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Objective

K – a finite extension of Qp,
T – an algebraic torus over K (e.g. Gm),
` – a prime different from p.

Goal
Construct “geometric avatars” for characters in

HompTpK q,Qˆ` q :

sheaves on some space functorially associated to T.

Try to push characters forward along maps such as T ãÑ G;
Deligne-Lusztig representations ùñ character sheaves;
Give a new perspective on class field theory.
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Approach

1 Generalize the notion of character sheaf from connected,
commutative algebraic group to commutative group
schemes locally of finite type.

2 Associate to T a projective system T of commutative group
schemes Td over the residue field k of K .

3 Map from character sheaves on T to characters on T pK q.
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Character Sheaves (G connected)

Two definitions of character sheaves for a connected
(commutative) algebraic groups G over k :

Definition

An `-adic local system is a constructible sheaf of Q`-vector
spaces on the étale site of G that becomes trivial after
pulling back along a finite étale map H Ñ G.
A geometric character sheaf on G is an `-adic local system
E˝ on G equipped with an isomorphism m˚E˝ – E˝ b E˝,
where m : G ˆG Ñ G is multiplication.
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Character Sheaves 2 (G connected)

Definition
Alternatively, a character sheaf on G is a short exact sequence

1 Ñ A Ñ H Ñ G Ñ 1

together with a character A Ñ Qˆ` , so that
1 H Ñ G is a finite étale cover,
2 Frq acts trivially on A.
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Rationality of character sheaves

Base change to k yields a pair pE˝,FrE˝q, where E˝ is a
character sheaf on G and FrE˝ : Fr˚q E

˝
ÝÑ„ E˝.

Proposition
In general this functor is faithful; when G is connected, base
change defines an equivalence of categories

"

character sheaves
on G

*

Ñ

!

pairs pE˝,FrE˝q

)
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Characters in the connected case

Suppose pE˝,FrE˝q is a character sheaf on G. Define a
character χ˝E of Gpkq by

χ˝Epxq “ TrpFrE˝ , E˝xq

for x P Gpkq.
Suppose χ is a character of Gpkq. Define a character sheaf
on G using the Lang isogeny Lpxq “ x´1 Frqpxq,

1 Ñ Gpkq Ñ G L
ÝÑ G Ñ 1,

together with the character χ of Gpkq.

Theorem (Deligne, SGA 4.5)

The maps defined above are mutually inverse isomorphisms
between character sheaves on G and HompGpkq,Qˆ` q.



Introduction Character Sheaves Greenberg of Néron Applications

Character Sheaves (G non-connected)

Definition

A character sheaf on G is a triple E “ pĒ , µ,F q, where
1 Ē is a constructible `-adic sheaf on Ḡ, locally constant of

rank 1 on each connected component;
2 µ : m˚Ē Ñ Ē b Ē is an isomorphism of sheaves on Ḡ ˆ Ḡ;
3 F : Fr˚G Ē Ñ Ē is an isomorphism of sheaves on Ḡ.
µ and F are required to satisfy various compatibility diagrams.
We write CSpGq for the category of character sheaves on G.
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Trace of Frobenius

Write Gpkq˚ for HompGpkq,Qˆ` q. For any G, trace of Frobenius
defines a map

CSpGq{ iso Ñ Gpkq˚.

Pullback then gives a diagram

1 // CSpG{G˝q{ iso
//

��

CSpGq{ iso
//

��

CSpG˝q{ iso

��
1 // pG{G˝qpkq˚ // Gpkq˚ // G˝pkq˚ // 1
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Character Sheaves 2 (G non-connected)

In the non-connected case, not every character sheaf can be
realized in the second manner.

Definition
A bounded character sheaf on G is a short exact sequence

1 Ñ A Ñ H Ñ G Ñ 1

together with a character A Ñ Qˆ` , so that
1 H Ñ G is a finite étale cover, inducing an isomorphism on

component groups
2 Frq acts trivially on A.
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Extending character sheaves

Theorem
Every character sheaf on G˝ extends to a (bounded) character
sheaf on G.

Proof.

Suppose that 1 Ñ A Ñ H Ñ G Ñ 1 and χ : A Ñ Qˆ` defines a
bounded character sheaf. Suppose that Galpk̄{kq acts on H
and G through the finite quotient Γ. Restriction to H˝ Ñ G˝ then
defines a character sheaf on G˝.
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Extending character sheaves

Proof.
On extension classes, this map is the first in

Ext1ZrΓspG,Aq Ñ Ext1ZrΓspG
˝,Aq Ñ Ext2ZrΓspG{G

˝,Aq.

Since ZrΓs is a product of Dedekind domains it has
cohomological dimension 1 and thus Ext2ZrΓspG{G

˝,Aq
vanishes. So Ext1ZrΓspG,Aq Ñ Ext1ZrΓspG

˝,Aq is surjective.
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Character Sheaves (G étale)

The category of étale group schemes is equivalent to the
category of groups with with Galois action.
A character sheaf on an étale group scheme G is a
collection of 1-dimensional Q`-vectors spaces Ex for
x P Gpk̄q together with Fx : EFrpxq ÝÑ

„ Ex and
µx ,y : Ex b Ey ÝÑ„ Ex`y .

Proposition
Suppose that G is an étale commutative group scheme and
Gpk̄q is finitely generated. Then there is a canonical
isomorphism

CSpGq{ iso – H1
pWk ,Gpk̄q˚q.
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Trace of Frobenius Diagram

1

��
1 // CSpG{G˝q{ iso

//

��

CSpGq{ iso
//

��

CSpG˝q{ iso
//

��

1

1 // pG{G˝qpkq˚ // Gpkq˚ // G˝pkq˚ //

��

1

1
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Trace of Frobenius (G étale)

Theorem

If G is an étale, commutative group scheme with Gpk̄q finitely
generated then trace of Frobenius is an isomorphism.

Corollary
If G is a commutative group scheme with finitely generated
component group then trace of Frobenius gives an isomorphism

CSpGq{ iso – Gpkq˚.
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Surjectivity (G étale)

Proof.

Since Qˆ` is divisible it is injective as a Z-module and thus
Ext1ZpGpk̄q{Gpkq,Q

ˆ

` q “ 0 so restriction

Gpk̄q˚ Ñ Gpkq˚

is surjective. The map CSpGq{ iso – H1
pWk ,Gpk̄q˚q Ñ Gpkq˚ is

given by evaluation at Frobenius and restriction.
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Injectivity (G étale)

Proof.
Suppose E is in the kernel of trace-of-Frobenius, and suppose
φ P Gpk̄q˚ is the image of Frobenius under a corresponding
cocycle. By assumption φpxq “ 1 for x P Gpkq; it suffices to
construct ψ P Gpk̄q˚ with φpxq “ ψpxq

ψpFrpxqq for all x P Gpk̄q.

Again, let Galpk̄{kq act through the finite quotient Γ. Since ZrΓs
is a product of Dedekind domains, any ZrΓs-module
decomposes as the direct sum of cyclic modules (generated by
one element), so we may assume that Gpk̄q is a cyclic
ZrΓs-module with generator y , isomorphic to ZrΓs{I.
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Injectivity (G étale)

Proof.

Suppose I “ pFrd
´ad´1 Frd´1

´ ¨ ¨ ¨ ´ a0q. Choose α P Qˆ` with

φpFrd´1
pyqq “

śd´1
i“0

´

α
śi´1

j“0 φpFrj
pyqq

¯ai

α
śd´2

j“0 φpFrj
pyqq

Define

ψpFri
pyqq “ α

i´1
ź

j“0

φpFrj
pyqq

for 0 ď i ă d and extend by linearity to all of Gpk̄q. We have
φpxq “ ψpxq

ψpFrpxqq for x “ Fri
pyq and thus combinations.

And if I is non-principal....
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The Néron model of a torus

R – ring of integers of K with uniformizer π
Rd – R{πd`1R
TR – The Néron model of T: a separated, smooth

commutative group scheme over R, locally of finite type
with the Néron mapping property.

TRpRq “ TpK q

In the Gm case the Néron model is a union of copies of
Gm{R, glued along the generic fiber.

Td – TR ˆR Rd .
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Components

The geometric component group of TR fits in a sequence

1 Ñ H1
pIK ,X˚pTqq˚ Ñ π0pTRq Ñ HompX˚pTqIK ,Zq Ñ 1.

π0pTRq is a constant group scheme after base change to
the maximal unramified extension of K , but Frobenius may
act nontrivially.
The sequence of commutative R-group schemes

1 Ñ T˝R Ñ TR Ñ π0pTRq Ñ 1.
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The Greenberg functor

The Greenberg functor Gr takes a group scheme over an
Artinian local ring A (locally of finite type) and produces a group
scheme over the residue field k whose k points are canonically
identified with the A-points of the original scheme. We set

Td “ GrpTdq

and
T “ lim

Ð
Td .

T is a commutative group scheme over k with

Tpkq “ TpK q.
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Character sheaves on T

We write CSpTq for the projective limit of the categories CSpTdq.

Theorem

T pK q˚ – CSpTq{ iso

and this isomorphism preserves depth.
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Local class field theory

Suppose that L{K is a totally ramified abelian extension of local
fields and we’re given a character of GalpL{K q. The Artin
reciprocity map gives a character of Kˆ vanishing on
NmL{K pLˆq. We’d like to give a different description of this map,
passing through character sheaves. Let T “ Gm and T the
Greenberg transform of TR.
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An Isogeny

UK – the connected Néron model of Gm.
UL – the connected Néron model of ResL{K Gm.
H – the kernel of NmL{K : UL Ñ UK .

H0 – the subgroup of H generated by σpuq
u for

σ P GalpL{K q and u P UL.

H0

��

H0

��
1 // H //

��

UL //

��

UK // 1

1 // H{H0 // UL{H0 // UK // 1
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A Character of Oˆ
K

The Greenberg transform is exact on commutative algebraic
groups, so we get a finite étale cover of T˝. Write T˝L for the
Greenberg transform of UL{H0, and note that
H{H0 – GalpL{K q. Then the sequence

1 Ñ GalpL{K q Ñ T˝L Ñ T
˝ Ñ 1,

together with a character of GalpL{K q, yields a character sheaf
on T˝. From this character sheaf, we can recover a character of
OˆK .
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Local Langlands

G – connected quasi-split reductive group over K
E – splitting field of G
Ĝ – dual group over Q`

LG – Ĝ¸GalpE{K q
ϕ – a tame discrete Langlands parameter WK Ñ

LG
A construction of DeBacker and Reeder produces from ϕ an
unramified anisotropic torus T in G and a depth 0 character χ of
TpK q. They then describe supercuspidal representations of
GpK q as compact inductions of Deligne-Lusztig representations
determined by T and χ.
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Geometrizing Local Langlands

In contrast to the Néron model of T, there’s no canonical
integral model of G. Instead there are many models,
parameterized by the Bruhat-Tits building of G. We hope to
obtain “representation sheaves” on the Greenberg transforms
of these models from character sheaves on T by an analogue
of Lusztig induction. Ideally, this process would allow

the generalization of DeBacker and Reeder’s methods
beyond the depth 0 case,
better understanding of the functoriality of the local
Langlands correspondence,
new descriptions of L-packets.

Clifton and I are currently pursuing these questions.
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Thank you.
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