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Social Network Modeling

Community: group of individuals

Community formation models: how
people form communities and networks

Community detection: Discovering
hidden communities from observed
network

Modeling Overlapping Communities

People belong to multiple communities

Challenging to model and learn such
overlapping communities
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Stochastic Block Model: Classical Approach

Generative Model

k communities and network size n

Each node belongs to one community:
πu = ei if node u is in community i.

ei is the basis vector in ith coordinate.

Probability of an edge from u to v is

π>
u Pπv .

Notice that π>
u Pπv = Pi,j if πu = ei and

πv = ej.

Independent Bernoulli draws for edges.

Pros: Guaranteed algorithms for learning block models, e.g. spectral
clustering, d2 distance based thresholding

Cons: Too simplistic. Cannot handle individuals in multiple
communities



Mixed Membership Block Model

Generative Model

k communities and network size n

Nodes in multiple communities: for node u, πu
is community membership vector

Probability of an edge from u to v is π>
u Pπv ,

where P is block connectivity matrix

Independent Bernoulli draws for edges
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Dirichlet Priors

Each πu drawn independently from Dir(α): P[πu] ∝
∏k

j=1 πu(j)
αj−1

Stochastic block model: special case when αj → 0.

Sparse regime: αj < 1 for j ∈ [k].

Airoldi, Blei, Fienberg, and Xing. Mixed membership stochastic blockmodels. J. of Machine

Learning Research, June 2008.



Learning Mixed Membership Models

Advantages

Mixed membership models incorporate overlapping communities

Stochastic block model is a special case

Model sparse community membership

Challenges in Learning Mixed Membership Models

Not clear if guaranteed learning can be provided.

Potentially large sample and computational complexities

Identifiability: when can parameters be estimated?



Learning Mixed Membership Models

Advantages

Mixed membership models incorporate overlapping communities

Stochastic block model is a special case

Model sparse community membership

Challenges in Learning Mixed Membership Models

Not clear if guaranteed learning can be provided.

Potentially large sample and computational complexities

Identifiability: when can parameters be estimated?

Solution: Method of Moments Approach
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Inverse moment method: solve equations relating parameters to
observed moments

Spectral approach: reduce equation solving to computing the
“spectrum” of the observed moments

Non-convex but computationally tractable approaches



Method of Moments

Inverse moment method: solve equations relating parameters to
observed moments

Spectral approach: reduce equation solving to computing the
“spectrum” of the observed moments

Non-convex but computationally tractable approaches

Spectral Approach to Learning Mixed Membership Models

Edge and Subgraph Counts: Moments in a network

Tensor Spectral Approach: Low rank tensor form and efficient
decomposition methods



Summary of Results and Technical Approach

Contributions

First guaranteed learning algorithm for overlapping community models

Correctness under exact moments.

Explicit sample complexity bounds.

Results are tight for Stochastic Block Models



Summary of Results and Technical Approach

Contributions

First guaranteed learning algorithm for overlapping community models

Correctness under exact moments.

Explicit sample complexity bounds.

Results are tight for Stochastic Block Models

Approach

Method of moments: edge counts and 3-star count tensors

Tensor decomposition: Obtain spectral decomposition of the tensor

Tensor spectral clustering: Project nodes on the obtained eigenvectors
and cluster.



Related Work

Stochastic Block Models

Classical approach to modeling communities (White et. al ‘76,
Fienberg et. al 85)

Spectral clustering algorithm (McSherry ‘01, Dasgupta ‘04)

d2-distance based clustering (Frieze and Kannan ‘98)
I weak regularity lemma: any dense convergent graph can be fitted to a

block model

Random graph models based on subgraph counts

Exponential random graph models

NP-hard in general to learn and infer these models

Overlapping community models

Many empirical works but no guaranteed learning



Outline

1 Introduction

2 Tensor Form of Subgraph Counts
Connection to Topic Models
Tensor Forms for Network Models

3 Tensor Spectral Method for Learning
Tensor Preliminaries
Spectral Decomposition: Tensor Power Method

4 Conclusion



Outline

1 Introduction

2 Tensor Form of Subgraph Counts
Connection to Topic Models
Tensor Forms for Network Models

3 Tensor Spectral Method for Learning
Tensor Preliminaries
Spectral Decomposition: Tensor Power Method

4 Conclusion



Connection to LDA Topic Models

Exchangeable Topic Models

l words in a document x1, . . . , xl.

Document: topic mixture (draw of h).

Word xi generated from topic yi.

Exchangeability: x1 ⊥⊥ x2 ⊥⊥ . . . |h

LDA: h ∼ Dir(α) .

Learning from bigrams and trigrams

Words

Topics

Topic

Mixture

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

h

A. Anandkumar, R. Ge, D. Hsu, S.M. Kakade and M. Telgarsky “Tensor Decompositions for

Learning Latent Variable Models,” Preprint, October 2012.



Viewing Community Models as Topic Models

Analogy for community model: each person can function both as a
document and a word.

Outgoing links from a node u: node u is a document.

Incoming links to a node v: node v is a word.

Node as a document Node as a word
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Moments for Spectral Method

Subgraph counts as moments of a random graph distribution

Edge Count Matrix

Consider partition X,A,B,C.

Adjacency Submatrices GX,A, GX,B , GX,C

x
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3-Star Count Tensor

# of 3-star subgraphs from X to A,B,C.

M3(u, v, w) :=
1

|X|
# of 3-stars with leaves u,v,w

x

u v w
A B C

X

Nodes in A,B,C: words and X: documents.



Moments for Spectral Method

Subgraph counts as moments of a random graph distribution

Edge Count Matrix

Consider partition X,A,B,C.

Adjacency Submatrices GX,A, GX,B , GX,C

x

uA B C

X

3-Star Count Tensor

# of 3-star subgraphs from X to A,B,C.

M3(u, v, w) :=
1

|X|
# of 3-stars with leaves u,v,w

x

u v w
A B C

X

Nodes in A,B,C: words and X: documents.

Learning via Edge and 3-Star Counts



Recall Stochastic Block Model..

k communities and network size n

Each node belongs to one community: for node u, πu = ei if u is in
community i. ei is the basis vector in ith coordinate.

Probability of an edge from u to v is π>
u Pπv , where P is block

connectivity matrix

Independent Bernoulli draws for edges

Probability of edges from X to A is Π>
XPΠA , where ΠA has πa,

a ∈ A as column vectors.

Denote FA := Π>
AP

> and λi = P[π = ei] .
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Moments for Stochastic Block Model

Denote FA := Π>
AP

> and λi = P[π = ei] .

Edge Count Matrix

Adjacency Submatrices GX,A, GX,B , GX,C

E[G>
X,A|ΠA,X ] = Π>

XPΠA = Π>
AP

>ΠX = FAΠX

x

uA B C

X

3-Star Count Tensor

# of 3-star subgraphs from X to A,B,C.

M3 :=
1

|X|

∑

i∈X

[G>
i,A ⊗G>

i,B ⊗G>
i,C ]

E[M3|ΠA,B,C ] =
∑

i

λi[(FA)i ⊗ (FB)i ⊗ (FC)i]

x

u v w
A B C

X

Goal: Recover FA, FB , FC , ~λ
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Tensor Basics: Multilinear Transformations

For a tensor T , define (for matrices Vi of appropriate dimensions)

[T (W1,W2,W3)]i1,i2,i3 :=
∑

j1,j2,j3

(T )j1,j2,j3
∏

m∈[3]

Wm(jm, im)

For a matrix M , M(W1,W2) := W>
1 MW2 .

For a symmetric tensor T of the form

T =
k∑

r=1

λrφ
⊗3
r

T (W,W,W ) =
∑

r∈[k]

λr(W
>φr)

⊗3

T (I, v, v) =
∑

r∈[k]

λr〈v, φr〉
2φr.

T (I, I, v) =
∑

r∈[k]

λr〈v, φr〉φrφ
>
r .



Whiten: Convert to Orthogonal Symmetric Tensor

Assume exact moments are known.

E[G>
X,A|ΠA,X ] = FAΠX

E[M3|ΠA,B,C ] =
∑

i

λi[(FA)i ⊗ (FB)i ⊗ (FC)i]



Whiten: Convert to Orthogonal Symmetric Tensor

Assume exact moments are known.

E[G>
X,A|ΠA,X ] = FAΠX

E[M3|ΠA,B,C ] =
∑

i

λi[(FA)i ⊗ (FB)i ⊗ (FC)i]

Use SVD of GX,A, GX,B , GX,C to obtain whitening matrices
WA,WB ,WC

Apply multi-linear transformation on M3 using WA,WB ,WC .

T := E[M3(WA,WB ,WC)|ΠA,B,C ] =
∑

i

wiµ
⊗3
i

T is symmetric orthogonal tensor: {µi} are orthonormal.

Spectral Tensor Decomposition of T
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Orthogonal Tensor Eigen Analysis

Consider orthogonal symmetric tensor T =
∑

iwiµ
⊗3
i

T =
k∑

i=1

wiµ
⊗3
i . T (I, µi, µi) = wiµi
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Orthogonal Tensor Eigen Analysis

Consider orthogonal symmetric tensor T =
∑

iwiµ
⊗3
i

T =
k∑

i=1

wiµ
⊗3
i . T (I, µi, µi) = wiµi

Obtaining eigenvectors through power iterations

u 7→
T (I, u, u)

‖T (I, u, u)‖

Challenges and Solution

Challenge: Other eigenvectors present
I Solution: Only stable vectors are basis vectors {µi}

Challenge: empirical moments
I Solution: robust tensor decomposition methods



Optimization Viewpoint for Tensor Eigen Analysis

Consider Norm Optimization Problem for Tensor T

max
u

T (u, u, u) s.t. u>u = I

Constrained stationary fixed points T (I, u, u) = λu and u>u = I.

u is a local isolated maximizer if w>(T (I, I, u) − λI)w < 0 for all w
such that w>w = I and w is orthogonal to u.

Review for Symmetric Matrices M =
∑

i wiµ
⊗2
i

Constrained stationary points are the eigenvectors

Only top eigenvector is a maximizer and stable under power iterations

Orthogonal Symmetric Tensors T =
∑

i wiµ
⊗3
i

Stationary points are the eigenvectors (up to scaling)

All basis vectors {µi} are local maximizers and stable under power
iterations



Tensor Decomposition: Perturbation Analysis

Observed tensor T̃ = T + E, where T =
∑

i∈k wiµ
⊗3
i is orthogonal

tensor and perturbation E, and ‖E‖ ≤ ε.

Recall power iterations u 7→
T̃ (I, u, u)

‖T̃ (I, u, u)‖
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Tensor Decomposition: Perturbation Analysis

Observed tensor T̃ = T + E, where T =
∑

i∈k wiµ
⊗3
i is orthogonal

tensor and perturbation E, and ‖E‖ ≤ ε.

Recall power iterations u 7→
T̃ (I, u, u)

‖T̃ (I, u, u)‖

“Good” initialization vector 〈u(0), µi〉
2 = Ω

(
ε

wmin

)

Perturbation Analysis

After N iterations, eigen pair (wi, µi) is estimated up to O(ε) error, where

N = O
(
log k + log log

wmax

ε

)
.

A. Anandkumar, R. Ge, D. Hsu, S.M. Kakade and M. Telgarsky “Tensor

Decompositions for Learning Latent Variable Models,” Preprint, October 2012.



Robust Tensor Power Method

T̃ =
∑

iwiµ
⊗3
i +E

Basic Algorithm

Pick random initialization vectors

Run power iterations u 7→
T̃ (I, u, u)

‖T̃ (I, u, u)‖

Go with the winner, deflate and repeat



Robust Tensor Power Method

T̃ =
∑

iwiµ
⊗3
i +E

Basic Algorithm

Pick random initialization vectors

Run power iterations u 7→
T̃ (I, u, u)

‖T̃ (I, u, u)‖

Go with the winner, deflate and repeat

Further Improvements

Initialization: Use neighborhood vectors for initialization

Stabilization: u(t) 7→ α
T̃ (I, u(t−1), u(t−1))

‖T̃ (I, u(t−1), u(t−1))‖
+ (1− α)u(t−1)

Efficient Learning Through Tensor Power Iterations
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Conclusion

Mixed Membership Models

Can model overlapping communities

Efficient to learn from low order moments:
edge counts and 3-star counts.

Tensor Spectral Method

Whitened 3-star count tensor is an
orthogonal symmetric tensor

Efficient decomposition through power
method

Perturbation analysis: tight for stochastic
block model
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