Limiting Distributions of the Error Terms

Amir Akbary

University of Lethbridge
May 2013
B^{p}-almost periodic functions

B^{p}-almost periodic functions

- We say that the real function $\phi(y)$ is a B^{2}-almost periodic function if for any $\epsilon>0$ there exists a real-valued trigonometric polynomial

$$
P_{N(\epsilon)}(y)=\sum_{n=1}^{N(\epsilon)} r_{n}(\epsilon) e^{i \lambda_{n}(\epsilon) y}
$$

such that

$$
\limsup _{Y \rightarrow \infty} \frac{1}{Y} \int_{0}^{Y}\left|\phi(y)-P_{N(\epsilon)}(y)\right|^{2} d y<\epsilon^{2}
$$

Riemann's Explicit Formula

Riemann's Explicit Formula

$$
\psi(x)=x-\sum_{\substack{\zeta(\rho)=0 \\|\Im(\rho)| \leq T}} \frac{x^{\rho}}{\rho}+O\left(\frac{x \log ^{2}(x T)}{T}+\log x\right),
$$

valid for $x \geq 2$ and $T>1$

Riemann's Explicit Formula

Riemann's Explicit Formula

- On the Riemann hypothesis, it follows that

$$
\frac{\psi\left(e^{y}\right)-e^{y}}{e^{y / 2}}=\Re\left(\sum_{\substack{\rho=\frac{1}{2}+i \gamma \\ 0<\gamma \leq T}} \frac{-2 e^{i y \gamma}}{\rho}\right)+O\left(\frac{e^{\frac{y}{2}} \log ^{2}\left(e^{y} T\right)}{T}+y e^{-\frac{y}{2}}\right)
$$

Riemann's Explicit Formula

- On the Riemann hypothesis, it follows that

$$
\frac{\psi\left(e^{y}\right)-e^{y}}{e^{y / 2}}=\Re\left(\sum_{\substack{\rho=\frac{1}{2}+i \gamma \\ 0<\gamma \leq T}} \frac{-2 e^{i y \gamma}}{\rho}\right)+O\left(\frac{e^{\frac{y}{2}} \log ^{2}\left(e^{y} T\right)}{T}+y e^{-\frac{y}{2}}\right)
$$

$\phi(y)=$ Constant + Real Trigonometric Polynomial+Error.

Wintner's Theorem (1935)

Wintner's Theorem (1935)

- Under the assumption of the Riemann hypothesis

$$
\frac{\psi\left(e^{y}\right)-e^{y}}{e^{y / 2}}
$$

is a B^{2}-almost periodic function and so it has a limiting distribution.

Applications

Oscillation Theorems

Oscillation Theorems

- Conjecture If $\pi(x)=\#\{p \leq x\}$ then

$$
\pi(x)<\operatorname{Li}(x)=\int_{2}^{x} \frac{d t}{\log t}
$$

Oscillation Theorems

- Conjecture If $\pi(x)=\#\{p \leq x\}$ then

$$
\pi(x)<\operatorname{Li}(x)=\int_{2}^{x} \frac{d t}{\log t}
$$

- Littlewood (1914)

$$
\pi(x)-\operatorname{Li}(x)=\Omega_{ \pm}\left(\frac{x^{1 / 2}}{\log x} \log \log \log x\right)
$$

Oscillation Theorems

- Conjecture If $\pi(x)=\#\{p \leq x\}$ then

$$
\pi(x)<\operatorname{Li}(x)=\int_{2}^{x} \frac{d t}{\log t}
$$

- Littlewood (1914)

$$
\pi(x)-\operatorname{Li}(x)=\Omega_{ \pm}\left(\frac{x^{1 / 2}}{\log x} \log \log \log x\right)
$$

- Question: Does $P_{\pi}=\{x \geq 2 ; \pi(x)<\operatorname{Li}(x)\}$ has a density?

Logarithmic Density

Logarithmic Density

- For $P \subset \mathbb{R}^{+}$if

$$
\delta(P)=\lim _{x \rightarrow \infty} \frac{1}{\log x} \int_{t \in P \cap[2, X]} \frac{d t}{t}
$$

exists we say that P has logarithmic density $\delta(P)$.

Linear Independence Conjecture (LI)

Linear Independence Conjecture (LI)

- The multiset of the positive ordinates of the zeros of the Riemann zeta function is linearly independent over \mathbb{Q}.

Rubinstein-Sarnak, 1994

Rubinstein-Sarnak, 1994

- Theorem Under the RH

$$
\frac{\pi\left(e^{y}\right)-\operatorname{Li}\left(e^{y}\right)}{y e^{y / 2}}
$$

has a limiting distribution ν_{π}. Moreover under the $\mathrm{LI} \hat{\nu}_{\pi}$ (the Fourier transform of ν_{π}) can be calculated in terms of Bessel functions, and in addition

$$
\delta\left(P_{\pi}\right)=0.99999973 \cdots
$$

Mertens' Conjecture

Mertens' Conjecture

- $\mu(n)=$ The Möbius function

Mertens' Conjecture

- $\mu(n)=$ The Möbius function
- Conjecture

$$
|M(x)|=\left|\sum_{n \leq x} \mu(n)\right| \leq \sqrt{x}
$$

Mertens' Conjecture

- $\mu(n)=$ The Möbius function
- Conjecture

$$
|M(x)|=\left|\sum_{n \leq x} \mu(n)\right| \leq \sqrt{x}
$$

- Mertens' Conjecture implies the Riemann hypothesis.

Mertens' Conjecture

- $\mu(n)=$ The Möbius function
- Conjecture

$$
|M(x)|=\left|\sum_{n \leq x} \mu(n)\right| \leq \sqrt{x}
$$

- Mertens' Conjecture implies the Riemann hypothesis.
- Oldyzko-te Riel (1985) Mertens' Conjecture is false.

Explicit Formula for $M(x)$

Explicit Formula for $M(x)$

- Under the assumptions of RH and the simplicity of zeros of $\zeta(s)$ for $x \geq 2$ and $T \in \mathcal{T}$ we have

$$
M(x)=\sum_{\substack{|\gamma| \leq T \\ \rho=1 / 2+i \gamma}} \frac{x^{\rho}}{\rho \zeta^{\prime}(\rho)}+E(x, T)
$$

Negative moments of $\zeta^{\prime}(\rho)$

Negative moments of $\zeta^{\prime}(\rho)$

$$
J_{-1}(T)=\sum_{0<\gamma \leq T} \frac{1}{\left|\zeta^{\prime}(\rho)\right|^{2}}
$$

Negative moments of $\zeta^{\prime}(\rho)$

$$
J_{-1}(T)=\sum_{0<\gamma \leq T} \frac{1}{\left|\zeta^{\prime}(\rho)\right|^{2}}
$$

- Conjecture (Gonek) As $T \rightarrow \infty$ we have

$$
J_{-1}(T) \sim \frac{3}{\pi^{3}} T
$$

Ng, 2004

Ng, 2004

- Theorem Assume RH and $J_{-1}(T) \ll T$. Then

$$
\frac{M\left(e^{y}\right)}{e^{y / 2}}
$$

has a limiting distribution ν_{M}. Moreover under LI the Fourier transform $\hat{\nu}_{M}$ can be calculated.

Mazur-Stein's Problem

- For an elliptic curve E over \mathbb{Q} let

$$
a_{E}(p)=p+1-N_{E}(p) .
$$

Mazur-Stein's Problem

- For an elliptic curve E over \mathbb{Q} let

$$
a_{E}(p)=p+1-N_{E}(p) .
$$

- Let

$$
S(x)=\sum_{p \leq x} \operatorname{sgn}\left(a_{E}(p)\right)
$$

Mazur-Stein's Problem

- For an elliptic curve E over \mathbb{Q} let

$$
a_{E}(p)=p+1-N_{E}(p) .
$$

- Let

$$
S(x)=\sum_{p \leq x} \operatorname{sgn}\left(a_{E}(p)\right)
$$

- Problem What can we say about $\delta(\{x ; S(x)>0\})$?

Mazur-Stein's Problem

- For an elliptic curve E over \mathbb{Q} let

$$
a_{E}(p)=p+1-N_{E}(p) .
$$

- Let

$$
S(x)=\sum_{p \leq x} \operatorname{sgn}\left(a_{E}(p)\right)
$$

- Problem What can we say about $\delta(\{x ; S(x)>0\})$?
- It seems that if $\operatorname{rank}_{\mathbb{Q}}(E)$ is large then $a_{E}(p)<0$ more often and so

$$
\delta(\{x ; S(x)>0\})<\frac{1}{2}
$$

Mazur-Stein Problem

- It can be shown (under GRH and LI) that $\delta(\{x ; S(x)>0\})$ exists.

Mazur-Stein Problem

- It can be shown (under GRH and LI) that $\delta(\{x ; S(x)>0\})$ exists.
- Under the assumptions of some standard conjectures Sarnak has shown that

$$
\delta(\{x ; S(x)>0\})=\frac{1}{2}
$$

Joint Work with Ng and Shahabi

Joint Work with Ng and Shahabi

- $\left(\lambda_{n}\right)_{n \in \mathbb{N}}=$ A non-decreasing sequence of positive numbers which tends to infinity.

Joint Work with Ng and Shahabi

- $\left(\lambda_{n}\right)_{n \in \mathbb{N}}=\mathrm{A}$ non-decreasing sequence of positive numbers which tends to infinity.
- $\left(r_{n}\right)_{n \in \mathbb{N}}=$ A complex sequence.

Joint Work with Ng and Shahabi

- $\left(\lambda_{n}\right)_{n \in \mathbb{N}}=\mathrm{A}$ non-decreasing sequence of positive numbers which tends to infinity.
- $\left(r_{n}\right)_{n \in \mathbb{N}}=$ A complex sequence.
- $c=$ A real number.

Joint Work with Ng and Shahabi

- $\left(\lambda_{n}\right)_{n \in \mathbb{N}}=\mathrm{A}$ non-decreasing sequence of positive numbers which tends to infinity.
- $\left(r_{n}\right)_{n \in \mathbb{N}}=\mathrm{A}$ complex sequence.
- $c=$ A real number.
- y_{0} and X_{0} positive reals.

Joint Work with Ng and Shahabi

- $\left(\lambda_{n}\right)_{n \in \mathbb{N}}=$ A non-decreasing sequence of positive numbers which tends to infinity.
- $\left(r_{n}\right)_{n \in \mathbb{N}}=\mathrm{A}$ complex sequence.
- $c=$ A real number.
- y_{0} and X_{0} positive reals.
- We consider the class of functions

$$
\phi(y)=c+\Re\left(\sum_{\lambda_{n} \leq X} r_{n} e^{i \lambda_{n} y}\right)+\mathcal{E}(y, X)
$$

for any $X \geq X_{0}>0$ where $\mathcal{E}(y, X)$ satisfies

$$
\lim _{Y \rightarrow \infty} \frac{1}{Y} \int_{y_{0}}^{Y}\left|\mathcal{E}\left(y, e^{Y}\right)\right|^{2} d y=0
$$

General Limiting Distribution Theorems

General Limiting Distribution Theorems

$$
\text { - } \phi(y)=c+\Re\left(\sum_{\lambda_{n} \leq x} r_{n} e^{i \lambda_{n} y}\right)+\mathcal{E}(y, X)
$$

General Limiting Distribution Theorems

- $\phi(y)=c+\Re\left(\sum_{\lambda_{n} \leq X} r_{n} e^{i \lambda_{n} y}\right)+\mathcal{E}(y, X)$
- Theorem If $r_{n} \ll \frac{1}{\lambda_{N}^{\beta}}$ for $\beta>\frac{1}{2}$ and

$$
\sum_{T<\lambda_{n} \leq T+1} 1 \ll \log T
$$

then $\phi(y)$ has a limiting distribution.

General Limiting Distribution Theorems

General Limiting Distribution Theorems

$$
\phi(y)=c+\Re\left(\sum_{\lambda_{n} \leq x} r_{n} e^{i \lambda_{n} y}\right)+\mathcal{E}(y, X)
$$

General Limiting Distribution Theorems

- $\phi(y)=c+\Re\left(\sum_{\lambda_{n} \leq X} r_{n} e^{i \lambda_{n} y}\right)+\mathcal{E}(y, X)$
- Theorem If

$$
\sum_{T<\lambda_{n} \leq T+1} 1 \ll \log T
$$

and for $0 \leq \theta<3-\sqrt{3}$,

$$
\sum_{\lambda_{n} \leq T} \lambda_{n}^{2}\left|r_{n}\right|^{2} \ll T^{\theta}
$$

then $\phi(y)$ has a limiting distribution.

General Limiting Distribution Theorems

- $\phi(y)=c+\Re\left(\sum_{\lambda_{n} \leq X} r_{n} e^{i \lambda_{n} y}\right)+\mathcal{E}(y, X)$
- ν_{ϕ} is the limiting distribution in the previous theorems.

General Limiting Distribution Theorems

- $\phi(y)=c+\Re\left(\sum_{\lambda_{n} \leq x} r_{n} e^{i \lambda_{n} y}\right)+\mathcal{E}(y, X)$
- ν_{ϕ} is the limiting distribution in the previous theorems.
- $\mu_{\nu_{\phi}}=$ The mean of $\nu_{\phi}=c$.

General Limiting Distribution Theorems

- $\phi(y)=c+\Re\left(\sum_{\lambda_{n} \leq x} r_{n} e^{i \lambda_{n} y}\right)+\mathcal{E}(y, X)$
- ν_{ϕ} is the limiting distribution in the previous theorems.
- $\mu_{\nu_{\phi}}=$ The mean of $\nu_{\phi}=c$.
- $\sigma_{\nu_{\phi}}^{2}=$ The variance of $\nu_{\phi}=c^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left|r_{n}\right|^{2}$.

General Limiting Distribution Theorems

- $\phi(y)=c+\Re\left(\sum_{\lambda_{n} \leq X} r_{n} e^{i \lambda_{n} y}\right)+\mathcal{E}(y, X)$
- ν_{ϕ} is the limiting distribution in the previous theorems.

General Limiting Distribution Theorems

- $\phi(y)=c+\Re\left(\sum_{\lambda_{n} \leq X} r_{n} e^{i \lambda_{n} y}\right)+\mathcal{E}(y, X)$
- ν_{ϕ} is the limiting distribution in the previous theorems.
- Theorem If $\left\{\lambda_{m}\right\}$ is linearly independent over \mathbb{Q} then

$$
\hat{\nu}(\xi)=\int_{\mathbb{R}} e^{-i \xi t} d \nu(t)=e^{-i c \xi} \prod_{m=1}^{\infty} J_{0}\left(\left|r_{m}\right| \xi\right)
$$

where

$$
J_{0}(z)=\int_{0}^{1} e^{-i z \cos (2 \pi t)} d t
$$

Applications

Applications

- E an elliptic curve over \mathbb{Q}.

Applications

- E an elliptic curve over \mathbb{Q}.
- $L(s, E)$ be the (normalized) L-function of E.

Applications

- E an elliptic curve over \mathbb{Q}.
- $L(s, E)$ be the (normalized) L-function of E.

$$
\lambda_{E}(p)=\frac{p+1-N_{E}(p)}{\sqrt{p}} .
$$

Applications

- E an elliptic curve over \mathbb{Q}.
- $L(s, E)$ be the (normalized) L-function of E.

$$
\lambda_{E}(p)=\frac{p+1-N_{E}(p)}{\sqrt{p}} .
$$

- For $\Re(s)>1$ we have

$$
-\frac{L^{\prime}(s, E)}{L(s, E)}=\sum_{p^{k}}^{\infty} \frac{(\log p) \lambda_{E}\left(p^{k}\right)}{p^{k s}} .
$$

Applications

Applications

- Under the assumption of the GRH for $L(s, E)$ we have

$$
\begin{aligned}
e^{-y / 2} \sum_{p^{k} \leq e^{y}}(\log p) \lambda_{E}\left(p^{k}\right)= & -2 \operatorname{ord}_{s=1 / 2} L(s, E) \\
& +\Re\left(\sum_{0<\gamma \leq T} \frac{-2 e^{i \gamma y}}{\rho}\right) \\
& +\mathcal{E}(y, T)
\end{aligned}
$$

Applications

Applications

- We have

$$
\sum_{T<\gamma<T+1} 1 \ll \log T
$$

and

$$
\sum_{\gamma \leq T} \frac{\gamma^{2}}{|\rho|^{2}} \ll T \log T
$$

Applications

- We have

$$
\sum_{T<\gamma<T+1} 1 \ll \log T
$$

and

$$
\sum_{\gamma \leq T} \frac{\gamma^{2}}{|\rho|^{2}} \ll T \log T
$$

- Under the assumption of the GRH for $L(s, E)$,

$$
e^{-y / 2} \sum_{p^{k} \leq e^{y}}(\log p) \lambda_{E}\left(p^{k}\right)
$$

has a limiting distribution ν.

Applications

- $\mu_{\nu}=$ The mean of $\nu=-2 \operatorname{ord}_{s=1 / 2} L(s, E)$.

Applications

- $\mu_{\nu}=$ The mean of $\nu=-2 \operatorname{ord}_{s=1 / 2} L(s, E)$.
- Under the assumption of LI we have

$$
\hat{\nu}(\xi)=e^{-i c \xi} \prod_{\gamma>0} J_{0}\left(\frac{2 \xi}{\sqrt{\frac{1}{4}+\gamma^{2}}}\right) .
$$

Applications

- $\mu_{\nu}=$ The mean of $\nu=-2 \operatorname{ord}_{s=1 / 2} L(s, E)$.
- Under the assumption of LI we have

$$
\hat{\nu}(\xi)=e^{-i c \xi} \prod_{\gamma>0} J_{0}\left(\frac{2 \xi}{\sqrt{\frac{1}{4}+\gamma^{2}}}\right) .
$$

- ν is symmetric about its mean, so under BSD if $\operatorname{rank}_{\mathbb{Q}}(E)>0$ then

$$
\delta\left(\left\{x \geq 2 ; \quad \sum_{p^{k} \leq x}(\log p) \lambda_{E}\left(p^{k}\right)<0\right\}\right)>\frac{1}{2} .
$$

Applications

- $M(x)=\sum_{n \leq x} \mu(n)$.

Applications

- $M(x)=\sum_{n \leq x} \mu(n)$.
- $P_{M}=\#\{x>0 ;|M(x)| \leq \sqrt{x}\}$.

Applications

- $M(x)=\sum_{n \leq x} \mu(n)$.
- $P_{M}=\#\{x>0 ;|M(x)| \leq \sqrt{x}\}$.
- Under the assumptions of RH, LI, and $J_{-1}(T) \ll T, \delta(P)$ exists and

$$
\delta(P) \geq 1-2 \exp \left(-\frac{1}{2 \sigma_{\nu_{M}}^{2}}\right)
$$

Applications

$$
\sigma_{\nu_{M}}^{2}=2 \sum_{\gamma>0} \frac{1}{\left(1 / 4+\gamma^{2}\right)\left|\zeta^{\prime}(1 / 2+i \gamma)\right|^{2}}
$$

Applications

$$
\begin{gathered}
\sigma_{\nu_{M}}^{2}=2 \sum_{\gamma>0} \frac{1}{\left(1 / 4+\gamma^{2}\right)\left|\zeta^{\prime}(1 / 2+i \gamma)\right|^{2}} \\
\delta(P) \geq 1-2 \exp \left(-\frac{1}{2 \sigma_{\nu_{M}}^{2}}\right)
\end{gathered}
$$

Applications

$$
\begin{gathered}
\sigma_{\nu_{M}}^{2}=2 \sum_{\gamma>0} \frac{1}{\left(1 / 4+\gamma^{2}\right)\left|\zeta^{\prime}(1 / 2+i \gamma)\right|^{2}} . \\
\delta(P) \geq 1-2 \exp \left(-\frac{1}{2 \sigma_{\nu_{M}}^{2}}\right) .
\end{gathered}
$$

- Yang Li (2011) Based on computations for $\gamma \leq 500,000$ we have

$$
\delta\left(P_{M}\right) \geq 0.99999993366 \cdots
$$

Applications

$$
\begin{gathered}
\sigma_{\nu_{M}}^{2}=2 \sum_{\gamma>0} \frac{1}{\left(1 / 4+\gamma^{2}\right)\left|\zeta^{\prime}(1 / 2+i \gamma)\right|^{2}} . \\
\delta(P) \geq 1-2 \exp \left(-\frac{1}{2 \sigma_{\nu_{M}}^{2}}\right) .
\end{gathered}
$$

- Yang Li (2011) Based on computations for $\gamma \leq 500,000$ we have

$$
\delta\left(P_{M}\right) \geq 0.99999993366 \cdots
$$

So

$$
\delta\left(P_{M}\right) \geq \delta\left(P_{\pi}\right)
$$

