A Spatial Control Chart for FWI Monitoring

W. John Braun University of Western Ontario

Outline

Control Charts

Exponential Control Charts

Application to Fire Weather Index

Spatial Control Charts

Control Charts

Popular in industry.

Useful for determining if a given measurement is unusual, or a result of "chance" variation.

Could be used (more?) in forest management practice.

Daily temperatures at weather station 10400 (Ontario):

1975 Temperatures

Date

Control Charts

Is the temperature on July 29 (32.2°) unusual?

Let μ be the mean, and σ be the standard deviation of the measurements.

Assuming that the measurements are independent and normally distributed, they should lie within the following limits with probability .0027.

Upper Control Limit (UCL): $\mu + 3\sigma$

Lower Control Limit (LCL): $\mu - 3\sigma$

They should lie within the following warning limits with probability .0455.

Upper Warning Limit (UWL): $\mu + 2\sigma$

Lower Warning Limit (LWL): $\mu - 2\sigma$

Measurements within year are

• dependent

seasonal (nonconstant mean, standard deviation)

~~ control chart is not valid, without adjustment

Measurements across years, for fixed day, are approximately

• independent

nonseasonal (constant mean, standard deviation)

~~> control chart is okay, without adjustment

Temperatures for 7/29 at Station 10400

The 1975 temperature is unusual but not shocking.

What if the Data aren't Normal?

This is often ignored in practice.

Consequence: for right-skewed data, the lower limits are useless and the upper limits are not very useful.

If T is exponentially distributed with mean μ , then

 $P(T > t) = e^{-t/\mu}$

We can use this to find new upper control and warning limits.

e.g. Find UCL so that $e^{-UCL/\mu} = .0027$.

Result:

 $UCL = -\log(.0027)\mu$

UWL = $-\log(.0455)\mu$

An exponential QQ-plot for July 29 at station 10400:

13

An Exponential Individuals Chart Applied to FWI Data

FWI for 7/29 at Station 10400

year

A Spatial Control Chart

Estimate the mean measurement for the given day of year at each weather station.

Calculate estimated control limits and warnings limits.

Plot the locations on a map, using a colour code corresponding to the magnitude of the measurement relative to the limits.

Example: April 1, 1963

longitude

Colour Coding

- Blue: the current FWI is less than the median at the site.
- Grey: the current FWI is more than the median at the site.
- Green: the current FWI is more than the upper quartile at the site.
- Yellow: the current FWI is more than the 90th percentile at the site.
- Orange: the current FWI is more than the warning limit.
- Red: the current FWI is more than the control limit.
- A grey circle corresponds to a station for which there is no current data.

In the following plot, we see that there are a few sites with elevated FWI beyond their normal values.

The majenta coloured point is very interesting: an FWI of 214.

This is likely a mistake in the data set (21.4?), and it is easily caught in this kind of plot.

The blue and grey points indicate areas where it is likely cloudy and wet.

Example: June 4, 1994

longitude

(excluding outlier)

Example: June 4, 1984

longitude

Summary and Future Work

The proposed spatial control chart can be used for short term planning.

A plot of the FWI percentiles can be used for longer term planning.

Model the UCL at each station against day of year. A graph of this curve could be used to track daily FWI at that site.

Longer term goal: model spatial dependence.