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Part I

1. Intro
Mean curvature flow Xt = H = 4gX or effective part
(Xt)

N = H = 4gX
consider three symmetries: shrinking, translating, rotating
◦ shrinker.
X (x, t) =

√
−tF (x)

− 1
2
√
−t
FN =

1√
−t
4g F

or
4gF = −

1
2
FN
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In particular F = (x, f (x)) ∈ Rn × R1

div

 Df√
1+ |Df |2

 = −1
2
−x ·Df + f√
1+ |Df |2

or

4f − fi fj
1+ |Df |2

fij =
1
2
(x ·Df − f )

when f radial

frr
1+ f 2r

+
n− 1
r
fr =

1
2
(x ·Df − f )

examples: sphere, cylinder, shamrock ...
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◦ Translator
X (x, t) = F (x) + te

eN = 4gF
In particular F = (x, f (x)) , e = (0, · · · , 0, 1)

div

 Df√
1+ |Df |2

 =
1√

1+ |Df |2

eg. grim reaper fxx
1+f 2x

= 1 , f = − ln cos x
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◦ Rotator
X (x, t) = F (x) + t∂θ

1d X (x, t) = F (x) + tJF (x)

(JF )N = 4gF

In particular F = (x, f (x))

div

 Df√
1+ |Df |2

 =

〈
(−f , x) , (−fx , 1)√

1+ f 2x

〉
=

ffx + x√
1+ f 2x
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In polar coordinates (r (θ, t) , θ)
1st mean curvature flow
(rt∂r )

N = H
N = JT/ |T | = J [rθ (cos θ, sin θ) + r (− sin θ, cos θ)] / |T | =
[rθ (− sin θ, cos θ) + r (− cos θ,− sin θ)] / |T |
β = ] (T , ∂x )

− rt r|T | =
dβ

ds
=
dβ

dθ

dθ

ds
or

−rt r =
dβ

dθ
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2nd rotator
r (θ, t) = r (θ + t)

−rθr =
dβ

dθ

then
dβ

dr
= −r

and β = −12 r2 or

arctan fx = −
1
2

(
x2 + f 2

)
.

By symmetry, r =
√
−2β & r =

√
2 (β− π) form the Yin-Yang

rotator.
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2. Theorem (Lu WANG, 09) Any ancient self-similar solution

(x, f (x, t)) =
(
x,
√
−tu

(
x√
−t

))
to

ft= g ij (Df ) ∂ij f in R
n× (−∞, 0)⇔ g ij (Du) ∂iju =

1
2
x ·Du−1

2
u in Rn

is linear, f (x, t) = Du (0) · x = u (x) .
Superharmonic Way (2012).
Step1. Superharmonic inner product w = 〈N, en+1〉 = 1/V > 0
satisfies (

g ij∂ij − ∂t
)
w = − |A|2 w ≤ 0.

By self-similarity,

g ij∂ijw −
1
2
x ·Dw = − |A|2 w ≤ 0.

Heuristic: As g ij∂ijw ≤ 1
2x ·Dw , the amplifying force in the right

forces w up near ∞. Otherwise, bounded w becomes unboundedly
negative near ∞. Hence super solution w attains its min at a finite
point, then constant.
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Step2. The self-similar term rwr with barrier like
−ε
(
|x |2 − 1002

)
+minB100 w forces superharmonic w to attain its

global minimum at a finite point.
Strong max principle then implies that w ≡ const. > 0.
Step3. By the equation for w , one concludes |A| = 0.
RMK. Subharmonic way (2010) little longer β = arctan |Df |

g ij∂ijβ−
1
2
x ·Dβ = cot β

(
|A|2 − |5g β|2

)
Drugan (2010) had a high co-dimension version.

RMK. Integral way (Lu WANG) even longer, but first 09, after
Ecker-Huisken 90s w/ polynomial growth condition.
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3. Rigidity of simple (or embedded) curve shrinker: it must be a
circle w/ radius

√
2.

Th’m. (Gage, Hamilton, Abresch-Langer, Epstein-Weinstein,
Huisken, X.P. Zhu, Andrews, ...) Any embedded solution to

4gX = −
1
2
XN , locally H =

(
fx√
1+ f 2x

)
x

=
1
2
xfx − f√
1+ f 2x

is the circle with radius
√
2 centered at the origin.

The following is another proof 2012 (A first integral and extrinsic
approach).
Step1. (Colding-Minicozzi) A conservative quantity

lnH − 1
4
|X |2 = const. or H = ce|X 2|/4.

Just integrate

Hx =

[
1
2
xfx − f√
1+ f 2x

]
x

=
1
2

fxx(√
1+ f 2x

)3 (x + f fx ) = 1
4
H
(
|X |2

)
x
.
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RMK. This conservation law is already in the first integral of the
support equ. uθθ + u = 2/u

u2θ + u
2 − 4 lnu = const,

once uθ is recognized as the tangent part of
|X |2 =

∣∣XT ∣∣2 + ∣∣XN ∣∣2 = u2θ + u2.
From the conservative quantity, one directly sees that
either i) H ≡ 0 (the shrinker is a line through the origin) or ii) H 6= 0
and |X | is bounded.
The boundedness is from |X | /2 ≥

∣∣XN ∣∣ /2 = |H| = |c | e |X |2/2. All
these facts (except the boundedness [C-M]) are known.
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Step2. An extrinsic way to the embedded convex S1-shrinker.
Obs1. Symmetry w.r.t. the line through furthest or nearest points, in
general critical pts of distance |X | , by uniqueness of ode.
Obs2. At (&only at) the critical pts of H or equivalently |X | ,
1
2 |X | = |c | e |X |

2/4. In turn, it is either the furthest or nearest pt.
Indeed, at critical pts, 〈X ,Xx 〉 = 〈X , (1, fx )〉 = 0, then XT = 0,
and the identity; (vice versa).
By the analyticity of the shrinker, those critical points of distance are
discrete, unless the curve is already the circle. By symmetry, any two
consecutive critical pts of distance must be distinct ones: furthest
and nearest. Let the angle between the corresponding rays (through
A f.&B n. pts) be θ. As the shrinker is simple closed one, this angle θ
can only be 2π/k : π, 2π/3, 2π/4, · · · .
* θ = 2π/3 is not allowed, as the critical pts are alternating, unless
the curve is already is circle. (Remember shamrocks.)
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* θ = π. Let’s line up the furthest pt A & nearest pt B along vertical
y-axis. By convexity, there is one and only one vertical tangent point
on the right side of the curve. The v. tangent pt separates the right
side of curve into two graphs over an interval [0, ξ] on x-axis.
Obs. (Extrinsic)

1 =

∣∣∣∣∣
∫ ξ

0

(
fx√
1+ f 2x

)
x

dx

∣∣∣∣∣ =
∣∣∣∣∫ ξ

0
ce |X |

2/4dx

∣∣∣∣ .
Since |X | is monotonic on the whole right curve, this θ = π
configuration is not allowed.

Yu YUAN (University of Washington, Seattle) Self-similar solutions for curvature flows 13 / 25



* θ = 2π/4, 2π/5, · · ·
First line up the furthest pt. A (w/ |A| = a and |B| = b) along the
vertical y-axis, then
Obs. (Extrinsic)

sin θ =

∣∣∣∣∣
∫ b sin θ

0

(
fx√
1+ f 2x

)
x

dx

∣∣∣∣∣ =
∣∣∣∣∫ b sin θ

0
ce|X 2|/4dx

∣∣∣∣ ≤ |c | ea2/4 b sin θ.

Thus 1 ≤ |c | ea2/4 b.
On the other hand, line up the nearest pt B along the vertical y-axis,
then
Obs. (Extrinsic)

sin θ =

∣∣∣∣∣
∫ a sin θ

0

(
fx√
1+ f 2x

)
x

dx

∣∣∣∣∣ =
∣∣∣∣∫ a sin θ

0
ce|X 2|/4dx

∣∣∣∣ ≥ |c | eb2/4 a sin θ.

Thus 1 ≥ |c | eb2/4 a.
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So far we have
a eb

2/4 ≤ 1
|c| ≤ b e

a2/4.

Recall
1
2
be−b

2/4 = |c | = 1
2
ae−a

2/4.

We then get ab/2 ≤ 1 ≤ ab/2. Thus ab = 2.
Finally the sol. to the system{

ab = 2
ae−a

2/4 = be−b
2/4

is a = b =
√
2. Therefore, these angles 0 < θ ≤ π/2 are not

allowed, unless the shrinker is already a circle.
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4. Immersed S2 shrinker (Drugan, 12)
Equ over r-axis

frr
1+ f 2r

+
n− 1
r
fr =

1
2
(x ·Df − f )

over rotating-axis

hyy
1+ h2y

− (n− 1)
h

=
1
2
(yhy − h)

Step 1. Power series for “singular”equation frr
1+f 2r

+ 1
r fr =

1
2 (rfr − f )

near r = 0
Step2. Small height top branch cross r-axis, then blow-up
Step3. Bottom branch convex up
Step4. Bottom branch cross back radial axis, then blow-up
Step5. Lift small height until left blow-up point is the cross one
(everything below sphere height 2)
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5. Question
Is embedded S2 type shrinker in R3 the standard S2?

RMK.
• Mean convex case, H ≥ 0, Yes. Huisken 90s.
• star shaped, yes.

* Angenent 80s, embedded torus shrinker.
* Moller 2011, embedded high genus shrinkers.
* Drugan-Kleene 2013, ∞-many immersed rotational shrinkers of
topological types: sphere, torus, plane, cylinder.
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Part II curvature flows w/ potential

1. Intro:
• Lagrangian mean curvature flow in R2n

∂tU = g ij∂ijU w/ U = Dv

Euclidean
(
R2n, dx2 + dy2

)
, g = I +D2vD2v ⇔ ∂tv = arctanD2v

Pseudo-Euclidean
(
R2n, dxdy

)
, g = D2v ⇔ ∂tv = ln detD2v

• Kahler Ricci flow
∂tgi k̄ = −Ri k̄
gi k̄ = vi k̄

Ric = −∂∂̄ ln det ∂∂̄v

 ⇔ ∂tv = ln det ∂∂̄v

Consider self similar shrinking sols in R2n × (−∞, 0) :
v (x, t) = −tu

(
x/
√
−t
)

arctanD2/ ln detD2/ ln det ∂∂̄ u =
1
2
x ·Du (x)− u (x) .
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2. Th’m (Chau-Chen-Y. 10)
• Let u be an entire smooth sol to
arctanλ1 + · · ·+ arctanλn =

1
2x ·Du (x)− u in Rn. Then

u = u (0) + 1
2

〈
D2u (0) x, x

〉
.

• Let u be an entire smooth convex sol to
ln detD2u = 1

2x ·Du (x)− u in Rn satisfying D2u (x) ≥
2(n−1)
|x |2

for

large |x | . Then u is quadratic.
• Let u be an entire smooth pluri-subharmic sol to
ln det ∂∂̄u = 1

2x ·Du (x)− u in Cm satisfying ∂∂̄u ≥ 2m−1
2|x |2

for large

|x | . Then u is quadratic.

RMK. For arctan case: Y. 09 bounded Hessian, Chau-Chen-He (09)∣∣D2u∣∣ ≤ 1− δ, R. Huang-Z. Wang (10),
∣∣D2u∣∣ ≤ 1, rigidity was

derived. For ln detD2 case w/ similar lower bound, R. Huang-Z.
Wang (10) derived the rigidity.
RMK. Q. Ding-Xin (12), for ln detD2 without any lower bound,
derived the rigidity.
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Proof. The argument is similar to the co-dim 1 case. (In fact the
other way around.)
• Euclidean arctan case:
Step 0. Equs v (x, t) = −tu

(
x√
−t

)
, vt (x, t) = Θ

(
x√
−t

)
vt = arctanD2v ⇔ arctanD2u =

1
2
x ·Du (x)− u (x)

∂t (vt) = tr
[(
I +D2vD2v

)−1
D2vt

]
⇔ g ij∂ijΘ (x) =

1
2
x ·DΘ (x)

Heuristic: The amplifying force in the right forces bounded Θ to be
constant.
Step 1. Phase Θ attains its max at a finite point.
As g−1 =

(
I +D2vD2v

)−1 ≤ I , we can construct a convex upper
barrier b s.t.

g ij∂ijb ≤ δij∂ijb = 4b ≤
1
2
rbr .
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In fact b = εr1+δ +max∂Br0
Θ is a super sol on Rn\Br0 , and larger

than Θ at ∂Br0 and ∞. By the weak max principle

Θ ≤ εr1+δ +max
∂Br0

Θ on Rn\Br0 .

Let ε go to 0, we have maxRn Θ = maxBr0 Θ.
Step 2. Phase Θ is constant by the strong max principle.
Step 3. Potential u is quadratic by Euler’s formula applied to

Θ (0) =
1
2
x ·Du (x)− u (x) .

• Case ln detD2u and ln det ∂∂̄ : Review the above argument, only
lower bound on Hessian is enough, matching the barrier equ, we have
the inverse quadratic decay (completeness) condition on the metric
to reach rigidity.
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3. Th’m (Drugan-Lu-Y. 13) Let u be an entire smooth
pluri-subharmonic sol to ln det ∂∂̄u = 1

2x ·Du (x)− u in Cm s.t. the
metric g = ∂∂̄u is complete. Then u (x) is quadratic.

RMK. Cm can be replaced by any domain Ω containing the origin.
Proof. The idea is still to force the volume (or phase) element attains
its global max at a finite point, instead of using a barrier as in
[Chau-Chen-Y], now by considering its radial derivative—which is the
scalar curvature.
Step 0. Equs: v (x, t) = −tu

(
x√
−t

)
, vt (x, t) = Φ

(
x√
−t

)
,

vtt (x, t) =
−S
(

x√
−t

)
−t

vt = ln det ∂∂̄v ⇔ ln det ∂∂̄u =
1
2
x ·Du (x)− u

∂t (vt) = tr
(
∂∂̄v
)−1

∂∂̄vt ⇔ −S = g i k̄∂i k̄Φ =
1
2
x ·DΦ (x) .

Yu YUAN (University of Washington, Seattle) Self-similar solutions for curvature flows 22 / 25



∂t (vtt) = tr
(
∂∂̄v
)−1

∂∂̄vtt − tr
(
∂∂̄v
)−1

∂∂̄vt
(
∂∂̄v
)−1

∂∂̄vt

≤ tr
(
∂∂̄v
)−1

∂∂̄vtt −
1
m

[
tr
(
∂∂̄v
)−1

∂∂̄vt
]2

or Rt ≥ 4gR +
1
m
R2

⇔
g i k̄∂i k̄S ≤ −

1
m
S2 + S +

1
2
x ·DS (x) ,

where we used
−S
(

x√
−t

)
−t = vtt = tr

(
∂∂̄v
)−1

∂∂̄vt =

tr
(
∂∂̄v
)−1

∂∂̄ ln det ∂∂̄v = −tr
(
g−1Ric

)
= −R (x, t) .

Obs. One has Smin ∈ [0,m] if Smin is achieved at a finite point, as
then 0 ≤ − 1

mS
2
min + Smin.
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Step 1. Scalare curvature S ≥ 0 for complete ancient sol to Ricci
flow (B. L. Chen 09). We have a direct elliptic argument in the
self-similar case.
Step 2. Volume element Φ = ln det ∂∂̄u attains its max at the origin,
since

1
2
r Φr = −S ≤ 0.

Step 3. Volume element Φ is constant Φ (0) by the strong max
principle, as

g i k̄∂i k̄Φ =
1
2
x ·DΦ (x) .

Step 4. Kahler potential u is quadratic by Euler formula for
homogeneous functions applied to

Φ (0) =
1
2
x ·Du (x)− u (x) .

RMK. The above proof works for real M-A case,
ln detD2w = 1

2x ·Dw (x)− w in Ω. Just complexify w (x) along
iRn : u (x + iy) = w (x) , completeness is kept.
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4. Question. Any entire solution to ln det ∂∂̄u = 1
2x ·Du (x)− u in

Cm is quadratic?

RMK. Self-similar makes solution to the eigenvalue equation more
rigid. In contrast, there exist nontrivial (non flat) entire and complete
solution to complex M-A equations ln det ∂∂̄u = 0 in Cm by LeBrun,
Hitchin ... 80s.
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