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@ Other examples: targeted ads, personalized content curation



Online Recommendation on Graphs

A first-cut, static model

Known user-item access graph
Unknown reward-function

Users arrive randomly

Want algorithms that are competitive

with respect to optimum reward
(i.e., with full knowledge)




Online Recommendation on Graphs
A first-cut, static model

Known user-item access graph
Unknown reward-function

Users arrive randomly

Want algorithms that are competitive

with respect to optimum reward

(i.e., with full knowledge)

- Random = v = %

(for any reward—fu?la(X:tion)
- Can we do better?




Summary of our Results

Can do much better

- Using some pre-processing: v = O(1/makespan)

- This is orderwise optimal
Alternate distributed algorithm

- ‘Samples’ item / for exploration w.p. 1/d;

- = better than random, near optimal under regularity conditions
Results hold for large class of functions (structural condition)
Scaling behavior for showing r items

- Linear scaling in r (optimal)

Dynamic settings



Online Recommendations on Graphs

Dynamic models with node arrivals/departures

(Julufn

aa

@ Users arrive repeatedly (independent Poisson(1) processes)

o Items arrive to item-classes, depart after some lifetime



Thanks!



