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INTRODUCTION

I Reduced models play a key role in the study of coherent
structures and transport.

I The basic idea of these models is to capture some of the
essential aspect of the dynamics in a mathematically tractable
setting.

I These models provide a useful laboratory to test dynamical
systems methods and diagnostics.

I Early studies of chaotic advection were based on pretty
simple, yes quite linsightful kinematic models. For example,
periodically perturbed, one-degrees-of-freedom Hamiltonian
dynamical systems.

I The limitations of simple kinematic models are well-known,
e.g., flows in nature and in laboratory experiments are
typically not time periodic.

I The incorporation of ad hoc, time dependences is to some
degree straightforward (although understanding the
consequences of this is highly non-trivial !).



INTRODUCTION

I However, arbitrary, mathematically “sensible”, ad hoc
spatio-temporal dependences might be physically questionable
(e.g., violation of potential vorticity conservation).

I At the heart of this issue is the construction of dynamically
consistent transport models.That is, models that respect to
some controlled level of approximation the underlying physics.

I Our goal is to develop dynamically consistent models of
intermediate complexity between the exact, but “difficult” to
study primitive equation models, and the highly approximated
but “easy” to understand kinematic models.

I An early example of this approach is the linearly dynamically
consistent “Bickley jet model” [del-Castillo-Negrete &
Morrison, 1993].

I The goal of this talk is to preset a class of weakly nonlinear
dynamically consistent mean-field models.



SELF-CONSISTENT TRANSPORT

• Dynamical consistency is closely related to self-consistent
transport.

• (Passive(transport:(transport(of((a(scalar((or(vector)(field(
that(does(not(modify(the(prescribed(advec3on(velocity(field(

Passive(VS(Self1consistent(transport(

€ 

V independent of   C

€ 

∂tC +∇⋅ VC( ) = D∇2C + S

• (Self1consistent(transport:(transport(of((an(scalar((or(vector)(field(
that(ac3vely(modifies(the(prescribed(advec3on(velocity(field(

€ 

V = Ω C[ ]

Self1consistent(coupling(

Advec3on1diffusion(equa3on(

• This self-consistent coupling is what makes the
advection-diffusion model above dynamically consistent.



SELF-CONSISTENT TRANSPORT

Vor3city(equa3on:(

€ 

(∂t +V ⋅ ∇) ζ = ν ∇2ζ

Streamfunc3on(
formula3on:(

Example:(Two1dimensional(Hydrodynamics(

ζ = ˆ z ⋅∇ × V

Self1consistent((
vor3city1velocity(coupling:(

ψ (x,y,t) = d " x 
−∞

∞

∫ d " y G(x,y; " x , " y ) ζ( " x , " y , t)
−∞

∞

∫

∇⋅V = 0
V = ˆ z × ∇ψ

€ 

∂t ζ + ψ ,ζ{ } = ν ∇2ζ

Self1consistent(transport(problem(

€ 

V ⋅ ∇ ζ = ψ ,ζ{ }



SELF-CONSISTENT TRANSPORT

Example:(One1dimensional(electron(dynamics(

∇2φ = f du − ρi∫ (Poisson(
equa3on(

φ(x, t) = d " x G(x; " x ) d " u ∫ f ( " x , " u ,t)∫

H =
u2

2
− φ(x, t)

€ 

∂t f + u ∂x f +∂xφ ∂u f = ν∂u
2 f

€ 

f (x,v,t)

€ 

∂t f + H , f{ } = ν ∇2 f

Single1par3cle(electron(
distribu3on(func3on:(

Advec3on1diffusion(equa3on((
in(phase(space(

(Vlasov(
equa3on(

Self1consistent(coupling(

Self1consistent(transport(problem(



SELF-CONSISTENT CHAOTIC TRANSPORT

φ = cos(k1x −ω1 t)

φ = cos(k1x −ω1 t) + cos(k2x − ω2 t)

Chao3c(mo3on(in(a(two1waves(field(

Integrable(mo3on(in(a(one1wave(field(

Chao3c(transport(

How(does(this(well1understood(picture(change(when(we((
take(into(account(self1consistency?(

R.T. Pierrehumbert, Geophys. Astrophys. Fluid. Dyn., 58, 285 (1991).
D. del-Castillo-Negrete and P.J. Morrison: Phys. Fluids A, 5, 948 (1993).
J.L. Tennyson, J.D. Meiss, and P.J. Morrison: Phys. D, 71,1, (1994). D.
del-Castillo-Negrete: CHAOS, 10, 75, (2000).

J.M. Finn, and D. del-Castillo-Negrete: CHAOS, 11, 4, (2001).



A HIERARCHY OF DYNAMICALLY CONSISTENT MODELSHierarchy(of(self1consistent(transport(models(

€ 

∂tC + V⋅ ∇ C = D∇2C

€ 

ψ(x,z,t) = d # x 
−∞

∞

∫ d # z G(x,z; # x , # z ) C( # x , # z ,t)
−∞

∞

∫

€ 

V = ˆ e z × ∇ψ

€ 

Φ(x, t) = d # x K(x; # x ) dz'∫ C( # x ,z',t)∫

€ 

V = z ˆ e x − ∂xΦ ˆ e z

€ 

Φ(x, t) = a(t) eix + a*(t) e− ix

€ 

da
dt

= iU a + i dx dz∫∫ e−ix C(x,z,t)

21D(+1((x,z,t)(
Euler(type(
Self1consistency(

11D(+1((z,t)(
Vlasov(type((
Self1consistency(

01D(+1((t)(
Single(wave(model((
Self1consistency(

D.(del1Cas3llo1Negrete(CHAOS,(10,((1),(75188,((2000).(

• D. del-Castillo-Negrete: CHAOS, 10, 75, (2000).



VLASOV-POISSON REDUCTION OF 2D EULER EQUATION

One1dimensional(electron(dynamics(and(
two1dimensional(vortex(dynamics(

ψ (x,y,t) = d " x 
−∞

∞

∫ d " y G(x,y; " x , " y ) ζ( " x , " y , t)
−∞

∞

∫

€ 

∂t ζ + ψ ,ζ{ } = ν ∇2ζ

φ(x, t) = d " x G(x; " x ) d " u ∫ f ( " x , " u ,t)∫

€ 

∂t f + H , f{ } = ν ∇2 f

21D(vor3city(dynamics((“harder”(problem)(

11D(electron(dynamics((“simpler”(problem)(

• As(a(first(step:(Can(we(approximate(the(21D(vortex(dynamics((
Green’s(func3on(by(a(11D(Green’s(func3on((like(the(one(in(the((
electron(dynamics)?(

• We(want(to(construct(a(tractable(reduced(model(of(self1consistent((
transport((that((under(some(condi3ons)(applies(to(vortex(dynamics((
and(electron(transport(



VLASOV-POISSON REDUCTION OF 2D EULER EQUATION

The(vor3city(“defect”(equa3on(

The(vor3city(defect(approxima3on(assumes(

a(localized(small(vor3city(perturba3on(

in(a(strong(constant(vor3city(background(

Under(these(assump3ons,(a(matched((

asympto3c(expansion(leads(to((the((

reduced(streamfunc3on(

€ 

ψ(x,y,t) → ψ = −
y 2

2
+ B(x,t)

€ 

∂t ζ + ψ ,ζ{ } = ν ∇2ζ

vor3city(“defect”(dynamics((“simpler”(problem)(

€ 

B(x, t) = d " x Γ(x; " x ) dy'∫ ζ( " x ,y',t)∫
Mathema3cally(similar(to(the(11D(electron1dynamics!(

N.J.(Balmforth,(D.(del1Cas3llo1Negrete,(and(W.R.(Young:!J.!Fluid!Mech.,(333,(1971230,((1997).(



SHEAR FLOW INSTABILITY AND
COHERENT STRUCTURE FORMATION

Numerical simulation of the reduced, vorticity defect equation

outer problem. For example, if as shown in Fig. 1 the outer
flow is bounded by two parallel planes at y!"1 where
!x"0!0, and #!y"0!"1 then

K#x $!%#1 ln!coth#%x/4$!, M#k $!
2k
tanh k . #13$

The vorticity defect model inherits all the conservation
laws of the Navier–Stokes equation. In particular, in the ab-
sence of dissipation, &!0, any function of the vorticity,
C('), is conserved as well as the total momentum P, and the
total energy E defined as

P()y'*, E()#y2#B $'* , #14$

where

) f *(
1
2% "

0

2%
dx"

#+

+

dy f , #15$

is the (x ,y) average.
As discussed in the introduction, when &!0 the La-

grangian trajectories of fluid elements are given by the
Hamiltonian system #5$. In the vorticity defect model this
analogy is particularly appealing because according to Eq.

#7$ vorticity mixing is reduced to the study of the particle
trajectories in the self-consistent mean-field potential
V(x ,t)(#B(x ,t).

To illustrate the dynamics of the vorticity defect model,
Eqs. #3$, #7$, and #10$ were integrated numerically with K
given in Eq. #13$, &!0, and the initial condition

'!
#2

1$y2
$0.1

1

1$y4
cos x . #16$

According to linear theory,7 the first term on the right hand
side of #16$ is a linearly unstable equilibrium and therefore
the small perturbation on the second term should grow. Fig-
ure 2 shows contour plots of the vorticity distribution at t
!2, 4, 5, and 6. In agreement with linear theory the pertur-
bation grows, and then, due to nonlinear effects, the shear
layer rolls-up into a vortex; this is the same scenario typi-
cally observed in numerical simulations of the Navier–
Stokes equation. Figure 3 shows the self-consistent potential
V(x ,t)!#B(x ,t) at t!0,1, . . . ,6. Consistent with Fig. 2,
the potential grows fast at first, and then saturates after the
roll-up of the shear layer. Because the numerical simulations

FIG. 2. Shear flow instability and vortex formation in the vorticity defect model. The four panels show the vorticity at t!2, t!4, t!5, and t!6, obtained
from the numerical integration of Eqs. #3$, #7$, and #12$ with M given by Eq. #13$, &!0, and the initial condition in #16$. The solid lines are equally spaced
vorticity contours, and the gray scale denotes the vorticity values with dark gray corresponding to '!#0.2 and white corresponding to '!#2.1. Figure 3
shows the streamfunction evolution in this case.

79Chaos, Vol. 10, No. 1, 2000 Chaotic transport in fluids and plasmas

• D. del-Castillo-Negrete: CHAOS, 10, 75, (2000).



SINGLE WAVE MODELThe(single1wave(model(

unstable! ne
ut
ra
l(

st
ab
ili
ty
(

β"

k 2 Marginal!
!stability(

The(weakly(nonlinear(dynamics(of((
perturba3ons(of(a((marginally(stable(
equilibrium(is(governed((by(the(single1
wave(model(for(which(

€ 

Φ(x, t) = a(t) eix + a*(t) e− ix

€ 

da
dt

= iU a + i dx dz∫∫ e−ix C(x,z,t)

O’Neil,(Winfrey(&Malmberg,((1971)(;del1Cas3llo1Negrete,(Phys.(Leg.(A,(241,!99,!(1998);(Phys.(
Plasmas,(5,(3886,((1998)(

€ 

Φ(x, t) = d # x K(x; # x ) dz'∫ C( # x ,z',t)∫€ 

∂tC + V⋅ ∇ C = D∇2C

€ 

V = z ˆ e x − ∂xΦ ˆ e z

€ 

C0 = C0( z, β)
Marginally(stable((
equilibrium(

• T.M. O’Neill, Winfrey, and Malmberg, Phys. Fluids., 14, 1204 (1971).

• D. del-Castillo-Negrete: Phys. of Plasmas, 5, (11), 3886-3900, (1998).



SHEAR FLOW INSTABILITY AND
COHERENT STRUCTURE FORMATION

Numerical simulation of the reduced, single wave model

da
dt !iUa"i!e!ix"#, $18%

where U is a constant and ! • # is the (x ,y) averaged defined
in $15%.

The single wave model inherits all the conservation laws
of the vorticity defect model and of the Navier–Stokes equa-
tion. In particular, the model conserves the vorticity invari-
ants C("), the momentum P, and the energy, E, where

P"!y"##!a!2, E"!&"##U!a!2. $19%

Writing

a"'$ t %exp"!i# t
d( )$(%$ , $20%

where ) is the instantaneous phase speed, and going back to
the Lagrangian description, we have that according to the
single wave model the trajectories of vorticity elements are
described by the Hamiltonian system in $5% with the effective
self-consistent Hamiltonian $streamfunction% &"!y2/2
#2'(t) cos*x!+(t),, where )"d+/dt . That is, a pendulum-

like Hamiltonian with a time dependent amplitude and phase
determined self-consistently from the mean vorticity distri-
bution.

To illustrate the dynamics of the single wave model,
Eqs. $3%, $17%, and $18% were integrated numerically with U
"!1, -"0.001, and initial conditions

"$x ,y ,t"0 %"e!y2/2 *1!0.2 y cos x, , a$0 %"0. $21%

The domain of the single wave model is the infinite strip
(0,2.)$(!/ ,/) in the (x ,y) plane. The boundary condi-
tions are periodic in x and "→0 as y→%/ . In the numerical
integration the y-integral on the right hand side of Eq. $18%
was truncated into a finite interval (!Y ,Y ) with Y large
enough so that the contributions from (%Y ,%/) become
negligible. According to linear theory,11–13 e!y2/2 is a lin-
early unstable equilibrium. As expected, the perturbation de-
stabilizes the flow and as shown in Fig. 5 the shear layer rolls
up into a vortex. As in the case of the vorticity defect model,
this is the usual scenario observed in numerical simulations
of the Navier–Stokes equation. As shown in Fig. 6 the mag-
nitude and instantaneous phase speed of a(t) grow fast ini-

FIG. 5. Shear flow instability and vortex formation in the single wave model. The four panels show the vorticity at t"2, t"4, t"10, and t"50, obtained
from the numerical integration of Eqs. $3%, $17%, and $18%, for the initial condition $21%. The vorticity contours $solid lines% are not equally spaced; to resolve
the stretching and folding of the vorticity at the separatrix the number of contours in this region has been increased. The gray scale denotes the vorticity values
with white corresponding to ""1 and dark gray corresponding to ""0. Figure 6 shows the streamfunction evolution in this case.

81Chaos, Vol. 10, No. 1, 2000 Chaotic transport in fluids and plasmas

• D. del-Castillo-Negrete: CHAOS, 10, 75, (2000).



SINGLE WAVE MODEL

€ 

Φ(x, t) = a(t) eix + a*(t) e− ix

€ 

da
dt

= iU a + i dx dy∫∫ e−ix C(x,y,t)

€ 

∂t C + y ∂xC +∂xΦ∂yC = 0
dyj
dt2

= −2ρ(t) sin x j −θ(t)[ ]

d
dt

ρ e-iθ( ) + iUρ e-iθ = i Γk e
−ix k

k
∑

d xj
dt

= yj j =1,2, ......N

par3cles(

Mean(field(

€ 

C = 2π Γj δ x − x j (t)[ ]
j=1

N

∑ δ y − y j (t)[ ]

The(single1wave(model(

• This(is(probably(the(simplest((
model(for(studying(self1consistent((
chao3c(transport(((

• The(SWM(is(a(very(general(model(describing(the(weakly(nonlinear(dynamics(
of(a(large(family(of(fluids(and(plasma(systems(near(marginal(stability(

Con3nuum(representa3on(

Discrete(point(vortex(representa3on(

• T.M. O’Neill, Winfrey, and Malmberg, Phys. Fluids., 14, 1204 (1971).

• D. del-Castillo-Negrete: Phys. of Plasmas, 5, (11), 3886-3900, (1998).



MEAN-FIELD HAMILTONIAN DYNAMICS

The single wave model is a N-degrees of freedom Hamiltonian
mean field model.Self1consistent(Hamiltonian(chaos(

€ 

d x j

dt
= y j

€ 

d y j

dt
= − 1+ε cosωt[ ]sin x j

External(field(

No(coupling(between(par3cles.(
Chaos(due(to(explicit(3me(dependence(
added(to(the(amplitude(

Mean1field(

dyj
dt2

= −2ρ(t) sin x j −θ(t)[ ]

d
dt

ρ e-iθ( ) + iUρ e-iθ = i Γk e
−ix k

k
∑

d xj
dt

= yj

Chaos(due(to(self1consistent(3me((
dependence(in(ρ(and(θ"

Single1Wave(Model(



DIPOLE COHERENT STRUCTURES IN
THE SINGLE WAVE MODEL

Numerical simulation of the finite-N single wave modelFrom(N=2(to(N>>1(

• del1Cas3llo1Negrete,(M.C.(Firpo,(CHAOS,(12,(496((2002).(
• D. del-Castillo-Negrete, M.C. Firpo: CHAOS, 12, 496-507, (2002).



DIPOLE COHERENT STRUCTURES IN
THE SINGLE WAVE MODEL

Numerical simulation of the continuum single wave model
From(N=2(to(N=infinity(

• D. del-Castillo-Negrete, M.C. Firpo: CHAOS, 12, 496-507, (2002).



DIPOLE COHERENT STRUCTURE:
MEAN FIELD EVOLUTION

€ 

da
dt

=
i
2π

dx du∫∫ e−ix C(x,u,t)



DIPOLE ROTATION AND AND SELF-CONSISTENT CHAOS



DIPOLE ROTATION AND AND SELF-CONSISTENT CHAOS

  
a( t) = ω

2

2
1− 2ε cosΩt + K[ ]

  x(t) =ω
3 ε sin Ωt + K[ ]

Par3cle(mean(field((
resonance(

! ! q (t) = 2 a(t) q

Stability(of(the(origin(

Pc =
5Γ 2

6
" 

# 
$ % 

& 

2 / 3

P > Pc P = Pc

P < Pc



HYPERBOLIC-ELLIPTIC BIFURCATION IN
MEAN FIELD HAMILTONIAN DYNAMICS

Numerical simulation of the finite-N single wave model

From(N=2(to(N>>1(

• D. del-Castillo-Negrete, M.C. Firpo: CHAOS, 12, 496-507, (2002).



HYPERBOLIC-ELLIPTIC BIFURCATION IN
MEAN FIELD HAMILTONIAN DYNAMICS

Numerical simulation of the continuum single wave model
From(N=2(to(N=infinity(



HYPERBOLIC-ELLIPTIC BIFURCATION IN
MEAN FIELD HAMILTONIAN DYNAMICS



RELAXATION TOWARDS ROTATING DIPOLE STATERelaxa3on(to(dipole(state(

• D. del-Castillo-Negrete, Plasma Physics and Controlled Fusion 47, 1-11

(2005).



STANDARD MEAN FIELD MAP

dyj
dt2

= −2ρ(t) sin x j −θ(t)[ ]

d
dt

ρ e-iθ( ) + iUρ e-iθ = i Γk e
−ix k

k
∑

d xj
dt

= yj j =1,2, ......N xk
n+1 = xk

n + yk
n+1

yk
n+1 = yk

n −κ n+1 sin xk
n −θn( )

κ n+1 = κ n( )2 + ηn( )2 +ηn

θ n+1 =θ n +
1
κ n+1

∂ηn

∂θ n

ηn = γ j sin xj
n − θ n( )

j=1

N

∑

• del1Cas3llo1Negrete,(CHAOS,(10,(75178((2000).(

Self1consistent(standard(map(
Symplec3c(discre3za3on(ODE(Single(Wave(Model(

par3cles(

mean(
field(

• D. del-Castillo-Negrete: CHAOS, 10, 75, (2000).



STANDARD MEAN FIELD MAPSelf1consistent(standard(map(

Par3cle’s((
“charge”(

xk
0 , yk

0( )

γ k =
τ 3

π
exp

−yk2

2

% 

& 
' ' 

( 

) 
* * 

Par3cles(
ini3al(posi3ons(

x(

y(

k =1,2, .......2 ×105

θ 0 = 0 κ 0 = 0.001
Mean(field(
ini3al(condi3on(



STANDARD MEAN FIELD MAP

Shear flow instability and coherent structure formation

x(

y(

“Shear(flow(Instability”(leading(to(vortex(forma3on(
(in(the(self1consistent(standard(map(

• D. del-Castillo-Negrete: CHAOS, 10, 75, (2000).



NONTWIST MEAN FIELD MAP

k = 1, 2, . . .N

xn+1
k = xnk + a

[
1−

(
τ

Γk
pn+1
k

)2
]
,

pn+1
k = pnk − 2τΓk

√
Jn+1 sin (xnk − θn),

θn+1 = θn − Uτ − τ√
Jn+1

N∑
k=1

Γk cos (xnk − θn),

Jn+1 = Jn + 2τ
√
Jn+1

N∑
k=1

Γk sin (xnk − θn), (1)

• L. Carbajal, D. del-Castillo-Negrete, and J. J. Martinell, Chaos, 22

013137 (2012).



NONTWIST MEAN FIELD MAP
Shear flow instability and coherent structure formation

i=30(

i=60(

i=75(

i=45(

i=300(

i=35(

i=20(i=0(

n(

b(

γ>0"

γ<0"

Instability!and!homoclinic!oscilla9ons(



NONTWIST MEAN FIELD MAP
Shear flow instability and coherent structure formation

i=50( i=74( i=93(

i=108(

Dynamic(separatrix(reconnec3on(

i=155(

b(

n(



NONTWIST MEAN FIELD MAP
Period-one coherent structures
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NONTWIST MEAN FIELD MAP
Period-two coherent structures

0 2 4 6 8 10
x 104

0.1499

0.15

0.1501

�n

(a)

 

 

0 2 4 6 8 10
x 104

0

0.01

0.02

Iteration (n)

�n
(b)

 

 

0 1 2 3 4 5 6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

y

(c)

 

 



NONTWIST MEAN FIELD MAP
Self-consistent separatrix reconnection in the mean-field map
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• L. Carbajal, D. del-Castillo-Negrete, and J. J. Martinell, Chaos, 22

013137 (2012).



NONTWIST MEAN FIELD MAP
Self-consistent suppression of diffusion
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NONTWIST MEAN FIELD MAP

Self-consistent suppression of diffusion
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NONTWIST MEAN FIELD MAP

Self-consistent transition to global chaos
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NONTWIST MEAN FIELD MAP

Self-consistent transport across shearless barrier
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NONTWIST MEAN FIELD MAP

Self-consistent intermittent transport near criticality
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