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•  something our friends can relate to 

•  a platform for discussing dynamics (F=ma). 
   (so we seek dynamical consistency) 
 
•  fully 3D:       is important in  ∂w

∂z
∂u

∂x
+
∂v

∂y
+

∂w

∂z
= 0

How did we choose our model? 
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Linear Thoery for strong	


Rotation: Greenspan’s 	


‘Theory of Rotating 	


Fluids’	


	


Non-rotating versions:	


Fountain, et al. 2000	


Lackey and Sotiropoulos	


  2006	



Rotating Can Flow 



Ocean Eddy with Overturning Circulation 

From Ledwell, McGillicuddy and  Anderson DSR-II (2008) 

 



Velocity Fields 

1)  Navier-Stokes integration.  

2) Kinematic (3D velocity non-divergent but no dynamics) 

3) Linear asymptotic solution for small Rossby number.   
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Stable Manifold 

Computed from Complexity Measures (Rypina, Scott, Pratt, Brown: NPG 2011) 
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Weak KAM theorem: Mezic and Wiggins (1994) 
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measure of how close neighboring	


tori are to resonance	
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Parameters (Numerical Model) 

Ekman Number     

Rossby Number  

Aspect Ratio  H/R=1 

E = ν
ΩH 2 =

δ E

H
⎛
⎝⎜

⎞
⎠⎟
2

Ro = δΩ /Ω

IE

H

Perturbation Amplitude  xo 

<

<�I<xo

Note:  Re = Ro / (EH
2 / R2 )

1/ 2000 < E <1

0.2 ≤ Ro ≤1



E=1/4, Ro=1  (Re= 4)   

E= 1, Ro=1  ( Re=1)   

E=1/4, Ro=0.2  (Re=0.8)   

E=1, Ro=0.2  (Re=0.2)   

 E=1/8, Ro=1  (Re= 8)   E=1/8, Ro=0.2  (Re=1.6)   
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E=1/20, Ro=1  (Re=20)   E=1/20, Ro=0.2  (Re=4)   

E=1/50, Ro=0.2  (Re=10)   E=1/50, Ro=1  (Re=50)   

E=1/2000, Ro=0.2  (Re=400)   

(g) (h) 

(i) (j) 

(k) (l) 

E=1/2000,  Ro=1.0   (Re=2000) 
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Taylor-Proudman Theorem 

If Ro <<1 and E <<1 and ∂
∂t

= 0,

then ∂u
∂z

= 0 in interior. E1/2

Interior trajectories 
live on vertically  
aligned sheets. 

Hypothesis: stirring rate will decrease like E1/2 as E decreases. 



x0=-0.08   

x0=-0.04   

x0=-0.16   

E=1/100, Ro=1 

x0=-0.02   



(c): t=309 
(b): t=23 (a): t=0 

χ 2 (t) = ∇C
V
∫

2
dv / C

V
∫

2
dv



E -1/2

Ro=0.2

Ro=1.0
Ro=0.2

xo=-0.02

xo=-.32
xo=-.16
xo=-.08
xo=-.02
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Challenges for this Group 

1)  We want to define and locate barriers in 3D flows with  
      more general time dependence. Many of the methods 
      discussed at this conference have the potential for doing  
      so in models.  But observations in 3D are not even 
      remotely extensive enough to apply them.  
           
2)  How would one design a dye release experiment in order to 

visualize these structures?  

3)  Do the effects of background turbulence overwhelm chaotic 
advection?  

4)  How do we get a handle on stirring when the perturbation 
      if finite. (No KAM;  no resonance width formula.)  





Boston Museum of Science. 
(Spring, 2013) 

Photo by L. Pratt and A. Azure 



(a) (b) 

Ro=1, E=1/100 

Ro=1, E=1 

Ro=1, E=1 



Summary 

1)  Stirring in a canonical model of a 3D flow with swirl and 
overturning can be highly nonhomogeneous due to the 
presence of complex barriers that separate mixed (chaotic) 
regions. 

2)  The stirring rate increases then decreases as E decreases 
below unity. 

3)  The addition of periodic time dependence and double 
resonance yields new structures. 

4)  Most promising application is to sub-mesoscale eddies at 
the ocean surface. w=.02m/s H=30m: Toverturn=hrs to days.  

5)  For larger features (mesoscale eddies, hurricanes), 
overturning time > life time of eddy. 



Re=20,	
  Ro=1,	
  x0=-­‐0.02	
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Finite Time Lyapunov Exponents 







Action-Angle-Angle System (Mezic and Wiggins 1994)  

ï���

�

���

����

�

����
�

���

���

���

���

1

V

y

z

V K

x

I=const.

 

d θ
dt

=Ωθ (I )

dφ
dt

=Ωφ (I )

dI
dt

= 0

Tφ=
2π
Ωφ

Tθ =
2π
Ωθ

resonance: nΩφ +mΩθ = 0


