mathbf{v}_{1}^{T}+\mathbf{v}_{2} \mathbf{v}_{2}^{T}$
- The Sparse PC is

$$
\underset{\|\mathbf{x}\|_{2}=1,\|\mathbf{x}\|_{0}=K}{\arg \max }\left\|\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]^{T} \mathbf{x}\right\|
$$

- How to unlock the "low-rank-ness"? The key is a polar vector

$$
\mathbf{c}(\phi)=\left[\begin{array}{c}
\sin \phi \\
\cos \phi
\end{array}\right]
$$

- From the Cauchy Swartz Inequality we obtain

$$
\left|\mathbf{c}^{T}(\phi)\left[\mathbf{v}_{1} \mathbf{v}_{2}\right] \mathbf{x}\right| \leq \quad\left\|\left[\mathbf{v}_{1} \mathbf{v}_{2}\right] \mathbf{x}\right\|
$$

- Colinear polar vector achieves "="

Rank-2 Approximation

- The sparseX of pai (\mathbf{x}, ϕ) that maximizes the left, maximizes the right:

$$
\left|\mathbf{c}^{T}(\phi)\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]^{T} \mathbf{x}\right| \leq\left\|\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]^{T} \mathbf{x}\right\|
$$

The sparse PC is associated with a polar vector that gives equality.

- So,

$$
{\underset{\mathbf{x}}{\mathbf{x}}}_{\mathrm{m}}^{\max }\left\|\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]^{T} \mathbf{x}\right\|=\max _{\phi} \max _{\mathbf{x}}\left|\mathbf{c}(\phi)\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]^{T} \mathbf{x}\right|
$$

Q: What happens if we fix the angle?

