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Harmonic functions

Classical harmonic functions
Function u is harmonic if

∆u = 0.

Also, eigenfunction for zero eigenvalue.

Probabilistic approach
Let Xt be a stochastic process and A its generator (matrix or
differential).

etAu(x) = Exu(Xt ).

Harmonic on D (τD - exit time):

Au = 0 ⇐⇒ u(x) = Ex (u(X (τD)).

Hence harmonic functions have averaging property.
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Harmonic functions

Maximum principle
Averaging property implies no local maxima/minima.

Also, global maximum and minimum are on the boundary of the
domain.

ZERO Dirichlet eigenvalue / Dirichlet harmonic function
If

∆u = 0 on D,
u = 0 on ∂D,

then

u = 0 on D.

Proof.
Obvious.

Not for unbounded domains!

B. A. Siudeja (U. of Oregon) Ground state on cones Aug 2, 2013 3 / 14



Harmonic functions

Maximum principle
Averaging property implies no local maxima/minima.
Also, global maximum and minimum are on the boundary of the
domain.

ZERO Dirichlet eigenvalue / Dirichlet harmonic function
If

∆u = 0 on D,
u = 0 on ∂D,

then

u = 0 on D.

Proof.
Obvious.

Not for unbounded domains!

B. A. Siudeja (U. of Oregon) Ground state on cones Aug 2, 2013 3 / 14



Harmonic functions

Maximum principle
Averaging property implies no local maxima/minima.
Also, global maximum and minimum are on the boundary of the
domain.

ZERO Dirichlet eigenvalue / Dirichlet harmonic function
If

∆u = 0 on D,
u = 0 on ∂D,

then

u = 0 on D.

Proof.
Obvious.

Not for unbounded domains!

B. A. Siudeja (U. of Oregon) Ground state on cones Aug 2, 2013 3 / 14



Harmonic functions

Maximum principle
Averaging property implies no local maxima/minima.
Also, global maximum and minimum are on the boundary of the
domain.

ZERO Dirichlet eigenvalue / Dirichlet harmonic function
If

∆u = 0 on D,
u = 0 on ∂D,

then

u = 0 on D.

Proof.
Obvious.

Not for unbounded domains!

B. A. Siudeja (U. of Oregon) Ground state on cones Aug 2, 2013 3 / 14



Harmonic functions

Maximum principle
Averaging property implies no local maxima/minima.
Also, global maximum and minimum are on the boundary of the
domain.

ZERO Dirichlet eigenvalue / Dirichlet harmonic function
If

∆u = 0 on D,
u = 0 on ∂D,

then

u = 0 on D.

Proof.
Obvious. Not for unbounded domains!

B. A. Siudeja (U. of Oregon) Ground state on cones Aug 2, 2013 3 / 14



Harmonic functions

Some 2D cones

Half-space has infinite ZERO eigenspace!

Half-space: u(x , y) = y is harmonic with zero boundary condition.

First quadrant: u(x , y) = xy .
Function u(x , y) = Imzn is harmonic, and zero on the boundary of

π/n

n above does not need to be natural.

Ground state features

Positive inside, unbounded
Homogeneous

(
u(ax) = aβu(x)

)
of order β = n, when aperture

Θ = π/n.

In any dimension!
If Θ→ 0 then β →∞.
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Poisson and Martin kernels

Poisson kernel
If f is defined on the boundary then u defined below is harmonic

u(x) =

∫
∂D

P(x , y)f (y)dy .

P(x , y) - Poisson kernel.

Functions from previous slide cannot be represented this way!

Extended (Martin) boundary and Martin kernel
Define ∂MD so that “other” nonnegative harmonic functions have the
representation

u(x) =

∫
∂M D

M(x , y)f (y)dy .

M(x , y) - Martin kernel. For cones ∂MD contains only∞ point.

Functions from previous slide are Martin kernels (with pole at infinity)!
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Stable processes

Stable process and fractional Laplacian

Characteristic function
Isotropic α stable process Xt with 0 < α < 2 satisfies

E0eiξXt = e−t |ξ|α .

Discontinuous process with density

p(t , x , y) ≈ min
{

t−d/α,
t

|x − y |d+α

}
.

Generator - fractional Laplacian
Nonlocal pseudo-differential operator:

∆α/2u(x) = Cα,d

∫
Rd

u(x)− u(y)

|x − y |d+α
dy

=

= Cα,d lim
ε→0

∫
B(x ,ε)c

u(x)− u(y)

|x − y |d+α
dy
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Stable processes

Green function for Rd \ {0}, harmonic.

G(x , y) = Cα,d |x |−d+α

Note that α = 2 gives Brownian case in dimensions d ≥ 3.
Decay on domains is also similar to Brownian case: δα/2

∂D (x).

Expected exit time from a ball (radius r ), superharmonic.

ϕ(x) = Ex (τB) = Cα,d (r2 − |x |2)α/2.

Note that ∆α/2ϕ(x) = −1 on B. Take α = 2 for Brownian case.

Poisson kernel for a ball

P(x , y) = Cα,d

(
r2 − |x |2

|y |2 − r2

)α/2

|x − y |−d .

There is one extra factor compared to Brownian case. Due to jumps
natural boundary equals Dc \ ∂D, instead of ∂D.
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Stable processes

Martin boundary
∂D ⊂ ∂MD for stable processes. Plus there is∞ point for cones.

Half-space

Function max(xα/2
d ,0) is α-harmonic on D = {xd > 0} and zero

outside. Take α = 2 and d = 2 to get our first example f (x , y) = y .

Curiously, for D = {xd 6= 0} and α > 1 we get a different harmonic
function with homogeneity exponent α− 1!

Homogeneity exponent β for a cone of aperture Θ satisfies

lim
Θ→0

β(Θ) = α (∞ for α = 2).

Theorem (K. Bogdan, B.S., A. Stós)
Homogeneity exponent β for a cone of aperture Θ satisfies

β = α− Cα,d Θd+α−1 + O(Θd+α−1+1∧α)
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Methods

Homogeneity lemma
Suppose we can find super and sub harmonic functions that are
homogeneous (and decay appropriately). Then the harmonic function
we seek will be homogeneous of order between the other two.

“Spherical coordinates” for homogeneous functions (Bañuelos,
Bogdan 2004)
If u is γ-homogeneous then

∆α/2u(x) = ∆
α/2
Sd−1u(x) + Rγ [u|Sd−1 ](x),

where spherical part is independent of γ.

General strategy
Find 0-homogeneous function ϕ (no Rγ part to deal with).
Extend ϕ|Sd−1 to be γ-homogeneous and call that uγ .
Find γ so that uγ is sub-/superharmonic.
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Methods

Any function on the sphere can be extended to any homogeneity order,
but what to put on the sphere? Ideally: eigenfunction.

Surprisingly easy answer
(Almost) the only explicit thing we have, expected exit time ϕ from a
ball (though it is defined on flat space).

Naive approach
Project to the sphere and extend, then find fractional Laplacian.

Unfortunately to do the calculations we have to pull back to flat space
and this operation destroys PV limit.
Spherical cap can be mapped onto a ball, but centers will not match.
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Methods

Inversion: Tx = x/|x |2, Kelvin transform: Kf (x) = G(x)f (Tx).

Then: ∆α/2(Kf )(x) = |x |−2αG(x)[∆α/2f ](Tx).

S

0

1
2 1

1

Ty

y

Ty∗

VΘ

Sd−1
0

1

F

2

y

y∗

Lε

Πε
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Methods

S

0

1
2 1

1

Ty

y

Ty∗

VΘ

Sd−1

0

1

F

2

y

y∗

Lε

Πε

∆α/2ϕ = −1 (exit time, lower and full
dimension)
∆α/2G = 0 (Green function, full
dimension)
G(y) ≈ 1 on F

Construction:

Put ϕG on F to get just ϕ on S.
Extend to 0-homogeneous on VΘ.
Push to Lε to get

u(y) = G(y)ϕ(y∗).

Now find fractional Laplacian on F . It is
roughly the same as spherical Laplacian
on S.
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∆α/2[Gϕ](x) = −1G(x) + 0ϕ(x)+

+

∫
Rd

(G(x)−G(y))(ϕ(x)− ϕ(y))

|x − y |d+α
dy

y∗ deformation (x = x∗ ∈ F )

∆α/2[Gϕ− u](x) = ∆α/2[G(ϕ− ϕ∗)](x) ≈

≈
∫
Rd

ϕ(y)− ϕ(y∗)
|x − y |d+α

dy .

Both integrals are small, hence

∆α/2u(x) ≈ −1 (as for exit time alone).
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Methods

We already know that

∆
α/2
Sd−1u = −1 + O(Θ1∧α).

Radial part Rγ .

Now we find γ so that the radial part is just over 1, or just below.

We show that

Rγ [u] ≈ F (Θ, α− γ),

where F is an ugly function.

Then we take

γ = α− CΘd+α−1(1± κΘ1∧α)

and we get sub-/superharmonic functions.
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