Greenberg of Néron

Applications

Geometrizing Characters of Tori

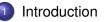
David Roe Clifton Cunningham

Department of Mathematics University of Calgary/PIMS

Alberta Number Theory Days 2013

Greenberg of Néron

Applications



Character Sheaves

Greenberg of Néron

Character Sheaves

Greenberg of Néron

Applications

Objective

- K a finite extension of \mathbb{Q}_p ,
- **T** an algebraic torus over K (e.g. \mathbb{G}_m),
- ℓ a prime different from *p*.

Goal

Construct "geometric avatars" for characters in

 $\text{Hom}(\textbf{T}(\textbf{\textit{K}}),\overline{\mathbb{Q}}_{\ell}^{\times})$:

sheaves on some space functorially associated to T.

- Try to push characters forward along maps such as $\textbf{T} \hookrightarrow \textbf{G};$
- Deligne-Lusztig representations ⇒ character sheaves;
- Give a new perspective on class field theory.

Character Sheaves

Greenberg of Néron

Applications

Approach

- Generalize the notion of character sheaf from connected, commutative algebraic group to commutative group schemes locally of finite type.
- 2 Associate to **T** a projective system \mathfrak{T} of commutative group schemes \mathfrak{T}_d over the residue field *k* of *K*.
- Solution Map from character sheaves on \mathfrak{T} to characters on $\mathcal{T}(\mathcal{K})$.

Applications

Character Sheaves (G connected)

Two definitions of character sheaves for a connected (commutative) algebraic groups G over k:

Definition

- An *ℓ*-adic local system is a constructible sheaf of Q_ℓ-vector spaces on the étale site of G that becomes trivial after pulling back along a finite étale map H → G.
- A geometric character sheaf on G is an ℓ-adic local system
 E° on G equipped with an isomorphism m**E*° ≅ *E*° ⊠ *E*°,
 where m: G × G → G is multiplication.

Greenberg of Néron

Applications

Character Sheaves 2 (G connected)

Definition

Alternatively, a character sheaf on G is a short exact sequence

$$1 \to A \to H \to G \to 1$$

together with a character $A \to \overline{\mathbb{Q}}_{\ell}^{\times}$, so that

- $\bigcirc H \to G \text{ is a finite étale cover,}$
- 2 Fr_q acts trivially on A.

Applications

Rationality of character sheaves

Base change to \overline{k} yields a pair $(\overline{\mathcal{E}}^{\circ}, \operatorname{Fr}_{\mathcal{E}^{\circ}})$, where $\overline{\mathcal{E}}^{\circ}$ is a character sheaf on \overline{G} and $\operatorname{Fr}_{\mathcal{E}^{\circ}} : \operatorname{Fr}_{q}^{*}\overline{\mathcal{E}}^{\circ} \xrightarrow{\sim} \overline{\mathcal{E}}^{\circ}$.

Proposition

In general this functor is faithful; when G is connected, base change defines an equivalence of categories

 $\left\{\begin{array}{c} \text{character sheaves} \\ \text{on } G \end{array}\right\} \rightarrow \left\{\text{pairs } (\overline{\mathcal{E}}^{\circ}, \mathsf{Fr}_{\mathcal{E}^{\circ}})\right\}$

Character Sheaves

Greenberg of Néron

Applications

Characters in the connected case

Suppose (*ε*[°], Fr_{ε°}) is a character sheaf on *G*. Define a character χ_ε[°] of *G*(*k*) by

$$\chi^{\circ}_{\mathcal{E}}(\mathbf{x}) = \mathsf{Tr}(\mathsf{Fr}_{\mathcal{E}^{\circ}}, \overline{\mathcal{E}}^{\circ}_{\mathbf{x}})$$

for $x \in G(k)$.

 Suppose χ is a character of G(k). Define a character sheaf on G using the Lang isogeny L(x) = x⁻¹ Fr_q(x),

$$1 \to G(k) \to G \xrightarrow{L} G \to 1,$$

together with the character χ of G(k).

Theorem (Deligne, SGA 4.5)

The maps defined above are mutually inverse isomorphisms between character sheaves on G and $\text{Hom}(G(k), \overline{\mathbb{Q}}_{\ell}^{\times})$.

Greenberg of Néron

Applications

Character Sheaves (G non-connected)

Definition

A character sheaf on *G* is a triple $\mathcal{E} = (\bar{\mathcal{E}}, \mu, F)$, where

• $\overline{\mathcal{E}}$ is a constructible ℓ -adic sheaf on \overline{G} , locally constant of rank 1 on each connected component;

2
$$\mu: m^* \overline{\mathcal{E}} \to \overline{\mathcal{E}} \boxtimes \overline{\mathcal{E}}$$
 is an isomorphism of sheaves on $\overline{\mathcal{G}} \times \overline{\mathcal{G}}$;

③
$$F : \operatorname{Fr}_{G}^{*} \overline{\mathcal{E}} \to \overline{\mathcal{E}}$$
 is an isomorphism of sheaves on \overline{G} .

 μ and *F* are required to satisfy various compatibility diagrams. We write CS(G) for the category of character sheaves on *G*. (

Greenberg of Néron

Applications

Trace of Frobenius

Write $G(k)^*$ for Hom $(G(k), \overline{\mathbb{Q}}_{\ell}^{\times})$. For any *G*, trace of Frobenius defines a map

$$\mathcal{C}(G)_{iso} \to G(k)^*.$$

Pullback then gives a diagram

Applications

Character Sheaves 2 (G non-connected)

In the non-connected case, not every character sheaf can be realized in the second manner.

Definition

A bounded character sheaf on G is a short exact sequence

$$1 \rightarrow A \rightarrow H \rightarrow G \rightarrow 1$$

together with a character $A \to \overline{\mathbb{Q}}_{\ell}^{\times}$, so that

- H → G is a finite étale cover, inducing an isomorphism on component groups
- 2 Fr_q acts trivially on A.

Greenberg of Néron

Applications

Extending character sheaves

Theorem

Every character sheaf on G° extends to a (bounded) character sheaf on G.

Proof.

Suppose that $1 \to A \to H \to G \to 1$ and $\chi: A \to \overline{\mathbb{Q}}_{\ell}^{\times}$ defines a bounded character sheaf. Suppose that $\operatorname{Gal}(\overline{k}/k)$ acts on H and G through the finite quotient Γ . Restriction to $H^{\circ} \to G^{\circ}$ then defines a character sheaf on G° .

Greenberg of Néron

Applications

Extending character sheaves

Proof.

On extension classes, this map is the first in

$$\mathsf{Ext}^1_{\mathbb{Z}[\Gamma]}(G,A) \to \mathsf{Ext}^1_{\mathbb{Z}[\Gamma]}(G^{\circ},A) \to \mathsf{Ext}^2_{\mathbb{Z}[\Gamma]}(G/G^{\circ},A).$$

Since $\mathbb{Z}[\Gamma]$ is a product of Dedekind domains it has cohomological dimension 1 and thus $\operatorname{Ext}^2_{\mathbb{Z}[\Gamma]}(G/G^\circ, A)$ vanishes. So $\operatorname{Ext}^1_{\mathbb{Z}[\Gamma]}(G, A) \to \operatorname{Ext}^1_{\mathbb{Z}[\Gamma]}(G^\circ, A)$ is surjective.

Applications

Character Sheaves (*G* étale)

- The category of étale group schemes is equivalent to the category of groups with with Galois action.
- A character sheaf on an étale group scheme G is a collection of 1-dimensional Q
 _ℓ-vectors spaces E_x for x ∈ G(k̄) together with F_x : E_{Fr(x)} → E_x and μ_{x,y} : E_x ⊗ E_y → E_{x+y}.

Proposition

Suppose that G is an étale commutative group scheme and $G(\bar{k})$ is finitely generated. Then there is a canonical isomorphism

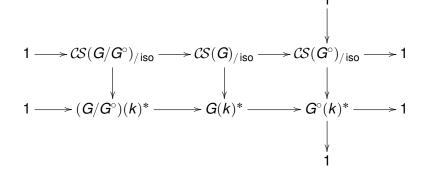
 $\mathcal{CS}(\mathbf{G})_{iso} \cong \mathrm{H}^{1}(\mathbf{W}_{k}, \mathbf{G}(\bar{k})^{*}).$

Character Sheaves

Greenberg of Néron

Applications

Trace of Frobenius Diagram



Greenberg of Néron

Applications

Trace of Frobenius (*G* étale)

Theorem

If G is an étale, commutative group scheme with $G(\bar{k})$ finitely generated then trace of Frobenius is an isomorphism.

Corollary

If G is a commutative group scheme with finitely generated component group then trace of Frobenius gives an isomorphism

 $\mathcal{CS}(G)_{iso} \cong G(k)^*.$

Character Sheaves

Greenberg of Néron

Applications

Surjectivity (G étale)

Proof.

Since $\overline{\mathbb{Q}}_{\ell}^{\times}$ is divisible it is injective as a \mathbb{Z} -module and thus $\operatorname{Ext}_{\mathbb{Z}}^{1}(G(\bar{k})/G(k), \overline{\mathbb{Q}}_{\ell}^{\times}) = 0$ so restriction

$$G(\bar{k})^* \to G(k)^*$$

is surjective. The map $\mathcal{CS}(G)_{iso} \cong H^1(W_k, G(\bar{k})^*) \to G(k)^*$ is given by evaluation at Frobenius and restriction.

Greenberg of Néron

Applications

Injectivity (G étale)

Proof.

Suppose \mathcal{E} is in the kernel of trace-of-Frobenius, and suppose $\phi \in G(\bar{k})^*$ is the image of Frobenius under a corresponding cocycle. By assumption $\phi(x) = 1$ for $x \in G(k)$; it suffices to construct $\psi \in G(\bar{k})^*$ with $\phi(x) = \frac{\psi(x)}{\psi(\operatorname{Fr}(x))}$ for all $x \in G(\bar{k})$.

Again, let $\text{Gal}(\bar{k}/k)$ act through the finite quotient Γ . Since $\mathbb{Z}[\Gamma]$ is a product of Dedekind domains, any $\mathbb{Z}[\Gamma]$ -module decomposes as the direct sum of cyclic modules (generated by one element), so we may assume that $G(\bar{k})$ is a cyclic $\mathbb{Z}[\Gamma]$ -module with generator *y*, isomorphic to $\mathbb{Z}[\Gamma]/I$.

Character Sheaves

Greenberg of Néron

Applications

Injectivity (G étale)

Proof.

Suppose
$$I = (Fr^d - a_{d-1} Fr^{d-1} - \cdots - a_0)$$
. Choose $\alpha \in \overline{\mathbb{Q}}_{\ell}^{\times}$ with

$$\phi(\mathsf{Fr}^{d-1}(y)) = \frac{\prod_{i=0}^{d-1} \left(\alpha \prod_{j=0}^{i-1} \phi(\mathsf{Fr}^{j}(y)) \right)^{a_{i}}}{\alpha \prod_{j=0}^{d-2} \phi(\mathsf{Fr}^{j}(y))}$$

Define

$$\psi(\mathsf{Fr}^{i}(\mathbf{y})) = \alpha \prod_{j=0}^{i-1} \phi(\mathsf{Fr}^{j}(\mathbf{y}))$$

for $0 \le i < d$ and extend by linearity to all of $G(\bar{k})$. We have $\phi(x) = \frac{\psi(x)}{\psi(Fr(x))}$ for $x = Fr^i(y)$ and thus combinations. And if *I* is non-principal....

Applications

The Néron model of a torus

- **R** ring of integers of K with uniformizer π
- $R_d R/\pi^{d+1}R$
- T_R The Néron model of T: a separated, smooth commutative group scheme over R, locally of finite type with the Néron mapping property.

$$\mathbf{T}_{\boldsymbol{R}}(\boldsymbol{R}) = \mathbf{T}(\boldsymbol{K})$$

In the \mathbb{G}_m case the Néron model is a union of copies of \mathbb{G}_m/R , glued along the generic fiber.

 $\mathbf{T}_d - \mathbf{T}_R \times_R R_d.$

Applications

Components

• The geometric component group of \mathbf{T}_R fits in a sequence

 $1 \to \mathsf{H}^1(\mathcal{I}_{\mathcal{K}}, X^*(\mathbf{T}))^* \to \pi_0(\mathbf{T}_R) \to \mathsf{Hom}(X^*(\mathbf{T})^{\mathcal{I}_{\mathcal{K}}}, \mathbb{Z}) \to 1.$

- π₀(**T**_R) is a constant group scheme after base change to the maximal unramified extension of *K*, but Frobenius may act nontrivially.
- The sequence of commutative *R*-group schemes

$$1 \to \mathbf{T}_R^{\circ} \to \mathbf{T}_R \to \pi_0(\mathbf{T}_R) \to 1.$$

Greenberg of Néron

Applications

The Greenberg functor

The Greenberg functor Gr takes a group scheme over an Artinian local ring A (locally of finite type) and produces a group scheme over the residue field k whose k points are canonically identified with the A-points of the original scheme. We set

$$\mathbf{v}_d = \operatorname{Gr}(\mathbf{T}_d)$$

and

$$\mathfrak{T} = \lim_{\leftarrow} \mathfrak{T}_d.$$

 $\mathbf{\tau}$ is a commutative group scheme over k with

$$\mathbf{T}(\mathbf{k}) = \mathbf{T}(\mathbf{K}).$$

Greenberg of Néron

Applications

Character sheaves on ${f t}$

We write $CS(\mathbf{T})$ for the projective limit of the categories $CS(\mathbf{T}_d)$.

Theorem

$$T(K)^* \cong \mathcal{CS}(\mathbf{T})_{/iso}$$

and this isomorphism preserves depth.

Greenberg of Néron

Applications

Local class field theory

Suppose that L/K is a totally ramified abelian extension of local fields and we're given a character of Gal(L/K). The Artin reciprocity map gives a character of K^{\times} vanishing on $\text{Nm}_{L/K}(L^{\times})$. We'd like to give a different description of this map, passing through character sheaves. Let $\mathbf{T} = \mathbb{G}_m$ and $\boldsymbol{\tau}$ the Greenberg transform of \mathbf{T}_R .

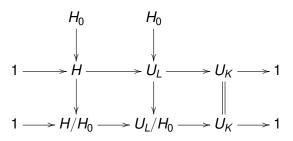
Character Sheaves

Greenberg of Néron

Applications

An Isogeny

- U_K the connected Néron model of \mathbb{G}_m .
- U_L the connected Néron model of $\operatorname{Res}_{L/K} \mathbb{G}_m$.
 - H the kernel of $\operatorname{Nm}_{L/K}$: $U_L \to U_K$.
- H_0 the subgroup of H generated by $\frac{\sigma(u)}{u}$ for $\sigma \in \text{Gal}(L/K)$ and $u \in U_L$.



Character Sheaves

Greenberg of Néron

Applications

A Character of \mathcal{O}_{K}^{\times}

The Greenberg transform is exact on commutative algebraic groups, so we get a finite étale cover of \mathfrak{T}° . Write \mathfrak{T}_{L}° for the Greenberg transform of U_{L}/H_{0} , and note that $H/H_{0} \cong \text{Gal}(L/K)$. Then the sequence

$$1 \to \operatorname{Gal}(L/K) \to \mathbf{T}_L^\circ \to \mathbf{T}^\circ \to \mathbf{1},$$

together with a character of Gal(L/K), yields a character sheaf on \mathfrak{C}° . From this character sheaf, we can recover a character of \mathcal{O}_{K}^{\times} .

Applications

Local Langlands

- G connected quasi-split reductive group over K
- E splitting field of G
- $\hat{\mathbf{G}}$ dual group over $\overline{\mathbb{Q}}_{\ell}$
- $^{L}\mathbf{G} \hat{\mathbf{G}} \rtimes \operatorname{Gal}(E/K)$
 - φ a tame discrete Langlands parameter $W_K \rightarrow {}^L \mathbf{G}$

A construction of DeBacker and Reeder produces from φ an unramified anisotropic torus **T** in **G** and a depth 0 character χ of **T**(*K*). They then describe supercuspidal representations of **G**(*K*) as compact inductions of Deligne-Lusztig representations determined by **T** and χ .

Applications

Geometrizing Local Langlands

In contrast to the Néron model of **T**, there's no canonical integral model of **G**. Instead there are many models, parameterized by the Bruhat-Tits building of **G**. We hope to obtain "representation sheaves" on the Greenberg transforms of these models from character sheaves on \mathbf{T} by an analogue of Lusztig induction. Ideally, this process would allow

- the generalization of DeBacker and Reeder's methods beyond the depth 0 case,
- better understanding of the functoriality of the local Langlands correspondence,
- new descriptions of L-packets.

Clifton and I are currently pursuing these questions.

Applications

Thank you.