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Background and Motivation



Basic Definitions

Fix a Riemannian three-manifold Ω – for instance an open
subset of R3.

Recall:
A set Σ ⊂ Ω is an embedded (smooth) surface if, locally, it
can be smoothly straightened – i.e., ∀p ∈ Σ, there is an
open neighborhood Up ⊂ Ω of p and a C∞ diffeomorphism
φp : (Up,p)→ (B1,0) so that φp(Σ ∩ Up) = {x3 = 0} ∩ B1;
Σ ⊂ Ω is a properly embedded surface if it is an embedded
surface and is a relatively closed in Ω – i.e. Σ̄ = Σ;
An embedded surface is minimal if H ≡ 0.

If Σ is properly embedded, then it is minimal if and only if its
area is stationary with respect to compactly supported (in Ω)
variations.
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Sequences of Minimal Surfaces

We begin by posing some (vague) motivational questions:

Question

What classes of smooth minimal surfaces have good
(pre-)compactness properties?

That is, for a sequence of surfaces S = {Σi} in some classM:
When do sequences always smoothly subconverge?
When is there a well-behaved set away from which the
sequence smoothly subconverges?
How much bigger is M̄, thanM?

Ideally, answers to these questions yield information about both
the structure ofM and of its elements.
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Classes of Minimal Surfaces

We introduce some classes of minimal surfaces in a fixed
Riemannian three-manifold Ω:

Let EΩ be set of properly embedded minimal surfaces in Ω;
Let EΩ(e,g) ⊂ EΩ be oriented surfaces which are
topologically genus-g surfaces with e punctures;
Let AΩ(N) ⊂ EΩ be set of surfaces so that for any
Σ ∈ AΩ(N) and any Bρ(p) ⊂ Ω,

Area(Bρ(p) ∩ Σ)

πρ2 ≤ N.

Let T CΩ(N) ⊂ EΩ be surfaces Σ so that∫
Σ
|AΣ|2 ≤ 8πN;
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Geometric Arzela-Ascoli Theorem

Theorem

Fix an N > 0, a Riemannian three-manifold Ω and an
increasing sequence of open subsets

Ω1 ⊂ Ω2 ⊂ · · ·

so that Ω =
⋃

i Ωi . If Σi ∈ EΩi ∩ AΩi (N) satisfy

sup
K∩Σi

|AΣi | ≤ C(K )

for every K ⊂⊂ Ω, then the Σi subconverge smoothly on
compact subsets of Ω (with multiplicity) to Σ ∈ EΩ ∩ AΩ(N).



Sketch of Proof

For any smooth surface Σ and point p ∈ Σ can express Σ
near p as a graph (suitable understood) over TpΣ;
The L∞ norm of AΣ gives a fixed scale for such a graph
and gives quantiative C1,1 bounds;
Schauder theory gives uniform C∞ estimates (on a smaller
scale) – usual Arzela-Ascoli gives good convergence of
these graphs;
These estimates together with area bounds imply that
there are at most finitely many such “sheets” of Σ near p;
Embeddedness is preserved by the strict maximum
principle.
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Generalizations

Some natural directions to generalize this theorem.

Drop the curvature bound – leads to measure theoretic
considerations;
Drop the area bound – leads to limits which are no longer
surfaces but rather unions of smooth surfaces – i.e.
dimension can jump up;
Ulitmately, we will drop both area and curvature bounds –
leads to decomposing ambient space into singular part
where curvature of sequence blows up and regular part
where one has convergence (in second sense).
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Minimal Laminations



Minimal Laminations

Definition

Fix a Riemannian three-manifold Ω. A subset L is a proper
minimal lamination of Ω if

L is relatively closed in Ω;
L =

⋃
α Lα where Lα are connected pair-wise disjoint

embedded minimal surfaces in Ω – called leaves of L;
For each p ∈ L there is an open subset Up of Ω, a closed
subset Kp of (−1,1) and a Lipschitz diffeomorphism
ψp : (Up,p)→ (B1,0) so ψp(L ∩ Up) = B1 ∩ {x3 = t}t∈Kp

.
If L = Ω, then this is a minimal foliation of Ω.

As observed by Solomon, Lipschitz regularity of “straightening
maps”, ψp, is best possible.
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Regular and Singular Points

Definition

For a Riemannian three-manifold Ω, an increasing sequence of
open subsets Ω1 ⊂ Ω2 ⊂ · · · with Ω = ∪iΩi and a sequence
S = {Σi} with Σi ∈ EΩi define the singular set of S to be

sing(S) :=
{

p ∈ Ω : ∃pi → p s.t. |AΣi |(pi)→∞
}
.

this is a (relatively) closed subset of Ω. Likewise,

reg(S) :=

{
p ∈ Ω : ∃ρ > 0 s.t. sup

i
sup

Bρ(p)∩Σi

|AΣi |(pi) <∞

}
.

this is an open subset of Ω.

NB: Can pass to a subsequence so Ω = sing(S) ∪ reg(S)
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Generalized Arzela-Ascoli Theorem

Theorem

Fix a Riemannian three-manifold Ω, an increasing sequence of
open subsets

Ω1 ⊂ Ω2 ⊂ · · ·

with Ω =
⋃

i Ωi and a sequence S = {Σi} where Σi ∈ EΩi . There
is a subsequence, S ′ of S and a relatively closed subset K of Ω
so that

sing(S ′) = K ;
The Σi\K converge (in a suitably sense) to a proper
minimal lamination L of Ω\K

We call such a quadruple (Ω,S ′,K ,L) a minimal surface
sequence.
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Example: Rescaling of a Triply Periodic Surface

Let Σ be triply periodic minimal surface – e.g.

Setting Σi = 1
i Σ, then

K = R3;
L = ∅.
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Example: Rescaling of a Catenoid

Let C be a vertical catenoid – i.e.,

Setting Σi = 1
i C, then

K = ~0;
L has a single leaf {x3 = 0}\~0.

NB: The leaf extends smoothly to a surface in ER3 . Hence also,
the lamination L extends to a proper lamination of R3.
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Compactness Results

More generaly,

Theorem (Choi-Schoen, 1985; Anderson, 1985; White, 1987)

Fix N ≥ 0, If (Ω,S,K ,L) is a minimal surface sequence where
each Σi ∈ S satisfies Σi ∈ T CΩi (N), then

K consists of at most bNc points of Ω;
The lamination L extends to a proper lamination of Ω.



Example: Rescaling of a Helicoid

Let H be a vertical helicoid – i.e.,

Set Σi = 1
i H, so

K = x3 − axis;
L a foliation of R3\K by horizontal (punctued) planes.

NB: The leaves extend smoothly to surfaces in ER3 . Likewise,
the lamination L extends to a proper foliation of R3.
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Colding-Minicozzi Theory – Global Case

If (Ω,S,K ,L) is a minimal surface sequence with each
Σi ∈ EΩi (1,0), then we have a minimal disk sequence.

Theorem (Colding-Minicozzi, 2004)

If (R3,S,K ,L) is a minimal disk sequence and K 6= ∅, then
L is a foliation of R3\K by parallel (punctured) planes;
K is a line perpendicular to these planes. (due to Meeks)

NB: The leaves extend smoothly to surfaces in ER3 . Likewise,
the lamination L extends to a proper foliation of R3.
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The Local Case

The situation is very different when Ω = B1 ⊂ R3 (also when Ω
is a curved, possibly complete, three-manifold).

For instance the singular set K can be:
a point (Colding-Minicozzi);
a finite set of points (Dean);
a closed line segment (Kahn);
any closed subset of the x3-axis (Hoffman-White, Kleene);
non-straight curves (Meeks-Weber).

In contrast to the other constructions, Hoffman-White use
variational methods which carry over to, for instance, Ω = H3.
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variational methods which carry over to, for instance, Ω = H3.
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The Example of Meeks-Weber

Sequence of minimal annuli in a solid torus of revolution whose
singular set is the central circle of the solid torus.



The Example of Colding-Minicozzi

Minimal disk sequence, (B1,S,K ,L) with
K = ~0
L = L− ∪ L0 ∪ L+ where L0 = B1 ∩ {x3 = 0} \~0 and L± are
non-proper embedded disks (in B1\~0).

NB: L̄0, the closure in B1 is an embedded disk. However, L
does not extend to a lamination of B1
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Colding-Minicozzi Theory – Local Case

In the local case, Colding-Minicozzi (essentially) show

Theorem (Colding-Minicozzi, 2004)

If (Ω,S,K ,L) is a minimal disk sequence and K 6= ∅, then
K ⊂ K ′ a properly embedded Lipschitz curve in Ω;
For any p ∈ K there exists a leaf L of L such that p ∈ L and
L is a properly embedded minimal surface in Ω near p.
If L is a properly embedded minimal surface, and
L ∩ K 6= ∅, then L meets K “transversely”.

Meeks showed that if K = K ′ (i.e., K has no “gaps”), then it
is a C1,1 curve (tangent to curve is orthogonal to leaves)
White showed that K is contained in a C1 curve.
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Possible Leaves

What can be said about the the leaves of L?

In all known examples, the leaves of L are either disks or
annuli. Indeed, if L is a leaf of an example then it can be

a non-proper disk in Ω\K ;
a proper disk or annulus in Ω\K with L̄ a proper disk in Ω;
a proper annulus in Ω disjoint from K (Hoffman-White).

Question (Hoffman-White)

Can L be a surface of genus> 0 occur? A planar domain with
more than two punctures?

Answer (B. -Tinaglia)

Under natural geometric conditions on Ω it cannot.
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Topology of Leaves



Main Result

Theorem (B.-Tinaglia )

Let Ω be the interior of an oriented compact three-manifold with
boundary Ω̄ so that:

∂Ω is strictly mean convex;
There are no closed minimal surfaces in Ω̄.

If (Ω,S,K ,L) is a minimal disk sequence, then
Each leaf L of L is either a disk or an annulus,
If L is a regular leaf of L (i.e. L̄ ∈ EΩ), then L̄ is either a disk
(possibly meeting K ) or an annulus disjoint from K .

NB: Colding-Minicozzi =⇒ K ∩ L is a discrete subset of L.
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Idea of Proof

Idea of proof:
The nature of the convergence implies that the disks Σi in
the sequence S act as a sort of “effective” universal cover
of L;
Specifically, one can “lift” closed curves in L to curves in
the Σi ;
The geometry of the Σi – in particular the fact that they are
minimally embedded and live in a mean convex set
restricts the topology of the L – essentially forcing it to have
abelian fundamental group.
A more complicated geometric feature we use: the
conditions on Ω ensure – by a result of White – that
minimal surfaces in Ω satisfy an isoperimetric inequality.
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Lifts

Henceforth, we fix a minimal disk sequence (Ω,S,K ,L) and
also fix a leaf L of L.

Definition

If
γ : S1 → L

is a piece-wise C1 closed curve, then γ has the closed-lift
property if there exists a sequence of closed “lifts”

γi : S1 → Σi

converging to γ. Otherwise, γ has the open-lift property.

If γ is embedded so are its lifts.
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Separating Lemma

Lemma (Separating Lemma)

If γ : S1 → L is a closed embedded curve in L with the closed
lift property, then γ is separating.

Proof.

Let γi : S1 → Σi be embedded closed lifts of γ;
Each γi bounds a closed minimal disk ∆i ⊂ Σi ;
Area(∆i) < C1Length(γi) < C2Length(γ);
∆i → ∆ in C∞loc(Ω\γ); ∆ ⊂ L\γ is open and closed;
If γ does not separate L then ∆ = L\γ;
∂Ω strictly mean convex =⇒ ∆i cannot get close to ∂Ω.
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Commutator Lemma

Lemma (Commutator Lemma)

Let L be two-sided and let

α : [0,1]→ L and β : [0,1]→ L

be closed piece-wise C1 Jordan curves. If α and β have the
open lift property and α ∩ β = p0 where p0 = α(0) = β(0), then

ν := α ◦ β ◦ α−1 ◦ β−1

has the closed lift property and the lifts are “embedded.”



Proof

Proof.

Let α+
i be a lift of α and let α−i be a lift of α−1 and likewise for β.

Using embeddedness, the graphs converging to a small
neighborhood of p0 can be order by “height.”
If α+

i moves “upward” mi sheets, α−i moves “downward” mi
sheets.
If β+

i moves “upward” ni sheets, β−i moves “downward” ni
sheets.

“embedded”: If a lift of ν is not embedded, then either a lift of
α ◦ β or a lift of β ◦ α−1 is closed and embedded.
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No Pants

Proposition (No Pants)

If L is two-sided, then L is either a disk or an annulus.

Proof.

L is oriented. If L is not a disk or annulus, then
There exist embedded closed curves α and β separating L
into 3 components, L1, L2 and L3 so that L3 satisfies
α ∪ β ⊂ ∂L3 and L3 is not an annulus. We allow L1 = L2.
Let σ be an embedded arc in L3 with endpoints in α and β.
Note σ does not separate L3.
With γ = σ ◦ α ◦ σ−1, Commutator Lemma =⇒
γ ◦ β ◦ γ−1 ◦ β−1 has the closed lift property.
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No Pants (cont.)

Proof.

A sequence of embedded minimal disks ∆i must converge
to an open and closed subset of L\(γ ◦ β).
In particular, the limit must contain either L1, L2 or L3.
Forces interior point of ∆i to come arbitrarily close to ∂Ω
violating strict maximum principle.
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Two-sidedness of leaves

Proposition (Two-sidedness)

A leaf L is two-sided.

Proof.

If L one-sided, then there is a closed non-separating curve
along which L does not have well defined normal;
Non-separating =⇒ lift of this curve is open;
Following lift around in a Σi violates either properness or
embeddedness.
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Understanding Geometric Condition

Question

To what extent can the assumptions on Ω be relaxed?

To understand this suppose that Σ is an embedded (but not
necessarily properly embedded) minimal disk in Ω with the
property that

There is a closed set K of Ω disjoint from Σ;
The curvatures of Σ blow-up at K .
The closure, Σ̄, of Σ in Ω\K is a proper minimal lamination
L of Ω\K

We denote such an object by (Ω,Σ,K ,L) which we call a
minimal disk closure.
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Topology of Minimal Disk Closures

It turns out that leaves of minimal disk closures behave almost
identical to those of the limit leaves of a minimal disk sequence.

Theorem (B.-Tinaglia )

Let Ω be the interior of an oriented compact three-manifold with
boundary Ω̄ so that:

∂Ω is strictly mean convex;
There are no closed minimal surfaces in Ω̄.

If (Ω,Σ,K ,L) is a minimal disk closure, then each leaf L of L is
either a disk, an annulus or a Möbius band.



Sharpness

The preceding theorem is sharp in the following sense:
There is a minimal disk closure, (Ω,Σ, ∅,L), so that one
leaf of L is a Möbius band. The lamination L cannot occur
as the lamination of a minimal disk sequence.
There is a minimal disk closure, (Ω,Σ, ∅,L), so Ω contains
a minimal torus which is a leaf of L.
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Further Questions

Some further questions:
Is the theorem for minimal disk sequences sharp?
To what extent are both theorems true even for regions
which contain closed minimal surfaces? For instance, can
one rule out leaves with non-abelian fundamental group
even if the three-manifold admits closed minimal surfaces?
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