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On the spectrum of the Hodge Laplacian
and the John ellipsoid

Alessandro Savo, Sapienza Università di Roma

We give upper and lower bounds for the first eigen-
value of the Hodge Laplacian acting on p-forms of
a compact, convex Euclidean domain Ω (smooth
boundary, absolute boundary conditions). We de-
note this eigenvalue by the symbol

λ
[p]
1 (Ω).

Perhaps the main scope is to stress the geometric
meaning of this eigenvalue, and to relate it with a
classical object in convex geometry: the John ellip-
soid of the domain.
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Known estimates on functions: the Dirich-
let problem.
Ω = compact, convex domain in Rn with smooth
boundary.

• Classical Dirichlet eigenvalue problem:{
∆f = λf on Ω,

f = 0 on ∂Ω.

Let
λD1 (Ω)

be its first eigenvalue.
Classical bounds:

π2

4R(Ω)2
≤ λD1 (Ω) ≤ cn

R(Ω)2

where
R(Ω) = inner radius of Ω.

Lower bound: Hersch, Li and Yau.
Upper bound: domain monotonicity.
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• Given geometric functionals Γ1(Ω),Γ2(Ω) we say
that Γ1(Ω) is comparable to Γ2(Ω) if there exist
constants a, b not depending on Ω such that

aΓ1(Ω) ≤ Γ2(Ω) ≤ bΓ1(Ω).

and we will write:

Γ1(Ω) ∼ Γ2(Ω).

Theorem. For any convex domain Ω one has

λD1 (Ω) ∼ 1

R(Ω)2
. In other words:

1√
λD1 (Ω)

∼ R(Ω).

That is, the fundamental wavelength for the Dirich-
let problem is comparable to the inner radius (large
drums produce a low tone).

Remark. The above fact does not hold in other
spaces: for example, in hyperbolic space Hn one
has the Mc Kean inequality:

λD1 (Ω) ≥ (n− 1)2

4
for any compact domain Ω (not necessarily convex).
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Known estimates on functions: the Neu-
mann problem.

• The Neumann eigenvalue problem:∆f = λf on Ω,
∂f

∂N
= 0 on ∂Ω,

where N is the unit normal vector. Let

λN1 (Ω)

be its first positive eigenvalue. One knows (Polya):

λN1 (Ω) < λD1 (Ω)

and that:

π2

diam(Ω)2
≤ λN1 (Ω) ≤ nπ2

diam(Ω)2
.

Lower bound: Payne and Weinberger.
Upper bound: particular case of an estimate of Cheng.
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Theorem. For any convex domain Ω one has

λN1 (Ω) ∼ 1

diam(Ω)2
. In other words:

1√
λN1 (Ω)

∼ diam(Ω).

Hence: the fundamental wavelength for the Neu-
mann problem is comparable to the diameter.

• Conclusion: given the fundamental tones for the
Dirichlet and Neumann problems:

λD1 (Ω), λN1 (Ω)

one can roughly hear both the inner radius and the
diameter of the domain.
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The John ellipsoid. The shape of a convex do-
main Ω can be roughly described by a suitable ellip-
soid.

Theorem (F. John, 1948) Given any convex do-
main Ω in Rn there exists a unique ellipsoid of
maximal volume included in Ω, denoted by EΩ.
Moreover one has:

EΩ ⊆ Ω ⊆ n · EΩ,

(origin in the center of EΩ).

Uniqueness apparently due to Löwner.

• EΩ is called the John ellipsoid of Ω. Set:

Dp(EΩ) = p−th longest principal axis of EΩ.

Ordering:

D1(EΩ) ≥ D2(EΩ) ≥ · · · ≥ Dn(EΩ).
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Observe that

D1(EΩ) ∼ diam(Ω), Dn(EΩ) ∼ 2R(Ω) ∼ R(Ω).

(clear for true ellipsoids; in general apply the inclu-
sions in John theorem). The classical estimates give:

Theorem. Let Ω be a convex domain in Rn and
EΩ its John ellipsoid. Then:

1√
λN1 (Ω)

∼ D1(EΩ) and
1√
λD1 (Ω)

∼ Dn(EΩ).

In particular, if Ω is a convex plane domain then
the two fundamental tones determine (up to con-
stants) the two principal axis of the John ellipse
of Ω.

• Satisfactory in dimension 2, but incomplete in
dimensions n ≥ 3.

• Do the other principal axes of the John ellipsoid
have a similar spectral interpretation?
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The Hodge Laplacian. Laplacian acting on dif-
ferential p-forms:

∆ = dδ + δd

where δ = d?.

• Eigenvalue problem for the absolute boundary
conditions : 

∆ω = λω on Ω,

iNω = 0 on ∂Ω,

iNdω = 0 on ∂Ω.

N = inner unit normal vector
iN = interior multiplication by N .

The spectrum is discrete:

λ
[p]
1 ≤ λ

[p]
2 ≤ · · · ≤ λ

[p]
k ≤ · · ·

(the degree is in the superscript).

• Variational characterization.

λ
[p]
1 (Ω) = inf

{∫
Ω |dω|

2 + |δω|2∫
Ω |ω|2

: ω ∈ Λp(Ω), iNω = 0 on ∂Ω

}
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• Identify 1-forms and vector fields via the metric.
In 3-space:

λ
[1]
1 (Ω) = inf

{∫
Ω |divX|2 + |curlX|2∫

Ω |X|2
: 〈X,N〉 = 0

}
,

that is, the infimum is taken over all vector fields
which are tangent to the boundary.

Motivation for the boundary conditions:

The space of harmonic p-forms satisfying the ab-
solute conditions is isomorphic with the absolute
de Rham cohomology of Ω in degree p.

If Ω is convex one has λ
[p]
1 > 0 for all p ≥ 1.

• 0−forms are functions: absolute boundary con-
ditions .... Neumann conditions. Then:

λ
[0]
1 = λN1 .

• n−forms are identified with functions (through
the ? operator). Dual conditions ... Dirichlet. Then

λ
[n]
1 = λD1 .
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The Hodge ? operator transforms absolute bound-
ary conditions into relative boundary conditions ...
corresponding dual eigenvalue problem:

∆ω = µω on Ω,

J?ω = 0 on ∂Ω,

J?δω = 0 on ∂Ω

where J? denotes restriction of forms to the bound-
ary.

We will call, for p = 0, . . . , n:

• λ
[p]
1 : fundamental tone in degree p

• 1√
λ

[p]
1

: fundamental wavelength in degree p

Problem: estimate λ
[p]
1 for all degrees p.
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Eigenvalue estimates for the Hodge Lapla-
cian.

• Estimating the first eigenvalue for p-forms is,
generally speaking, more difficult than for functions.

• Main tool: Bochner formula, giving estimates in-
volving pointwise lower bounds of the principal cur-
vatures of the boundary (joint works with P. Guerini
and S. Raulot).

• For a convex domain it is desirable to have lower
bounds depending on global invariants, rather than
local ones.

Theorem (Guerini-S. 2004) For any convex do-
main in Rn one has:

λ
[0]
1 = λ

[1]
1 ≤ λ

[2]
1 ≤ · · · ≤ λ

[n]
1 .

That is, the fundamental tones of the Hodge Lapla-
cian form an increasing sequence (with respect to
the degree).

• All fundamental tones of the Hodge Laplacian
belong to the interval [λN1 , λ

D
1 ].
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Sketch of proof.

1. Let ω be an eigenform associated to λ
[p]
1 and V

a parallel vector field in Rn (of unit length). Then

iVω

is a test-form for the eigenvalue λ
[p−1]
1 (because iNiV =

−iV iN).

2. min-max principle:

λ
[p−1]
1

∫
Ω

|iVω|2 ≤
∫

Ω

|diVω|2 + |δiVω|2.

3. Identify the set of parallel vector fields of unit
length with Sn−1 and integrate both sides with re-
spect to V ∈ Sn−1. After some work and the Bochner
formula, get:

λ
[p−1]
1 ≤ λ

[p]
1 .

In particular, λ
[0]
1 ≤ λ

[1]
1 .

Note: convexity is needed!

4. λ
[0]
1 ≥ λ

[1]
1 is always true (by differentiating Neu-

mann eigenfunctions).
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Hence:
λ

[0]
1 = λ

[1]
1

and equality holds at the first step. •

Monotonicity property: λN1 ≤ λ
[p]
1 ≤ λD1 . Hence,

for all p:

π2

diam(Ω)2
≤ λ

[p]
1 ≤

cn
R(Ω)2

.

But we can do much better than that.
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The main estimate. From the previous results
we have only n significant fundamental tones: these
can be estimated in terms of the John ellipsoid of
the domain.

Theorem (S. 2011) Let Ω be a convex body and
EΩ its John ellipsoid. Order the principal axes of
EΩ from longest to shortest:

D1(EΩ) ≥ D2(EΩ) ≥ · · · ≥ Dn(EΩ).

Then, for all p = 1, . . . , n one has:

an,p
Dp(EΩ)2

≤ λ
[p]
1 (Ω) ≤

a′n,p
Dp(EΩ)2

,

where an,p and a′n,p are explicit constants. Pre-
cisely:

an,p =
4

n2 ·
(
n
p−1

), a′n,p = 4p(n + 2)nn.

Remark. The constants are not sharp.
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• Main result is that the fundamental wavelength
in degree p is comparable with the p-th longest prin-
cipal axis of its John ellipsoid:

1√
λ

[p]
1 (Ω)

∼ Dp(EΩ)

for all p = 1, . . . , n.

• Philosophy: knowing all fundamental tones:

λ
[1]
1 , λ

[2]
1 , . . . , λ

[n]
1

one can roughly hear the John ellipsoid (hence the
shape) of the domain.

• What is the physical interpretation of λ
[p]
1 (Ω)?
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Spectrum and volume of cross-sections. Set,
for p = 1, . . . , n:

vol[p](Ω) = sup{vol(Σ) : Σ = Ω ∩ πp,
πp is a p-dimensional plane}.

vol[p](Ω) is the maximal volume of a p-dimensional
cross-section of Ω.

• Note: {
vol[1](Ω) = diam(Ω)

vol[n](Ω) = vol(Ω)

• The functional vol[p] is monotone increasing with
respect to inclusion. Recall John’s theorem:

EΩ ⊆ Ω ⊆ n · EΩ.

Hence:

vol[p](EΩ) ≤ vol[p](Ω) ≤ npvol[p](EΩ),
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and
vol[p](Ω) ∼ vol[p](EΩ)

∼ D1(EΩ) · · ·Dp(EΩ)

∼ 1√
λ

[1]
1 · · ·λ

[p]
1

Therefore we get a spectral estimate involving cross-
sections:

Corollary. For every p = 1, . . . , n one has:

vol[p](Ω) ∼ 1√
λ

[1]
1 · · ·λ

[p]
1

This means of course:

cn,p√
λ

[1]
1 · · ·λ

[p]
1

≤ vol[p](Ω) ≤
c′n,p√

λ
[1]
1 · · ·λ

[p]
1

.

for explicit (but not sharp) constants.
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An inequality for the volume. Taking p = n:

vol(Ω) ∼ 1√
λ

[1]
1 · · ·λ

[n]
1

.

That is, the volume is comparable to the product of
all fundamental wavelengths.

Remark. Is something like this true in a more
general situation? (for example, closed manifolds
with some curvature assumptions?)

• Consequence: (weak) Faber-Krahn inequality.

In fact, from monotonicity:

√
λ

[1]
1 · · ·λ

[n]
1 ≤

(
λ

[n]
1

)n/2
hence:

λ
[n]
1 ≥

cn
vol(Ω)2/n

,

and we know that λ
[n]
1 = λD1 . That is:

λD1 ≥
cn

vol(Ω)2/n
.

(of course, cn can’t be sharp).
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A Faber-Krahn type inequality for λ
[p]
1 .

Again from monotonicity:

√
λ

[1]
1 · · ·λ

[p]
1 ≤

(
λ

[p]
1

)p/2
.

Corollary. For all p = 1 . . . , n:

λ
[p]
1 (Ω) ≥ cn,p(

vol[p](Ω)
)2/p

.

• Case p = 1. We have

vol[1](Ω) = diam(Ω) and λ
[1]
1 = λN1

hence
λN1 (Ω) ≥ cn

diam(Ω)2
,

... Payne-Weinberger inequality for the first Neu-
mann eigenvalue.

• Case p = n: Faber-Krahn inequality for the first
Dirichlet eigenvalue. Then:

• the bound in the Corollary is an isoperimetric
inequality for forms connecting these two classical
inequalities on functions.

• Problem: find the optimal constant for all p.

19



Conjecture. Let Ω be convex in Rn and p =
1, . . . , n. Let Ω̄p be the p-th dimensional ball such
that

vol(Ω̄p) = vol[p](Ω).

Then
λ

[p]
1 (Ω) ≥ λ

[p]
1 (Ω̄p) = λD1 (Ω̄p)

For p = 1 this is the Payne-Weinberger inequality
(with the optimal constant). In fact:

vol[1](Ω) = diam(Ω), Ω̄1 = [0, diam(Ω)]

hence

λ
[1]
1 (Ω̄1) = λD1 (Ω̄1) =

π2

diam(Ω)2

As λ
[1]
1 = λN1 the above reads: λN1 ≥

π2

diam(Ω)2
.

• Equivalent form of the conjecture:

λ
[p]
1 (Ω) ≥ cp(

vol[p](Ω)
)2/p

where
cp = λD1 (Bp) · vol(Bp)

2/p
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Scheme of the proof.

• Recall the statement: λ
[p]
1 (Ω) ∼ 1/Dp(EΩ)2.

• The upper bound is given in terms of any ellip-
soid E− contained in Ω (no convexity needed).

Theorem 1. Let Ω be an arbitrary domain in Rn

and let E− be an ellipsoid contained in Ω, with
principal axes D1(E−) ≥ D2(E−) ≥ · · · ≥ Dn(E−).
Then:

λ
[p]
1 (Ω) ≤ 4p(n + 2) · vol(Ω)

vol(E−)
· 1

Dp(E−)2

If Ω is convex ... take E− = EΩ, then

vol(Ω)

vol(EΩ)
≤ nn

because Ω ⊆ nEΩ. Get

λ
[p]
1 (Ω) ≤ cn,p

Dp(EΩ)2

where cn,p = 4p(n + 2)nn.
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• Main tool: Hodge decomposition for manifolds
with boundary.

• Test-form. Fix coordinates so that E− has equa-
tion:

x2
1

D2
1

+ · · · + x2
n

D2
n

≤ 4,

where Dk = Dk(E−). Let ω = dx1 ∧ · · · ∧ dxp+1.
The test form will be the canonical primitive of ω
restricted to E− (this is explicitly computable).

• The canonical primitive of ω is the unique co-
exact (p− 1)-form θ such that dθ = ω and iNθ = 0
on ∂Ω.
It minimizes the L2-norm among all primitives of ω.
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Lower bound.
Lower bound is given in terms of any ellipsoid E+

containing Ω (convexity is needed!).

Theorem 2. Let Ω be a convex body in Rn and
E+ an ellipsoid containing Ω, with principal axes
D1(E+) ≥ D2(E+) ≥ · · · ≥ Dn(E+). Then, for all
p ≥ 2:

λ
[p]
1 (Ω) ≥ 4

(
n

p− 1

)−1

· 1

Dp(E+)2
.

Now take E+ = nEΩ. Get

λ
[p]
1 (Ω) ≥ 4

n2
(
n
p−1

) · 1

Dp(EΩ)2
.

Thus, John’s theorem is used to relate the upper
and lower bounds.

23



Main steps.

• First step: reduce the problem to a lower bound
of the energy.

Let ω be a p-eigenform. Bochner formula:

〈∆ω, ω〉 = |∇ω|2 +
1

2
∆|ω|2.

Integrating on Ω:

λ
[p]
1

∫
Ω

|ω|2 =

∫
Ω

|∇ω|2 +
1

2

∫
Ω

∆|ω|2.

Now:
1

2

∫
Ω

∆|ω|2 =
1

2

∫
∂Ω

∂

∂N
|ω|2

=

∫
∂Ω

〈∇Nω, ω〉

=

∫
∂Ω

〈S [p]ω, ω〉

≥ 0

where S [p] = self-adjoint extension of the shape op-
erator S to Λ[p](∂Ω) (by convexity, one has S ≥ 0
hence also S [p] ≥ 0).
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• Hence for any p-eigenform:

λ
[p]
1 ≥

∫
Ω |∇ω|

2∫
Ω |ω|2

.

• Second step: estimate from below the energy of
co-closed, tangential forms.

Theorem 3. Let ω be a co-closed (p−1)-form on
Ω such that iNω = 0 on ∂Ω. Let E+ be an ellip-
soid containing Ω, with principal axes D1(E+) ≥
D2(E+) ≥ · · · ≥ Dn(E+). Then:∫

Ω |∇ω|
2∫

Ω |ω|2
≥ 4

(
n

p− 1

)−1

· 1

Dp(E+)2
.

• Use the Payne-Weinberger lower bound on suit-
able cross-sections of Ω to obtain a lower bound for
the energy of the components of ω.
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Proof of the upper bound. As usual, to pro-
duce upper bounds we need suitable test-forms. Re-
call the variational property of the first Hodge-eigenvalue:

λ
[p]
1 (Ω) = inf

{∫
Ω |dω|

2 + |δω|2∫
Ω |ω|2

: ω ∈ Λp(Ω), iNω = 0 on ∂Ω.

}
As ∆ commutes with both d and δ, it preserves the
space of exact (resp. co-exact) forms. Hence:

λ
[p]
1 = min{λ[p]′

1 , λ
[p]′′

1 }

where λ
[p]′

1 (resp. λ
[p]′′

1 ) is the first eigenvalue of ∆
when restricted to exact (resp. co-exact) p-forms.
By differentiating eigenforms one sees that:

λ
[p]′

1 = λ
[p−1]′′

1 .

From the Hodge decomposition theorem for mani-
folds with boundary (Hodge-Morrey decomposition),
one sees that, if ω is an exact p-form on Ω, then there
exists a unique (p− 1)-form θ = θω,Ω such that:{

ω = dθ,

θ is co-exact and iNθ = 0 on ∂Ω.

The form θ above is called the canonical primitive
of ω. It has the following important property:
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• the canonical primitive is the primitive with the
least L2-norm.

Now θ = θω,Ω is a test-form for the eigenvalue λ
[p−1]′′

1 .
Hence:

λ
[p]
1 ≤ λ

[p]′

1

= λ
[p−1]′′

1

≤
∫

Ω |dθ|
2∫

Ω |θ|2
=

∫
Ω |ω|

2∫
Ω |θω,Ω|2

Now if E− ⊆ Ω we see that, for any exact p-form ω
one has:

λ
[p]
1 (Ω) ≤

∫
Ω |ω|

2∫
E− |θω,E−|

2

where θω,E− is the canonical primitive of ω on E−.
Let us choose ω so that everything will be com-
putable. Fix coordinates so that E− has equation:

x2
1

D2
1

+ · · · + x2
n

D2
n

≤ 4,

and take
ω = dx1 ∧ · · · ∧ dxp.

Then |ω|2 = 1 and its canonical primitive on the
ellipsoid E− is explicitly computable. One ends-up
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with the desired upper bound:

λ
[p]
1 (Ω) ≤ 4p(n + 2) · vol(Ω)

vol(E−)
· 1

Dp(E−)2
.
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