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Two simple ideas



Goal

» Efficient, accurate representation of nonlinear maps

» Example: double gyre
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Two simple ideas

» Flow map composition
> Represent a long-time flow map as a composition of short-time flow
maps
» Each short-time flow map should be relatively easy to describe



Two simple ideas

» Flow map composition
> Represent a long-time flow map as a composition of short-time flow
maps
» Each short-time flow map should be relatively easy to describe

» Spectral interpolation
» Expand each short-time flow map in terms of orthogonal functions
(e.g., Legendre polynomials)
> Can determine coefficients from values at collocation points



Flow map composition: example

Consider the logistic map
X1 = F(xx)

f(x) =4x(1 — x)
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Consider the logistic map




Flow map composition: example

Consider the logistic map
X1 = F(xx)
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» Degree of polynomial increases exponentially in the number of
compositions

» Leads to complex long-time map, though short-time map is simple



Representing short-time flow maps

» Short-time flow maps are reasonably “well behaved"
» Represent them with relatively low-order polynomials
» Use orthogonal polynomials
> Expand flow map ¢ in terms of orthogonal polynomials ¢; (e.g.,
Legendre polynomials):

n

$(x) =D ati(x) a5 = ()

j=1

» Can compute coefficients aj by evaluating ¢ at collocation points,

using Gauss quadrature
» Simply propagate the collocation points through the flow map to

obtain the corresponding coefficients



Representing short-time flow maps

» Short-time flow maps are reasonably “well behaved"
» Represent them with relatively low-order polynomials
» Use orthogonal polynomials
> Expand flow map ¢ in terms of orthogonal polynomials ¢; (e.g.,
Legendre polynomials):

n

$(x) =D ati(x) a5 = ()

j=1

» Can compute coefficients aj by evaluating ¢ at collocation points,

using Gauss quadrature
» Simply propagate the collocation points through the flow map to

obtain the corresponding coefficients

Xj
o0—o0— X

ty —o——o



Representing short-time flow maps

» Short-time flow maps are reasonably “well behaved"
» Represent them with relatively low-order polynomials
» Use orthogonal polynomials
> Expand flow map ¢ in terms of orthogonal polynomials ¢; (e.g.,
Legendre polynomials):
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Why flow map composition and spectral interpolation?

» Accurate long-time behavior



Why flow map composition and spectral interpolation?

» Accurate long-time behavior

» Minimal storage needed to represent flow map

» Degree of the flow map polynomial grows exponentially with number
of compositions: if short-time flow map is approximated by a
degree-p polynomial, after k compositions the degree is p

» For a non-autonomous system, number of parameters grows linearly
with number of compositions.

» For an autonomous system, number of parameters is constant,
independent of number of compositions.



Why flow map composition and spectral interpolation?

» Accurate long-time behavior

» Minimal storage needed to represent flow map

» Degree of the flow map polynomial grows exponentially with number
of compositions: if short-time flow map is approximated by a
degree-p polynomial, after k compositions the degree is p

» For a non-autonomous system, number of parameters grows linearly
with number of compositions.

» For an autonomous system, number of parameters is constant,
independent of number of compositions.

» Spectral interpolation is accurate and efficient

» Typically p + 1 collocation points for a degree-p approximation
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Computing FTLE fields



Spectral interpolation for FTLE of double gyre

Gauss- Lobatto coIIocatlon points
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Short-time flow map (At =0.1)

512 x 256 uniform grid (exact)

10 x 5 collocation points (At =0.1)




Error comparison

#of Y Collocation Points

» Measure errors as a function of number of flow map compositions
and number of collocation points

» Compare spectral interpolation with cubic spline and linear
interpolation

> Spectral is the most accurate, and uses the least memory
» Cubic spline faster; a good alternative
» Linear interpolation is fast, but poor accuracy
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Uncertainty quantification and Perron-Frobenius



Simple ODE example
x=x(1-x%), xe[-1,1] -1 0 1

» Want flow map ¢; for large times.
» Approximate in terms of Legendre polynomials ;(x):

P
Or = Z ai(t)i(x)
i=0

» Same as polynomial chaos expansion, for an uncertain initial
condition uniformly distributed in [—1,1].



Simple ODE example
x=x(1-x%), xe[-1,1] -1 0 1

» Want flow map ¢; for large times.
» Approximate in terms of Legendre polynomials ;(x):

Or = Z ai(t)i(x)

P
i=0

» Same as polynomial chaos expansion, for an uncertain initial
condition uniformly distributed in [—1,1].
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Flow map composition: ODE example

» Compare with results for flow map composition
» Degree-3 polynomial for ¢ar, At = 0.2
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» Greatly improved accuracy, with spectral convergence



Flow map composition: ODE example

» Compare with results for flow map composition

» Degree-3 polynomial for ¢ar, At = 0.2
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» Greatly improved accuracy, with spectral convergence
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Propagating a PDF in the double gyre

» Propagation of a probability density function using flow map
composition

» Double gyre parameters: A =10.25, ¢ = 0.25, w =27
> Legendre polynomial basis with 11 x 6 collocation points

> 0.5




Almost invariant sets: low resolution

» Calculate eigenvectors of the approximation of Perron-Frobenius
» 22 x 12 collocation points
> Double gyre: A=0.25, ¢ =0.25, w =27

» Eigenvectors corresponding to near-unity eigenvalues reveal
almost-invariant sets

Eigenvector 2

Eigenvector 3

0.5




Almost invariant sets: high resolution

» Same calculation at higher resolution reveals islands
> 43 x 22 collocation points

Eigenvector 2

Eigenvector 3




Almost invariant sets: high resolution

» Same calculation at higher resolution reveals islands
> 43 x 22 collocation points

Eigenvector 2

Eigenvector 3
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Approximating Koopman eigenfunctions using DMD



Approximating a few Koopman eigenfunctions using
Dynamic Mode Decomposition

Given a discrete-time dynamical system X,.1 = F(X,) with X, € RN, the
action of the Koopman operator K on ¢ : RN — C is

(K:w)()?n) = w(F()_{n)) = "/)()_(‘nJrl)'
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Approximating a few Koopman eigenfunctions using
Dynamic Mode Decomposition

Given a discrete-time dynamical system X,.1 = F(X,) with X, € RN, the
action of the Koopman operator K on ¢ : RN — C is

(K:w)()?n) = w(F()_{n)) = "/)()_(‘nJrl)'

Our goal is to approximate a few Koopman eigenfunctions, ¢(X), using
two sets of data,

X=[F % ... X, Y= % ... yul,

where y, = F(X,).
Using Dynamic Mode Decomposition, the approximations of the
Koopman modes and eigenvalues are obtained by solving the eigenvalue
problem:

AV =\,

with A = YXT, where the rank of A is the smaller of N or M.



Extending Dynamic Mode Decomposition

Instead of operating on raw data, we define M observables,
Ym(X) : RN — C, and form the transformed data matrices

Yi(¥) oo Yi(Xm) U1(1) o Y(Ym)
O I R T PO 22 R T B

Ym(x) o Pm(Xm) Ym() oo Pm(Ym)
and compute the left-eigenvectors of
W (W, W) = Aw*,

For a given left-eigenvector, the approximation of the Koopman
eigenfunction is

B%) = Do w (%), (1

where w;" is the complex conjugate of the j-th element of w. Note: using

regular DMD 1)(X) = ux, where u; is a basis vector for the image of X.



Computing Koopman eigenfunctions: a linear example

DMD Data
.
- 0.8 —0.05 _ .
> Xni1 =1 0.7 | X with 0.8
A=0.38,0.7.
» Data are a time series of 11 . o0
snapshots 04
> Basis functions (observables)
i 0.2
are ¥ j(x,y) = x'y’ for
i,j=0,1,2,3.
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Comparing the eigenfunctions: a linear example

DMD Eigenfunctions Koopman Eigenfunctions
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A nonlinear example: the Stuart-Landau equation

Im(%)

98 = agA — a1|A]2A, with DMD Data
AcC ap=1a1=1+i 4r
Eight time series (At = 0.1) 2|

with 29 snapshots each

. of
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0S. Bagheri. Koopman Mode Decomposition of the Cylinder Wake, JFM 726, 2013.



Computing isochrons in the Stuart-Landau equation

Analytic Z¢g 1

Im(A)

-1 -0.5 0.5 1 1.5

0
Re(A)

» Koopman eigenfunctions:

mn= (77 —1)"exp (in (0 +1In (7))

Computed Zgg 1

A5 1 05 0 05 1 1.5
Re(A)

> Plot of the level sets of Z¢p 1

» Good agreement with the
analytical results

OA. Mauroy, I. Mezic, J. Moehlis. Isostables, isochrons, and Koopman spectrum for
the action-angle representation of stable fixed point dynamics.

arXiv:1302.0032 [math.DS]



Summary

» Efficient representation of long-time flow maps

» Compose short-time flow maps

» Represent short-time flow maps by spectral interpolation
» Examples

» Computing FTLE fields

> Propagating probability density functions

» Computing eigenfunctions of Perron-Frobenius

» Approximate Koopman eigenfunctions using Dynamic Mode
Decomposition (DMD)
» Sample several observables from different points in phase space
> Reconstructs Koopman eigenfunctions for both linear and nonlinear
problems
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