Coherent structure identification using flow map
composition and spectral interpolation

Clancy Rowley
Joint work with S. Brunton, M. Luchtenburg, and M. Williams

Princeton University

BIRS: Uncovering Transport Barriers in Geophysical Flows
September 23, 2013

Outline

Two simple ideas

Computing FTLE fields

Uncertainty quantification and Perron-Frobenius

Approximating Koopman eigenfunctions using DMD

Acknowledgments

» Steve Brunton (U. Washington)

> Finite-time Lyapunov exponents

» Mark Luchtenburg (Princeton)

» Uncertainty quantification
> Perron-Frobenius

» Matt Williams (Princeton)
» Koopman eigenfunctions via Dynamic Mode Decomposition

Outline

Two simple ideas

Goal

» Efficient, accurate representation of nonlinear maps

» Example: double gyre

t=10

PP <
NNVt ” -\

W\

|

L e SRR

Complex deformation

Simple deformation

Two simple ideas

» Flow map composition
> Represent a long-time flow map as a composition of short-time flow
maps
» Each short-time flow map should be relatively easy to describe

Two simple ideas

» Flow map composition
> Represent a long-time flow map as a composition of short-time flow
maps
» Each short-time flow map should be relatively easy to describe

» Spectral interpolation
» Expand each short-time flow map in terms of orthogonal functions
(e.g., Legendre polynomials)
> Can determine coefficients from values at collocation points

Flow map composition: example

Consider the logistic map
X1 = F(xx)

f(x) =4x(1 — x)

Flow map composition: example

Consider the logistic map
X1 = F(xx)

f(x)
f2(x) =

x(1 - x)
6x(1 — x)(1 — 2x)?

I
=N

Flow map composition: example

Consider the logistic map
X1 = F(xx)

f(x) =4x(1 — x)
f2(x) = 16x(1 — x)(1 — 2x)?
3(x) = —2"x8 +...

I
=N

Flow map composition: example

Consider the logistic map

Flow map composition: example

Consider the logistic map
X1 = F(xx)

fzii; Z 1221_—)(1)(1 —2x)? 1 “""‘Ya"‘ ‘?{"“
. |
il

» Degree of polynomial increases exponentially in the number of
compositions

» Leads to complex long-time map, though short-time map is simple

Representing short-time flow maps

» Short-time flow maps are reasonably “well behaved"
» Represent them with relatively low-order polynomials
» Use orthogonal polynomials
> Expand flow map ¢ in terms of orthogonal polynomials ¢; (e.g.,
Legendre polynomials):

n

$(x) =D ati(x) a5 = ()

j=1

» Can compute coefficients aj by evaluating ¢ at collocation points,

using Gauss quadrature
» Simply propagate the collocation points through the flow map to

obtain the corresponding coefficients

Representing short-time flow maps

» Short-time flow maps are reasonably “well behaved"
» Represent them with relatively low-order polynomials
» Use orthogonal polynomials
> Expand flow map ¢ in terms of orthogonal polynomials ¢; (e.g.,
Legendre polynomials):

n

$(x) =D ati(x) a5 = ()

j=1

» Can compute coefficients aj by evaluating ¢ at collocation points,

using Gauss quadrature
» Simply propagate the collocation points through the flow map to

obtain the corresponding coefficients

Xj
o0—o0— X

ty —o——o

Representing short-time flow maps

» Short-time flow maps are reasonably “well behaved"
» Represent them with relatively low-order polynomials
» Use orthogonal polynomials
> Expand flow map ¢ in terms of orthogonal polynomials ¢; (e.g.,
Legendre polynomials):

n

$(x) =D ati(x) a5 = ()

j=1

» Can compute coefficients aj by evaluating ¢ at collocation points,

using Gauss quadrature
» Simply propagate the collocation points through the flow map to

obtain the corresponding coefficients

ty) X
TV 7T
tkt1 X
o(xj)

Why flow map composition and spectral interpolation?

» Accurate long-time behavior

Why flow map composition and spectral interpolation?

» Accurate long-time behavior

» Minimal storage needed to represent flow map

» Degree of the flow map polynomial grows exponentially with number
of compositions: if short-time flow map is approximated by a
degree-p polynomial, after k compositions the degree is p

» For a non-autonomous system, number of parameters grows linearly
with number of compositions.

» For an autonomous system, number of parameters is constant,
independent of number of compositions.

Why flow map composition and spectral interpolation?

» Accurate long-time behavior

» Minimal storage needed to represent flow map

» Degree of the flow map polynomial grows exponentially with number
of compositions: if short-time flow map is approximated by a
degree-p polynomial, after k compositions the degree is p

» For a non-autonomous system, number of parameters grows linearly
with number of compositions.

» For an autonomous system, number of parameters is constant,
independent of number of compositions.

» Spectral interpolation is accurate and efficient

» Typically p + 1 collocation points for a degree-p approximation

Outline

Computing FTLE fields

Spectral interpolation for FTLE of double gyre

Gauss- Lobatto coIIocatlon points

¢ O o o o

09t
0sf
07t
06

0sp o o o o o o o

04
03t
025
01t

o

Short-time flow map (At =0.1)

512 x 256 uniform grid (exact)

10 x 5 collocation points (At =0.1)

Error comparison

#of Y Collocation Points

» Measure errors as a function of number of flow map compositions
and number of collocation points

» Compare spectral interpolation with cubic spline and linear
interpolation

> Spectral is the most accurate, and uses the least memory
» Cubic spline faster; a good alternative
» Linear interpolation is fast, but poor accuracy

Spectral Cubic Linear
Log of L, Error Log of L, Error Log of L, Error
25 0 0 50
-1 45 , 45
40 - 40
® N £ S
. s W H
§ S 30
- et H
* 82 3 $ 25
- 3 8
S 20 2
10 - 3 -4 s
b) 10
" 10 .
5 s 5
-9 20 40 60 8 100 120 1

20 40 60 80 100 120 140 #0f Intermediate Flow Maps
#of Intermediate Flow Maps

0 100 120 140
uv \mermemam Flow Maps

16
-18
-2

Outline

Uncertainty quantification and Perron-Frobenius

Simple ODE example
x=x(1-x%), xe[-1,1] -1 0 1

» Want flow map ¢; for large times.
» Approximate in terms of Legendre polynomials ;(x):

P
Or = Z ai(t)i(x)
i=0

» Same as polynomial chaos expansion, for an uncertain initial
condition uniformly distributed in [—1,1].

Simple ODE example
x=x(1-x%), xe[-1,1] -1 0 1

» Want flow map ¢; for large times.
» Approximate in terms of Legendre polynomials ;(x):

Or = Z ai(t)i(x)

P
i=0

» Same as polynomial chaos expansion, for an uncertain initial
condition uniformly distributed in [—1,1].

15 15
—exact —exact
—app., P =20 —app., P =20
1 1
0.5 T=3 05 T=6
= 0 S 0
< <
-05 -0.5
-1 -1
18 -05 0 05 18 -05 0 05

Flow map composition: ODE example

» Compare with results for flow map composition
» Degree-3 polynomial for ¢ar, At = 0.2

—exact —exact
---app.,, P =3 ---app., P =3 (
0.5 T 0.5 T
= 0 & 0
< <
-05 -0.5
g -05 0 05 1 B -05 0 05

» Greatly improved accuracy, with spectral convergence

Flow map composition: ODE example

» Compare with results for flow map composition

» Degree-3 polynomial for ¢ar, At = 0.2

—exact
---app.,, P =3
0.5
_ T=3
2
P 0
>
-05
g -05 0 05

o' (w)

—e -t
ey |
0.5 T
0
-0.5
R 05 0 05
x

» Greatly improved accuracy, with spectral convergence

Standard PC: poor convergence

2

10°

L2 Error
=
o>-

30

40

Composition: Spectral convergence

10
10° |
K
= K
2 o,
H10°® °.
« cc o
= o o
10*]0 cn
-15
10 10 20 30

Propagating a PDF in the double gyre

» Propagation of a probability density function using flow map
composition

» Double gyre parameters: A =10.25, ¢ = 0.25, w =27
> Legendre polynomial basis with 11 x 6 collocation points

> 0.5

Almost invariant sets: low resolution

» Calculate eigenvectors of the approximation of Perron-Frobenius
» 22 x 12 collocation points
> Double gyre: A=0.25, ¢ =0.25, w =27

» Eigenvectors corresponding to near-unity eigenvalues reveal
almost-invariant sets

Eigenvector 2

Eigenvector 3

0.5

Almost invariant sets: high resolution

» Same calculation at higher resolution reveals islands
> 43 x 22 collocation points

Eigenvector 2

Eigenvector 3

Almost invariant sets: high resolution

» Same calculation at higher resolution reveals islands
> 43 x 22 collocation points

Eigenvector 2

Eigenvector 3

0 1 2 0 1 2

Outline

Approximating Koopman eigenfunctions using DMD

Approximating a few Koopman eigenfunctions using
Dynamic Mode Decomposition

Given a discrete-time dynamical system X,.1 = F(X,) with X, € RN, the
action of the Koopman operator K on ¢ : RN — C is

(K:w)()?n) = w(F()_{n)) = "/)()_(‘nJrl)'

Approximating a few Koopman eigenfunctions using
Dynamic Mode Decomposition

Given a discrete-time dynamical system X,.1 = F(X,) with X, € RN, the
action of the Koopman operator K on ¢ : RN — C is

(K:w)()?n) = w(F()_{n)) = "/)()_(‘nJrl)'

Our goal is to approximate a few Koopman eigenfunctions, ¢(X), using
two sets of data,

X=[F % ... X, Y= % ... yul,

where y, = F(X,).

Approximating a few Koopman eigenfunctions using
Dynamic Mode Decomposition

Given a discrete-time dynamical system X,.1 = F(X,) with X, € RN, the
action of the Koopman operator K on ¢ : RN — C is

(K:w)()?n) = w(F()_{n)) = "/)()_(‘nJrl)'

Our goal is to approximate a few Koopman eigenfunctions, ¢(X), using
two sets of data,

X=[F % ... X, Y= % ... yul,

where y, = F(X,).
Using Dynamic Mode Decomposition, the approximations of the
Koopman modes and eigenvalues are obtained by solving the eigenvalue
problem:

AV =\,

with A = YXT, where the rank of A is the smaller of N or M.

Extending Dynamic Mode Decomposition

Instead of operating on raw data, we define M observables,
Ym(X) : RN — C, and form the transformed data matrices

Yi(¥) oo Yi(Xm) U1(1) o Y(Ym)
O I R T PO 22 R T B

Ym(x) o Pm(Xm) Ym() oo Pm(Ym)
and compute the left-eigenvectors of
W (W, W) = Aw*,

For a given left-eigenvector, the approximation of the Koopman
eigenfunction is

B%) = Do w (%), (1

where w;" is the complex conjugate of the j-th element of w. Note: using

regular DMD 1)(X) = ux, where u; is a basis vector for the image of X.

Computing Koopman eigenfunctions: a linear example

DMD Data
.
- 0.8 —0.05 _ .
> Xni1 =1 0.7 | X with 0.8
A=0.38,0.7.
» Data are a time series of 11 . o0
snapshots 04
> Basis functions (observables)
i 0.2
are ¥ j(x,y) = x'y’ for
i,j=0,1,2,3.
J % o8 o6 04 02

Computed eigenvalues

;
o 0_8, . > Desired eigenfunctions:
£ .t ij(x,y) = (2x = y)'y’ for
S o6l . i,jeN
0.4 e » X\ = (0.8)/(0.7Y
2 4 6 8 10

Comparing the eigenfunctions: a linear example

DMD Eigenfunctions Koopman Eigenfunctions
7=0.800000 7=0.700000 7=0,800000 }=0.700000
1 1
;
X 05 05 05
0 0 0
|
0. Y -05
-1
A - R
1 0 1 R 0 1
X x x
7= 0.640000 1= 0.640000 1=0.560000
1 1
r 15
05 . s 05 0
> 0 > 0 ! 0.5
L, -0,
05 05 05 .
4 15 4 ;
-1 0 1 -1 0 1 -1 0 1
X x x
1=0.512000 1=0.512000 1 =0.490000
1 7 1 1
2
05 1 05 ; 08
‘06
> 0 10 > 0 0
04
05 4 05 o 0.2
-2
1 -1 o
-1 0 1 -1 0 1 -1 1
X x x

A nonlinear example: the Stuart-Landau equation

Im(%)

98 = agA — a1|A]2A, with DMD Data
AcC ap=1a1=1+i 4r
Eight time series (At = 0.1) 2|

with 29 snapshots each

. of
Choose Y n(r,0) = rme?
with A = rexp(if) -2f
m=—4,...,3 and 4
n=—16,...,16. -4 -2 0 2 4
Computed eigenvalues Computed eigenfunction (A = —2)
5 x 10°
T
x DMD_ |, * * 12 - - -DMD
* * * =
* * * g
* * * 5
* * * 10
M I I /(".-----l
* * * »
% 5 4 3 2 4 0 107, 05 1 1.5 2

Re(}) r

0S. Bagheri. Koopman Mode Decomposition of the Cylinder Wake, JFM 726, 2013.

Computing isochrons in the Stuart-Landau equation

Analytic Z¢g 1

Im(A)

-1 -0.5 0.5 1 1.5

0
Re(A)

» Koopman eigenfunctions:

mn= (77 —1)"exp (in (0 +1In (7))

Computed Zgg 1

A5 1 05 0 05 1 1.5
Re(A)

> Plot of the level sets of Z¢p 1

» Good agreement with the
analytical results

OA. Mauroy, I. Mezic, J. Moehlis. Isostables, isochrons, and Koopman spectrum for
the action-angle representation of stable fixed point dynamics.

arXiv:1302.0032 [math.DS]

Summary

» Efficient representation of long-time flow maps

» Compose short-time flow maps

» Represent short-time flow maps by spectral interpolation
» Examples

» Computing FTLE fields

> Propagating probability density functions

» Computing eigenfunctions of Perron-Frobenius

» Approximate Koopman eigenfunctions using Dynamic Mode
Decomposition (DMD)
» Sample several observables from different points in phase space
> Reconstructs Koopman eigenfunctions for both linear and nonlinear
problems

	Two simple ideas
	Computing FTLE fields
	Uncertainty quantification and Perron-Frobenius
	Approximating Koopman eigenfunctions using DMD

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	anm0:

