Spectral problems:

Numerical analysis, validation, and proof.

Nilima Nigam

Simon Fraser University

July 31, 2013

First disclaimer

From: D. N. Arnold, htep://wwwima.umn.edu/arnold/disasters/sleipner.heml

The sinking of the Sleipner A offshore platform

Excerpted from a report of SINTEF, Civil and Environmental Engineering:

The Sleipner A platform produces oil and gas in the North Sea and is supported on the seabed at a water depth of 82 m . It is a Condeep type platform with a concrete gravity base structure consisting of 24 cells and with a total base area of $16000 \mathrm{~m}^{2}$. Four cells are elongated to shafts supporting the platform deck. The first concrete base structure for Sleipner A sprang a leak and sank under a controlled ballasting operation during preparation for deck mating in Gandsfjorden outside Stavanger, Norway on 23 August 1991.

Immediately after the accident, the owner of the platform, Statoil, a Norwegian oil company appointed an investigation group, and SINTEF was contracted to be the technical advisor for this group.

The investigation into the accident is described in 16 reports...
The conclusion of the investigation was that the loss was caused by a failure in a cell wall, resulting in a serious crack and a leakage that the pumps were not able to cope with. The wall failed as a result of a combination of a serious error in the finite element analysis and insufficient anchorage of the reinforcement in a critical zone.

A better idea of what was involved can be obtained from this photo and sketch of the platform. The top deck weighs 57,000 tons, and provides accommodation for about 200 people and support for drilling equipment weighing about 40,000 tons. When the first model sank in August 1991, the crash caused a seismic event registering 3.0 on the Richter scale, and left nothing but a pile of debris at 220 m of depth. The
 failure involved a total economic loss of about $\$ 700$ million.

Second disclaimer

Home \mid Preferences \mid Help \mid Sup

ISSN 2167-5163
Matches: 3328

Show first 100 results

Select Page:
Batch Download: Reviews (HTML) \& Retrieve Marked Retrieve First 50 Unmark All
Publications results for "Anywhere=(numerical) AND Anywhere=(eigenvalue problems)"
\square MR3034828 Pending Oliveira, S. P.; Ruiz de Zárate, A.; da Rocha, A. C.; Alfaro Vigo, D. G. A note on the alternate tra method for Fredholm integral eigenvalue problems. Numer. Algorithms 62 (2013), no. 4, 601-614. 65R20 (65D30) PDF | Clipboard Journal | Article
\square MR3021441 Pending Soto, Ricardo L. A family of realizability criteria for the real and symmetric nonnegative inverse ei Numer. Linear Algebra Appl. 20 (2013), no. 2, 336-348. 65F18
PDF Clipboard Journal Article
MR3021436 Pending Huang, Wei-Qiang; Li, Tiexiang; Li, Yung-Ta; Lin, Wen-Wei A semiorthogonal generalized Arnoldi variations for quadratic eigenvalue problems. Numer. Linear Algebra Appl. 20 (2013), no. 2, 259-280. 65F15
PDF Clipboard Journal Article
MR3009194 Reviewed Bhatti, Muhammad I. Analytic matrix elements of the Schrödinger equation. Adv. Stud. Theor. Ph 4, 11-23. 81Q05 (33C45)
PDF Clipboard Journal Article

Second disclaimer

MathSciNet

Mathematical Reviews

ISSN 2167-5163

Matches: 1153

Show first 100 results
Select Page: Prev
Batch Download: Reviews (HTML) \dagger Retrieve Marked \mid Retrieve First $50 \mid$ Unmark All
Publications results for "MSC Primary/Secondary=(65N25)"
\boxminus MR3070538 Prelim Osting, Braxton; Kao, Chiu-Yen; Minimal Convex Combinations of Sequential Laplace-Dirichlet Eigen Sci. Comput. 35 (2013), no. 3, B731-B750.
PDF Clipboard Journal Article
MR3070537 Prelim Alves, Carlos J. S.; Antunes, Pedro R. S.; The Method of Fundamental Solutions Applied to Some In Eigenproblems. SIAM J. Sci. Comput. 35 (2013), no. 3, A1689-A1708.
PDF Clipboard Journal Article
MR3046809 Pending Huang, Tsung-Ming; Hsieh, Han-En; Lin, Wen-Wei; Wang, Weichung Eigendecomposition of the discr operator with application to fast eigensolver for three-dimensional photonic crystals. SIAM J. Matrix Anal. Appl. 34 (2013), I 35Q61 (15A18 65F15 65N06 65N25 78A60)
PDF Clipboard Journal Article
MR3009194 Reviewed Bhatti, Muhammad I. Analytic matrix elements of the Schrödinger equation. Adv. Stud. Theor. Ph 4, 11-23. 81Q05 (33C45)
PDF Clipboard Journal Article

Second disclaimer

```
Batch Download: Reviews (HTML) }\leqslant\mathrm{ Retrieve Marked Retrieve First 50 Unmark All
```

ublications results for "Anywhere=(finite elements) AND Anywhere=(eigenvalue problems)"
MR3063973 Prelim Yang, YiDu; Jiang, Wei; Upper spectral bounds and a posteriori error analysis of several mixed finite approximations for the Stokes eigenvalue problem. Sci. China Math. 56 (2013), no. 6, 1313-1330.
PDF Clipboard Journal Article
MR3047040 Prelim Jia, ShangHui; Chen, HongTao; Xie, HeHu; A posteriori error estimator for eigenvalue problems by n element method. Sci. China Math. 56 (2013), no. 5, 887-900.
PDF Clipboard Journal Article

Proof and numerical computations

Goal: Formulate some conjecture about eigenpair (u, λ).

- Formulate conjecture based on numerically computed approximations to (u, λ).

Goal: Prove some conjecture about eigenpair (u, λ).

- Proof strategy includes numerically computed approximations to (u, λ).

Proof and numerical computations

Goal: Formulate some conjecture about eigenpair (u, λ).

- Formulate conjecture based on numerically computed approximations to (u, λ).

Goal: Prove some conjecture about eigenpair (u, λ).

- Proof strategy includes numerically computed approximations to (u, λ).

How and when are such approximations acceptable in conjectures and proofs?

Abstract setting

Spectral approximation
In Banach spaces
Numerical linear algebra

Examples
Spectral problem 1
Spectral problem 2

Infinite dim.
function space

Finite dim.
function space

Finite dim.
Eucl. space

Finite precision computation

Infinite dim.
function space
Space \mathcal{H}
Operator \mathcal{A}

Finite dim.
function space

Finite dim.
Eucl. space

Finite precision
computation

Space \mathbb{C}_{N}
$\tilde{\mathrm{A}}_{N M}, \tilde{\mathrm{~B}}_{N M}$

Let's examine the process of computing eigenpairs (λ, u)

Infinite dim.
function space
Space \mathcal{H}
Operator \mathcal{A}
Want
$(u, \lambda) \in(\mathcal{H}, \mathbb{C})$

Finite dim.
function space
Space H_{N}
Operator \mathcal{A}_{N}

Finite dim.
Eucl. space

Finite precision computation

Space \mathbb{C}_{N}
$\tilde{\mathrm{A}}_{N M}, \tilde{\mathrm{~B}}_{N M}$

Compute $\left(\tilde{u}_{N}, \tilde{\ell}\right) \in\left(\mathbb{C}^{N}, \mathbb{C}\right)$

Problem setting

Infinite dim.
function space
$\mathcal{A}: \operatorname{dom}(\mathcal{A}) \subset \mathcal{H} \rightarrow \mathcal{H}$

Finite dim.
$\mathcal{A}_{N}: H_{N} \rightarrow H_{N}$
function space

Finite dim.
Eucl. space

Finite computation
$\mathrm{A}_{N M}, \mathrm{~B}_{N M}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{M}$
$\tilde{\mathrm{A}}_{N M}, \tilde{\mathrm{~B}}_{N M}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{M}$
$\left(\tilde{\mathrm{u}}_{N}, \tilde{\Lambda}_{N}\right) \in\left(\mathbb{C}^{N}, \mathbb{C}\right)$
$\tilde{\ell}_{N} \approx \tilde{\Lambda}_{N}, \tilde{\mathrm{w}}_{N} \approx \tilde{\mathrm{u}}_{N}$.

Goal: Prove some conjecture about (u, λ).

- Obtain, numerically, $\tilde{\ell} \in \mathbb{C}, \tilde{w}_{N} \in \mathbb{C}^{N}$.
- Is $\tilde{\ell}$ close to λ ?
- Is $\tilde{\mathrm{w}}_{N}$ "close" to $u \in \mathcal{H}$?
- Is their use in a proof acceptable?

How to write spectral problem as $\mathcal{A} u=\lambda u$?
eg., how to find eigenvalues of the Laplacian in a bounded domain?

- Formulation using differential operator.

$$
\Delta u=-\lambda u
$$

- Formulation using integral operators. [Steinbach '10, Akhmetgaliyev, Bruno and NN '13]

$$
u_{\lambda}=\text { layer potential }{ }_{\lambda} \phi
$$

- Formulation in weaker setting using mixed methods. [Boffi, 2010]

$$
\sigma=\nabla u, \quad \nabla \cdot \sigma=\lambda u .
$$

We shall focus on formulations in terms of differential operators.

T. Betcke and L. Trefethen math.ox.ac.uk/trefethen

E.Akhmetgaliyev and O. Bruno
www.math.caltechedu/~bruno/

M. Durufle

www.math.u-bordeauxl.fr/~mdurufle

Approximation in Banach spaces

Infinite dim.
function space
$\mathcal{A}: \operatorname{dom}(\mathcal{A}) \subset \mathcal{H} \rightarrow \mathcal{H}$

Finite dim. function
space

$$
\mathcal{A}_{N}: H_{N} \rightarrow H_{N}
$$

Infinite dim.
function space

$$
\mathcal{A}: \operatorname{dom}(\mathcal{A}) \subset \mathcal{H} \rightarrow \mathcal{H}
$$

Finite dim. function space

$$
\mathcal{A}_{N}: H_{N} \rightarrow H_{N}
$$

- \mathcal{H} a separable Banach space
- \mathcal{A} a closed linear operator
- H_{N} a finite-dimensional Banach space of dimension N
- $r_{N}: \mathcal{H} \rightarrow H_{N}$ a restriction map.
[Chatelin, 1973.]

Want some notion of convergence

Let $\mathcal{A}: \operatorname{dom}(\mathcal{A}) \subset \mathcal{H} \rightarrow \mathcal{H}$, and λ be an isolated eigenvalue of multiplicity m. Let $\mathcal{A}_{N}: H_{N} \rightarrow H_{N}$.
Spectral projection
Let Γ be a closed Jordan curve around $\lambda, D_{\lambda}:=\operatorname{Int}(\Gamma)$. Define the spectral projection of \mathcal{A} by

$$
\mathcal{S}:=-\frac{1}{2 \pi \iota} \int_{\Gamma}(\mathcal{A}-z \mathcal{I})^{-1} d z, \quad \operatorname{dim}(\mathcal{S H})=m
$$

Define the spectral projection of \mathcal{A}_{N} by

$$
\mathcal{S}_{N}:=-\frac{1}{2 \pi \iota} \int_{\Gamma}\left(\mathcal{A}_{N}-z \mathcal{I}\right)^{-1} d z
$$

the spectral projection associated with all eigenvalues of \mathcal{A}_{N} in D_{λ}.

Definition: Convergence of approximations
The spectral element $\left(\lambda_{N}, \mathcal{S}_{N}\right)$ of \mathcal{A}_{N} converges to the spectral element (λ, \mathcal{S}) of \mathcal{A} iff

- Given $\epsilon>0, \sigma\left(\mathcal{A}_{N}\right) \cap B_{\epsilon}(\lambda) \neq\{\phi\}, \forall N$ large enough;
- $\lim _{N \rightarrow \infty}\left\{\sigma\left(\mathcal{A}_{N}\right) \cap D_{\lambda}\right\}=\{\lambda\}$
- $\left\|\left(r_{N} \mathcal{S}-\mathcal{S}_{N} r_{N}\right) w\right\|_{N} \rightarrow 0$, for all $w \in \mathcal{H}$.
[Chatelin, 1973]

What do we need for convergence?

What do we need for convergence?

$$
\mathcal{A} u=\lambda u, \quad u \in \mathcal{H} \quad \text { and } \quad \mathcal{A}_{N} u_{N}=\lambda_{N} u_{N}, \quad u_{N} \in H_{N}
$$

Examine action of \mathcal{A}_{N} on $w \in \operatorname{dom}(\mathcal{A})$.

$$
r_{N} w \in H_{N} \Rightarrow \mathcal{A}_{N}\left(r_{N} w\right) \in H_{N} \quad \text { and } \quad \mathcal{A} w \in \mathcal{H}, \Rightarrow r_{N} \mathcal{A} w \in H_{N}
$$

What do we need for convergence?

$$
\mathcal{A} u=\lambda u, \quad u \in \mathcal{H} \quad \text { and } \quad \mathcal{A}_{N} u_{N}=\lambda_{N} u_{N}, \quad u_{N} \in H_{N}
$$

Examine action of \mathcal{A}_{N} on $w \in \operatorname{dom}(\mathcal{A})$.

$$
r_{N} w \in H_{N}, \Rightarrow \mathcal{A}_{N}\left(r_{N} w\right) \in H_{N} \quad \text { and } \quad \mathcal{A} w \in \mathcal{H}, \Rightarrow r_{N} \mathcal{A} w \in H_{N}
$$

Definition: Consistency of approximation.
The approximation using restriction map r_{N}, and operator \mathcal{A}_{N} is consistent iff for all $w \in \operatorname{dom}(\mathcal{A})$,

$$
\left\|r_{N} w\right\|_{H_{N}} \rightarrow\|w\|_{\mathcal{H}}, \quad \forall w \in \mathcal{H}, \quad\left\|\left(\mathcal{A}_{N} r_{N}-r_{N} \mathcal{A}\right) w\right\|_{H_{N}} \rightarrow 0
$$

Is this enough to guarantee convergence?

- Banach space $X:=\{u \in C[0,1], u(0)=u(1)\}$ with the max norm.
- Operator $T: \operatorname{dom}(T) \rightarrow X$ is $T:=\frac{d}{d x}$
- Simple eigenvalues, integer multiples of $2 \pi \iota$.
- Banach space $X:=\{u \in C[0,1], u(0)=u(1)\}$ with the max norm.
- Operator $T: \operatorname{dom}(T) \rightarrow X$ is $T:=\frac{d}{d x}$
- Simple eigenvalues, integer multiples of $2 \pi \iota$.
- Finite dimensional space $X_{N}=\mathbb{C}^{N}$, with $h=\frac{1}{N}$
- Restriction map $r_{N}: x(t) \rightarrow x\left(t_{i}\right), t_{i}=i h$
- Discrete operator T_{N} corresponding to first-order finite difference approximation,

$$
\frac{d}{d x} u\left(x_{i}\right) \approx \frac{u\left(x_{i+1}\right)-u\left(x_{i}\right)}{x_{i+1}-x_{i}}
$$

- Do reasonable things at boundary: $x_{0}=x_{n} ; \frac{x_{N}-x_{N-1}}{h}=\lambda x_{n-1}$
- λ_{N} computed for discrete operator T_{N}

Chatelin's example. True eigenvalues are $2 k \pi \iota$.
T_{h} seems to approximate T well. For example, $T_{h} r_{h} \cos (2 \pi x) \rightarrow T \cos (2 \pi x)=-2 \pi \sin (2 \pi x)$

Strong stability
\mathcal{A}_{N} is strongly stable in D_{λ} iff

- \mathcal{A}_{N} is stable: Given $M>0, z \in D_{\lambda}, z \neq \lambda$, for all N large enough $\left\|\left(\mathcal{A}_{N}-z \mathcal{I}\right)^{-1}\right\|_{N} \leq M$;
- r_{N} is linear and stable; and
- $\operatorname{dim} \mathcal{S}_{N} H_{N}=\operatorname{dim} \mathcal{S H}$

Strong stability
\mathcal{A}_{N} is strongly stable in D_{λ} iff

- \mathcal{A}_{N} is stable: Given $M>0, z \in D_{\lambda}, z \neq \lambda$, for all N large enough $\left\|\left(\mathcal{A}_{N}-z \mathcal{I}\right)^{-1}\right\|_{N} \leq M$;
- r_{N} is linear and stable; and
- $\operatorname{dim} \mathcal{S}_{N} H_{N}=\operatorname{dim} \mathcal{S H}$

Meta theorem
Consistency + Stability \Rightarrow Convergence

- \mathcal{H} a separable Banach space, \mathcal{A} a closed operator, H_{N} a finite-dimensional Banach space of dimension N
- $r_{N}=P_{N}: \mathcal{H} \rightarrow H_{N}$ a projection map.
[Kantorovitch, 1948, Anselone 1971]
eg: Lagrange interpolation
- $\mathcal{H}:=C[-1,1]$ with sup norm
- $P_{N}: \mathcal{H} \rightarrow$ polynomials of degree $\leq N$, with $P_{N} u:=$ Lagrange interpolant for $\left\{t_{i}\right\}_{i=0}^{N}$.
- $\left\|P_{N}\right\|_{\infty} \geq \frac{2}{\pi^{2}} \log (N-1)+b(N)$.
- P_{N} is bounded as a map into $L_{w}^{2}[-1,1]$ with weight $\left(1-t^{2}\right)^{-1 / 2}$.

Second choice: approximation space H_{N}

- Choose $H_{N}:=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{N}$.
- $P_{N}: \mathcal{H} \rightarrow H_{N}$ a bounded projection map.
- Define $\mathcal{A}_{N}:=P_{N} \mathcal{A} P_{N}$.
- Seek $u_{N} \in H_{N}, \lambda_{N} \in \mathbb{C}$ s.t.

$$
\mathcal{A}_{N} u_{N}=\lambda_{N} u_{N}
$$

- We represent $u_{N}=\sum_{i=1}^{N} \mathrm{u}_{N}^{(i)} \phi_{i}$.

Methods depend on subspace choices

- Finite difference methods: ϕ_{i} are Lagrange interpolants.
- Spectral methods: ϕ_{i} are eigenfunctions of some operator, $\left\|u-P_{N} u\right\|_{X} \rightarrow 0$ very fast
- Method of particular solutions: ϕ_{i} are eigensolutions of operator in simpler geometries
- Method of moments: $\phi_{i}:=\mathcal{A}^{i-1} u$ for some $u \in \mathcal{H}$
- Finite volume methods
- Finite element methods: ϕ are piecewise polynomials

Spectral approximation

Choices of H_{N}

A. Barnett,
www.math.dartmouth.edu/~ahb/

S. Ruuth
www.math.sfu.ca/~sruuth/

M. Durufle

www.math.u-bordeauxl.fr/~mdurufle

Must ensure consistency, stability and convergence of approximations at this level

Infinite dim.
function space

$$
\begin{array}{ll}
\mathcal{A}: \operatorname{dom}(\mathcal{A}) \subset \mathcal{H} \rightarrow \mathcal{H} & \text { Solve } \\
& \mathcal{A} u=\lambda u
\end{array}
$$

Finite dim.
function space

$$
\mathcal{A}_{N}: H_{N} \rightarrow H_{N}
$$

Solve $\mathcal{A}_{N} u_{N}=\lambda u_{N}$

Finite dim.
Eucl. space

$$
\mathrm{A}_{N M}, \mathrm{~B}_{N M}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{M}
$$

Solve $\mathrm{A}_{N M} \mathrm{u}_{N}=$ $\mathrm{B}_{N M}\left(\wedge_{N}\right) \mathrm{u}_{N}$

Have $H_{N}=\operatorname{span}\left\{\phi_{i}\right\}_{N}, u_{N}=\sum_{i=1}^{N} \mathrm{u}_{N}^{(i)} \phi_{i}$. How to get

$$
\mathrm{A}_{N M} \mathrm{u}_{N}=\mathrm{B}_{N M}\left(\Lambda_{N}\right) \mathrm{u}_{N} ?
$$

Method of weighted residuals. Let $\left\{\psi_{j}\right\}_{j=1}^{M}$ be linearly independent.

$$
\operatorname{minimize}_{\mathrm{w}}\left\|\left\langle\mathcal{A}_{N} \sum_{i=1}^{N} \mathrm{w}_{N}^{(i)} \phi_{i}-\lambda_{N} \sum_{i=1}^{N} \mathrm{w}_{N}^{(i)} \phi_{i}, \psi_{j}\right\rangle\right\|_{\mathcal{W}}
$$

Size and elements of $\mathrm{A}_{N M}, \mathrm{~B}_{N M}$ depend on this choice.

Third choice: how to satisfy equation

Have $H_{N}=\operatorname{span}\left\{\phi_{i}\right\}_{N}, u_{N}=\sum_{i=1}^{N} \mathrm{u}_{N}^{(i)} \phi_{i}$. How to get

$$
\mathrm{A}_{N M} \mathrm{u}_{N}=\mathrm{B}_{N M}\left(\Lambda_{N}\right) \mathrm{u}_{N} ?
$$

Third choice: how to satisfy equation

Have $H_{N}=\operatorname{span}\left\{\phi_{i}\right\}_{N}, u_{N}=\sum_{i=1}^{N} \mathrm{u}_{N}^{(i)} \phi_{i}$. How to get

$$
\mathrm{A}_{N M} \mathrm{u}_{N}=\mathrm{B}_{N M}\left(\Lambda_{N}\right) \mathrm{u}_{N} ?
$$

- Collocation methods: \mathcal{H} a Banach space, enforce $\left\langle\mathcal{A}_{N} u_{N}, \delta\left(x_{j}\right)\right\rangle=\lambda_{N}\left\langle u_{N}, \delta\left(x_{j}\right)\right\rangle$.
- Galerkin methods: \mathcal{H} a Banach space. Use ψ_{j} in H_{N}^{*}. Enforce $\left\langle\mathcal{A}_{N} u_{N}, \psi_{j}\right\rangle_{H}=\lambda_{N}\left\langle u_{N}, \psi_{j}\right\rangle_{H}$.
- (Orthogonal) Galerkin methods: \mathcal{H} a Hilbert space. Use $\psi_{i} i^{i n} H_{N}$. Enforce $\left(\mathcal{A}_{N} u_{N}, \psi_{j}\right)_{H}=\lambda_{N}\left(u_{N}, \psi_{j}\right)_{H}$.
Size and elements of $\mathrm{A}_{N M}, \mathrm{~B}_{N M}$ depend on this choice.

Third choice: how to satisfy equation

Must ensure consistency, stability and convergence at this level as well.

Table 1 Eigenvalues computed using the code in Listing 1.1 for different values of n

from: Boffi, Gardini, Gastaldi, 2012.

Table 2 Eigenvalues computed using the code in Listing 1.2 for different values of n

	Computed (rate)				
$n=8$	$n=16$	$n=32$	$n=64$	$n=128$	
1.0000	$1.0000(4.0)$	$1.0000(4.0)$	$1.0000(4.0)$	$1.0000(4.0)$	
4.0020	$4.0001(4.0)$	$4.0000(4.0)$	$4.0000(4.0)$	$4.0000(4.0)$	
9.0225	$9.0015(3.9)$	$9.0001(4.0)$	$9.0000(4.0)$	$9.0000(4.0)$	
16.1204	$16.0082(3.9)$	$16.0005(4.0)$	$16.0000(4.0)$	$16.0000(4.0)$	
25.4327	$25.0307(3.8)$	$25.0020(3.9)$	$25.0001(4.0)$	$25.0000(4.0)$	
37.1989	$36.0899(3.7)$	$36.0059(3.9)$	$36.0004(4.0)$	$36.0000(4.0)$	
51.6607	$49.2217(3.6)$	$49.0148(3.9)$	$49.0009(4.0)$	$49.0001(4.0)$	
64.8456	$64.4814(0.8)$	$64.0328(3.9)$	$64.0021(4.0)$	$64.0001(4.0)$	
95.7798	$81.9488(4.0)$	$81.0659(3.8)$	$81.0042(4.0)$	$81.0003(4.0)$	
	124.9301	$101.7308(3.8)$	$100.1229(3.8)$	$100.0080(3.9)$	$100.0005(4.0)$
		63	127	255	

from: Boffi, Gardini, Gastaldi, 2012.

Table 5 Eigenvalues computed using the code in Listing 1.5 for different values of n

Exact	Computed (rate)				
	$n=8$	$n=16$	$n=32$	$n=64$	$n=128$
	1.0129	$1.0032(2.0)$	$1.0008(2.0)$	$1.0002(2.0)$	$1.0001(2.0)$
	4.2095	$4.0517(2.0)$	$4.0129(2.0)$	$4.0032(2.0)$	$4.0008(2.0)$
	10.0803	$9.2631(2.0)$	$9.0652(2.0)$	$9.0163(2.0)$	$9.0041(2.0)$
	19.4537	$16.8382(2.0)$	$16.2067(2.0)$	$16.0515(2.0)$	$16.0129(2.0)$
	33.2628	$27.0649(2.0)$	$25.5059(2.0)$	$25.1257(2.0)$	$25.0314(2.0)$
	51.3724	$40.3212(1.8)$	$37.0525(2.0)$	$36.2610(2.0)$	$36.0651(2.0)$
	69.5582	$57.0672(1.3)$	$50.9572(2.0)$	$49.4840(2.0)$	$49.1206(2.0)$
	77.8147	$77.8147(0.0)$	$67.3528(2.0)$	$64.8266(2.0)$	$64.2059(2.0)$
		103.0473	$86.3943(2.0)$	$82.3258(2.0)$	$81.3299(2.0)$
		133.0513	$108.2597(2.0)$	$102.0237(2.0)$	$100.5030(2.0)$
DOF	8	16			64

from: Boffi, Gardini, Gastaldi, 2012.

All are FEM methods for Dirichlet problem on $[0, \pi]$
from: Boffi, Gardini, Gastaldi, 2012.

What can you trust?

Table 4 Eigenvalues computed using the code in Listing 1.4 for different values of n

Exact	Computed (rate)				
	$n=8$	$n=16$	$n=32$	$n=64$	$n=128$
	0.0000	-0.0000	0.0000	0.0000	-0.0000
	1.0001	$1.0000(4.1)$	$1.0000(4.0)$	$1.0000(4.0)$	$1.0000(4.0)$
	3.9660	$3.9981(4.2)$	$3.9999(4.0)$	$4.0000(4.0)$	$4.0000(4.0)$
	7.4257	8.5541	8.8854	8.9711	8.9928
	8.7603	$8.9873(4.2)$	$8.9992(4.1)$	$9.0000(4.0)$	$9.0000(4.0)$
	14.8408	$15.9501(4.5)$	$15.9971(4.1)$	$15.9998(4.0)$	$16.0000(4.0)$
	16.7900	$24.5524(4.2)$	$24.9780(4.3)$	$24.9987(4.1)$	$24.9999(4.0)$
	38.7154	29.7390	34.2165	35.5415	35.8846
	39.0906	$35.0393(1.7)$	$35.9492(4.2)$	$35.9970(4.1)$	$35.9998(4.0)$
		46.7793	$48.8925(4.4)$	$48.9937(4.1)$	$48.9996(4.0)$

What can you trust?

Table 4 Eigenvalues computed using the code in Listing 1.4 for different values of n

Exact	Computed (rate)				
$n=8$	$n=16$	$n=32$	$n=64$	$n=128$	
0.0000	-0.0000	0.0000	0.0000	-0.0000	
1.0001	$1.0000(4.1)$	$1.0000(4.0)$	$1.0000(4.0)$	$1.0000(4.0)$	
3.9660	$3.9981(4.2)$	$3.9999(4.0)$	$4.0000(4.0)$	$4.0000(4.0)$	
7.4257	8.5541	8.8854	8.9711	8.9928	
8.7603	$8.9873(4.2)$	$8.9992(4.1)$	$9.0000(4.0)$	$9.0000(4.0)$	
14.8408	$15.9501(4.5)$	$15.9971(4.1)$	$15.9998(4.0)$	$16.0000(4.0)$	
16.7900	$24.5524(4.2)$	$24.9780(4.3)$	$24.9987(4.1)$	$24.9999(4.0)$	
38.7154	29.7390	34.2165	35.5415	35.8846	
39.0906	$35.0393(1.7)$	$35.9492(4.2)$	$35.9970(4.1)$	$35.9998(4.0)$	
	46.7793	$48.8925(4.4)$	$48.9937(4.1)$	$48.9996(4.0)$	

Spectral approximation

What can you trust?

Table 6 Eigenvalues computed using the code in Listing 1.6 for different values of n

Exact	Computed (rate with respect to 6λ)				
	$n=8$	$n=16$	$n=32$	$n=64$	$n=128$
	5.7061	$5.9238(1.9)$	$5.9808(2.0)$	$5.9952(2.0)$	$5.9988(2.0)$
	19.8800	$22.8245(1.8)$	$23.6953(1.9)$	$23.9231(2.0)$	$23.9807(2.0)$
	36.7065	$48.3798(1.6)$	$52.4809(1.9)$	$53.6123(2.0)$	$53.9026(2.0)$
	51.8764	$79.5201(1.4)$	$91.2978(1.8)$	$94.7814(1.9)$	$95.6925(2.0)$
	63.6140	$113.1819(1.2)$	$138.8165(1.7)$	$147.0451(1.9)$	$149.2506(2.0)$
	71.6666	$146.8261(1.1)$	$193.5192(1.6)$	$209.9235(1.9)$	$214.4494(2.0)$
	76.3051	$178.6404(0.9)$	$253.8044(1.5)$	$282.8515(1.9)$	$291.1344(2.0)$
	77.8147	$207.5058(0.8)$	$318.0804(1.4)$	$365.1912(1.8)$	$379.1255(1.9)$
		232.8461	$384.8425(1.3)$	$456.2445(1.8)$	$478.2172(1.9)$
		254.4561	$452.7277(1.2)$	$555.2659(1.7)$	$588.1806(1.9)$
		16			
DOF	8		32	64	128

Spectral approximation

What can you trust?

Table 6 Eigenvalues computed using the code in Listing 1.6 for different values of n

Exact	Computed (rate with respect to 6λ)						
	$n=8$	$n=16$	$n=32$	$n=64$	$n=128$		
1	5.7061	$5.9238(1.9)$	$5.9808(2.0)$	$5.9952(2.0)$	$5.9988(2.0)$		
4	19.8800	$22.8245(1.8)$	$23.6953(1.9)$	$23.9231(2.0)$	$23.9807(2.0)$		
9	36.7065	$48.3798(1.6)$	$52.4809(1.9)$	$53.6123(2.0)$	$53.9026(2.0)$		
16	51.8764	$79.5201(1.4)$	$91.2978(1.8)$	$94.7814(1.9)$	$95.6925(2.0)$		
25	63.6140	$113.1819(1.2)$	$138.8165(1.7)$	$147.0451(1.9)$	$149.2506(2.0)$		
36	71.6666	$146.8261(1.1)$	$193.5192(1.6)$	$209.9235(1.9)$	$214.4494(2.0)$		
49	76.3051	$178.6404(0.9)$	$253.8044(1.5)$	$282.8515(1.9)$	$291.1344(2.0)$		
64	77.8147	$207.5058(0.8)$	$318.0804(1.4)$	$365.1912(1.8)$	$379.1255(1.9)$		
81		232.8461	$384.8425(1.3)$	$456.2445(1.8)$	$478.2172(1.9)$		
100		254.4561	$452.7277(1.2)$	$555.2659(1.7)$	$588.1806(1.9)$		
DOF	8		16	32	64		

Any method could exhibit these problems [Fox, Henrici, Moler, 1967], method of particular solutions.
Fixed: [Betcke and Trefethen, 2005, Barnett...]
474
TMO BETCXE AND LLOYD N. TREFETHEN

Fig. 3.2 The L-shaped membrane, with N collocation points equally spaced along each side not
adjacent to the reentrant morner (here $N=4$).

MPS error decreases, then increases in N .

Let's examine the consequences of some choices.

- Formulate problem in Hilbert space, \mathcal{H}, operator \mathcal{A}
- Let $H_{N}=\operatorname{span}\left\{\phi_{n}\right\}_{n=1}^{N}$, orthonormal basis
- Use projection $P_{N}, \mathcal{A}_{N}:=P_{N} \mathcal{A} P_{N}$
- $\mathcal{A}_{N} u_{N}=\lambda_{N} u_{N}, \quad u_{N}=\sum_{i=1}^{N} \mathrm{u}_{N}^{(i)} \phi_{i}$. Write $\mathrm{u}_{N}=\left(\mathrm{u}_{N}^{(1)}, \mathrm{u}_{N}^{(2)}, \ldots, \mathrm{u}_{N}^{(1)}\right)^{T}$.
- Use Galerkin method $\left(A_{N N}\right)_{i, j}:=\left(\mathcal{A}_{N} \phi_{i}, \phi_{j}\right)_{H}$
- Spectral problem in Euclidean space: $\mathrm{A}_{N N} \mathrm{u}_{N}=\Lambda_{N} \mathrm{u}_{N}$

Let's examine the consequences of some choices.

- Formulate problem in Hilbert space, \mathcal{H}, operator \mathcal{A}
- Let $H_{N}=\operatorname{span}\left\{\phi_{n}\right\}_{n=1}^{N}$, orthonormal basis
- Use projection $P_{N}, \mathcal{A}_{N}:=P_{N} \mathcal{A} P_{N}$
- $\mathcal{A}_{N} u_{N}=\lambda_{N} u_{N}, \quad u_{N}=\sum_{i=1}^{N} \mathrm{u}_{N}^{(i)} \phi_{i}$. Write $\mathrm{u}_{N}=\left(\mathrm{u}_{N}^{(1)}, \mathrm{u}_{N}^{(2)}, \ldots, \mathrm{u}_{N}^{(1)}\right)^{T}$.
- Use Galerkin method $\left(A_{N N}\right)_{i, j}:=\left(\mathcal{A}_{N} \phi_{i}, \phi_{j}\right)_{H}$
- Spectral problem in Euclidean space: $\mathrm{A}_{N N} \mathrm{u}_{N}=\Lambda_{N} \mathrm{u}_{N}$

If $N>5$, need iterative methods to approximate Λ_{N}.

- Power iteration: Start with arbitrary b. Columns of Krylov matrix

$$
\mathcal{K}_{n}=\left[\mathrm{b}, \mathrm{~A}_{N N} \mathrm{bA}_{N N}^{2} \mathrm{~b} \ldots . \mathrm{A}_{N N} \mathrm{~b}\right.
$$

converge to the e.v. for the largest e.value.

- Arnoldi iteration: Use stabilized Gram-Schmidt to generate orthogonal vectors $\mathrm{q}_{N, i}$,

$$
\operatorname{span}\left\{\mathrm{q}_{N, 1}, \mathrm{q}_{N, 2}, \ldots \mathrm{q}_{N, n}\right\}=\operatorname{span}\left\{\mathcal{K}_{n}\right\}
$$

- Lanczos iteration: Arnoldi iteration for symmetric matrices. Converts $\mathrm{A}_{N N} \rightarrow T_{n n}$, tridiagonal.
[Golub and van Loan, 1996, Trefethen and Bau, 1997...]
- If $\theta_{i}^{n}, \Lambda_{N, i}$ are the ith eigenvalues of $T_{n n}$ and $\mathrm{A}_{N N}$, then get bounds on $\mid \theta_{i}^{n}-\Lambda_{N, i}$ in terms of spectral gaps. [Kaniel-Paige-Saad bounds]

Typical theorems

- If $\theta_{i}^{n}, \Lambda_{N, i}$ are the ith eigenvalues of $T_{n n}$ and $\mathrm{A}_{N N}$, then get bounds on $\mid \theta_{i}^{n}-\Lambda_{N, i}$ in terms of spectral gaps.
[Kaniel-Paige-Saad bounds]
- Suppose we compute the eigenpair ($\tilde{\mathrm{u}}_{N}, \tilde{\Lambda}_{N}$). Then,

$$
\mathrm{A}_{N N} \tilde{\mathrm{u}}_{N}=\tilde{\Lambda}_{N} \tilde{\mathrm{u}}_{N}+r .
$$

Backward stability means \exists real symmetric matrices E such that

$$
\left(\mathrm{A}_{N N}+\mathrm{E}\right) \tilde{\mathrm{u}}_{N}=\tilde{\Lambda}_{N} \tilde{\mathrm{u}}_{N} .
$$

If r is small in norm, then it can be shown that

$$
\left|\tilde{\Lambda}_{N}-\Lambda_{N, i}\right| \leq \frac{\|r\|_{2}^{2}}{\delta}, \quad \delta:=\min _{k \neq i}\left|\tilde{\Lambda}-\Lambda_{N, i}\right|
$$

The solid angle θ between the computed eigenvector \tilde{u}_{N} and the actual eigenvector u_{N} satisfies

$$
\sin (\theta) \leq \frac{\|r\|_{2}}{\delta}
$$

Errors to examine: eigenvector

$$
\begin{aligned}
\left\|u-\sum_{i=1}^{N} \tilde{\mathrm{w}}_{N}^{(i)} \phi_{i}\right\| & \leq \underbrace{\left\|u-P_{N} u\right\|}_{\mathrm{A}}+\underbrace{\left\|P_{N} u-u_{N}\right\|}_{\mathrm{B}}+\underbrace{\left\|u_{N}-\sum_{i=1}^{N} \tilde{\mathrm{u}}_{N}^{(i)} \phi_{i}\right\|}_{\mathrm{C}} \\
& +\underbrace{\left\|\sum_{i=1}^{N}\left[\tilde{\mathrm{w}}_{N}^{(i)}-\tilde{\mathrm{u}}_{N}^{(i)}\right] \phi_{i}\right\|}_{\mathrm{D}} \\
& \leq \alpha(N)\|u\| \rightarrow 0, \quad \beta(N)\left\|\sum_{i=1}^{N} \tilde{\mathrm{~W}}_{N}^{(i)} \phi_{i}\right\| \rightarrow 0
\end{aligned}
$$

- A: Best approximation error (how 'good' is H_{N}, P_{N} ?)
- B: Error in H_{N}
- C: Approximation using numerical linear algebra
- D: Rounding arithmetic.
- I. Babuska and J. Osborn (1991), Eigenvalue problems. In Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam, pp. 641787.
- D. Boffi: Finite element approximation of eigenvalue problems, Acta Numer., 19 (2010), pp. 1120.
- F. Chatelin (1983), Spectral Approximation of Linear Operators, Computer Science and Applied Mathematics, Academic Press, New York.
- B. Hubbard, Eigenvalues of the non-homogeneous rectangular membrane by finite difference methods, Arch. Ration. Mech. Anal., 9 (1962), pp. 121133.

Spectral approximation

(A very brief) Literature

- V. Bonnaillie-Noel, M. Dauge, N. Popoff, N. Raymond Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions,Zeitschrift fr angewandte Mathematik und Physik (ZAMP) Volume 63, Issue 2 (2012), Page 203-231
- C. Moler and L. Payne, Bounds for eigenvalues and eigenvectors of symmetric operators, SIAM J. Numer. Anal., 5 (1968), pp. 6470.
- R. Moore, R. Kearfott, and M. Cloud, Introduction to Interval Analysis, SIAM, Philadelphia, 2009.
- Lloyd N. Trefethen and David Bau, III, Numerical Linear Algebra, SIAM, 1997.
- X. Liu and S. Oishi, Verified eigenvalue evaluation for Laplacian over polygonal domain of arbitrary shape, SIAM J. Numer. Anal. v. 51, no. 3, pp. 16341654, 2013

Let Ω be an open set in \mathbb{R}^{d} with Lipschitz boundary. Spectral problem 1, strong form
Find $(u, \lambda) \in\left(\mathcal{H}^{2}(\Omega), \mathbb{R}\right)$ such that a.e.

$$
-\Delta u=\lambda u \text { in } \Omega, \quad u=0 \text { on } \partial \Omega .
$$

Denote by (\cdot, \cdot) the L^{2} inner product on Ω Spectral problem 1, minimization form

$$
\lambda=\min _{w \in \mathcal{H}_{0}^{1}(\Omega),\|w\|_{0} \neq 0} \frac{(\nabla w, \nabla w)}{(w, w)}=(\nabla u, \nabla u)
$$

Denote by (\cdot, \cdot) the L^{2} inner product on Ω Spectral problem 1, minimization form

$$
\lambda=\min _{w \in \mathcal{H}_{0}^{1}(\Omega),\|w\|_{0} \neq 0} \frac{(\nabla w, \nabla w)}{(w, w)}=(\nabla u, \nabla u)
$$

Equivalently:
Spectral problem 1, variational form
Find $(u, \lambda) \in\left(\mathcal{H}_{0}^{1}(\Omega), \mathbb{R}\right)$ such that for all $v \in \mathcal{H}^{1}(\Omega)$,

$$
(\nabla u, \nabla v)=\lambda(u, v)
$$

What is a finite element?

A finite element triple (K, \mathcal{P}, Σ) consists of:

- A geometric domain K, used to tesselate/mesh a region in space;
- A finite dimensional vector space \mathcal{P} on this domain, approximating some function space;
- A set of linear functionals Σ dual to the approximation space.

Let $\Pi_{T}=\left\{\tau_{i}\right\}_{i=1}^{T}=\bar{\Omega}$ be a triangulation.

$$
V_{N}:=\left\{w \in \mathcal{H}^{1}(\Omega)|w|_{\tau_{i}} \in \mathcal{P} . \forall \tau_{i} \in \Pi_{T}, w \text { is continuous }\right\}
$$

Clearly $V_{T} \subset \mathcal{H}^{1}(\Omega)$.

Conforming H1 linear elements

Examples

Conforming H1 linear elements: continuity across edges

Examples

Conforming H1 linear elements: continuity across edges

Examples

Conforming H1 linear elements: continuity across edges

Examples

Conforming H1 linear elements: continuity across edges

Conforming H1 linear elements and interpolation
Interpolate $f(x, y)=x^{2}+y^{2}$

Conforming H1 linear elements and interpolation
Interpolate $f(x, y)=x^{2}+y^{2}$

Examples

Conforming H 1 linear elements and interpolation

Interpolate $f(x, y)=x^{2}+y^{2}$

Examples

Conforming H 1 linear elements and interpolation

Interpolate $f(x, y)=x^{2}+y^{2}$

Examples

Conforming H 1 linear elements and interpolation Interpolate $f(x, y)=x^{2}+y^{2}$

Examples

Best approximation by conforming FEM

Sample best approximation result
Under assumptions on Ω and the tessellation, the best approximation error of $u \in H^{k}(\Omega)$ by conforming FEM of piecewise polynomials of degree p and mesh parameter h

$$
\inf _{w \in V_{N}}\|u-w\|_{1} \leq C(p) h^{\mu-1}\|u\|_{H^{\star}(\Omega)}, \quad \mu=\min (k, p+1)
$$

[Widlund '76, Rannacher and Scott, '82]

Convergence using conforming elements

$$
\text { Let } \epsilon_{N}(\lambda):=\sup _{u \in \text { Scaled e.v. for } \lambda}\left\{\inf _{\chi \in V_{N}}\|u-\chi\|_{1 \cdot}\right\}
$$

Convergence using conforming elements
Let $\epsilon_{N}(\lambda):=\sup _{u \in \text { Scaled e.v. for } \lambda}\left\{\inf _{\chi \in V_{N}}\|u-\chi\|_{1}.\right\}$ If λ is a simple eigenvalue, \exists constants $c_{1}, c_{2}, c_{3}>0$ such that

$$
\left\|u-u_{N}\right\|_{1} \leq c_{1} \epsilon_{N}(\lambda), \quad c_{2} \epsilon_{N}^{2} \leq \lambda_{N, c}-\lambda \leq c_{3} \epsilon_{N}^{2} .
$$

[Chatelin '75, '83, Babuska and Osborn '89]

Convergence using conforming elements
Let $\epsilon_{N}(\lambda):=\sup _{u \in \text { Scaled e.v. for } \lambda}\left\{\inf _{\chi \in V_{N}}\|u-\chi\|_{1}.\right\}$ If λ is a simple eigenvalue, \exists constants $c_{1}, c_{2}, c_{3}>0$ such that

$$
\left\|u-u_{N}\right\|_{1} \leq c_{1} \epsilon_{N}(\lambda), \quad c_{2} \epsilon_{N}^{2} \leq \lambda_{N, c}-\lambda \leq c_{3} \epsilon_{N}^{2} .
$$

[Chatelin '75, '83, Babuska and Osborn '89]
Here ϵ_{N} depends on the regularity of the true eigenfunctions, and characterizes an approximation error.

Typical convergence results for eigenpairs

Convergence using conforming elements
Let $\epsilon_{N}(\lambda):=\sup _{u \in \text { Scaled e.v. for } \lambda}\left\{\inf _{\chi \in V_{N}}\|u-\chi\|_{1}.\right\}$ If λ is a simple eigenvalue, \exists constants $c_{1}, c_{2}, c_{3}>0$ such that

$$
\left\|u-u_{N}\right\|_{1} \leq c_{1} \epsilon_{N}(\lambda), \quad c_{2} \epsilon_{N}^{2} \leq \lambda_{N, c}-\lambda \leq c_{3} \epsilon_{N}^{2} .
$$

[Chatelin '75, '83, Babuska and Osborn '89]
Here ϵ_{N} depends on the regularity of the true eigenfunctions, and characterizes an approximation error.

Sample best approximation result

The best approximation error of $u \in H^{k}(\Omega)$ by conforming FEM of piecewise polynomials of degree p and mesh parameter h

$$
\inf _{w \in V_{h}}\|u-w\|_{1} \leq C(p) h^{\mu-1}\|u\|_{H^{k}(\Omega)}, \quad \mu=\min (k, p+1)
$$

[Widlund '76,Rannacher and Scott, '82]

Conforming FEM: approximation of λ from above

Consider
Model eigenvalue problem, discrete form
Find $\left(u_{N}, \lambda_{N, c}\right) \in\left(V_{N}, \mathbb{R}\right)$ such that for all $v_{N} \in V_{N}$,

$$
\left(\nabla u_{N}, \nabla v_{N}\right)=\lambda_{N, c}\left(u_{N}, v_{N}\right)
$$

Conforming FEM: approximation of λ from above

Consider
Model eigenvalue problem, discrete form
Find $\left(u_{N}, \lambda_{N, c}\right) \in\left(V_{N}, \mathbb{R}\right)$ such that for all $v_{N} \in V_{N}$,

$$
\left(\nabla u_{N}, \nabla v_{N}\right)=\lambda_{N, c}\left(u_{N}, v_{N}\right)
$$

Theorem: $\lambda_{N, c} \geq \lambda$.

Conforming FEM: approximation of λ from above

Consider
Model eigenvalue problem, discrete form
Find $\left(u_{N}, \lambda_{N, c}\right) \in\left(V_{N}, \mathbb{R}\right)$ such that for all $v_{N} \in V_{N}$,

$$
\left(\nabla u_{N}, \nabla v_{N}\right)=\lambda_{N, c}\left(u_{N}, v_{N}\right) .
$$

Theorem: $\lambda_{N, c} \geq \lambda$.
Proof:

$$
\lambda=\min _{w \in \mathcal{H}_{0}^{1}(\Omega),\|w\|_{0} \neq 0} \frac{(\nabla w, \nabla w)}{(w, w)} \leq \min _{w_{N} \in V_{N},\left\|w_{N}\right\|_{0} \neq 0} \frac{\left(\nabla w_{N}, \nabla w_{N}\right)}{\left(w_{N}, w_{N}\right)}=\lambda_{N, c} .
$$

Let $\Pi_{T}=\left\{\tau_{i}\right\}_{i=1}^{T}=\bar{\Omega}$ be a triangulation.

$$
\begin{aligned}
V_{N}:= & \left\{w \in L^{2}(\Omega)|w|_{\tau_{i}} \in \mathcal{P} \forall \tau_{i} \in \Pi_{T},\right. \\
& w \text { is not continuous across edges }, \\
& w=0 \text { on nodes on boundary }\}
\end{aligned}
$$

Clearly $V_{N} \not \subset \mathcal{H}^{1}(\Omega)$.

Non-conforming linear elements

Examples

Non-conforming linear elements: continuity at midpoints

Examples

Non-conforming linear elements: continuity at midpoints

Examples

Non-conforming linear elements: continuity at midpoints

Non-conforming linear elements and interpolation
Interpolate $f(x, y)=x^{2}+y^{2}$

Non-conforming linear elements and interpolation
Interpolate $f(x, y)=x^{2}+y^{2}$

Non-conforming linear elements and interpolation
Interpolate $f(x, y)=x^{2}+y^{2}$

Examples

Non-conforming linear elements and interpolation
Interpolate $f(x, y)=x^{2}+y^{2}$

Non-conforming linear elements and interpolation Interpolate $f(x, y)=x^{2}+y^{2}$

Comparison: conforming and non-conforming

Comparison: conforming and non-conforming

Comparison: conforming and non-conforming

Comparison: conforming and non-conforming

Comparison: conforming and non-conforming

Best approximation.
Let h be the mesh size of a quasi-regular triangulation. If $w \in H^{2}(\Omega)$ then $\exists c>0$ so that

$$
\left\|I_{N}(u)-u\right\|_{L^{2}(\Omega)} \leq c h^{m}\|u\|_{H^{m}}, \quad m=1,2 .
$$

[Armentano and Durán, 2004]

Consider
Model eigenvalue problem, discrete form
Find $\left(u_{N}, \lambda_{N, n}\right) \in\left(V_{N}, \mathbb{R}\right)$ such that for all $v_{N} \in V_{N}$,

$$
\left(\nabla u_{N}, \nabla v_{N}\right)=\lambda_{N, n}\left(u_{N}, v_{N}\right)
$$

Consider
Model eigenvalue problem, discrete form
Find $\left(u_{N}, \lambda_{N, n}\right) \in\left(V_{N}, \mathbb{R}\right)$ such that for all $v_{N} \in V_{N}$,

$$
\left(\nabla u_{N}, \nabla v_{N}\right)=\lambda_{N, n}\left(u_{N}, v_{N}\right)
$$

Is $\lambda_{N, n} \leq \lambda$?

Linear nonconforming elements

Theorem for linear non-conforming elements.

$$
\begin{aligned}
& \text { If }(u, \lambda) \in B_{2}^{1+r, \infty}(\Omega) \times \mathbb{R} \text { and if } \exists c>0 \text { so that }\left\|u_{N}-u\right\|_{h} \geq c h^{r} \\
& \text { for } r<1 \text { then for } h>0 \text { small enough }
\end{aligned}
$$

$$
\lambda_{N, n} \leq \lambda
$$

[Armentano and Durán, 2004]
This is an asymptotic result for singular Dirichlet eigenfunctions.

Concrete example: lowest Dirichlet e.v.

- Write original EVP in variational form
- Use conforming or non-conforming finite elements to write discrete EVP
- Have theorems to obtain bounds $\lambda_{N, n} \leq \lambda \leq \lambda_{N, c}$
- For fixed N, approximate discrete eigenvalues $\tilde{\Lambda}_{N, n}, \tilde{\Lambda}_{N, c}$
- Have theorems to estimate $\tilde{\Lambda}_{N}-\Lambda_{N}$
- Obtain good estimates for λ.
- Write original EVP in variational form
- Use conforming or non-conforming finite elements to write discrete EVP
- Have theorems to obtain bounds $\lambda_{N, n} \leq \lambda \leq \lambda_{N, c}$
- For fixed N, approximate discrete eigenvalues $\tilde{\Lambda}_{N, n}, \tilde{\Lambda}_{N, c}$
- Have theorems to estimate $\tilde{\Lambda}_{N}-\Lambda_{N}$
- Obtain good estimates for λ.

Are we done?

- Write original EVP in variational form
- Use conforming or non-conforming finite elements to write discrete EVP
- Have theorems to obtain bounds $\Lambda_{N, n} \leq \lambda \leq \Lambda_{N, c}$
- For fixed $h>0+$, approximate discrete eigenvalues $\tilde{\Lambda}_{N, c}, \tilde{\Lambda}_{N, n}$
- Have theorems to estimate $\Lambda_{N}-\tilde{\Lambda}_{N}$ in exact arithmetic!
- Use interval arithmetic to estimate $\left|\tilde{\ell}-\tilde{\Lambda}_{N}\right|$
- Combine to get bounding intervals for λ.

Concretely: Dirichlet evp

$$
E r r_{N}:=\int_{\Omega}\left\|\nabla u_{N}\right\|^{2} d V-\lambda_{N} \int_{\Omega} \frac{4\left|u_{N}\right|^{2}}{\left(1+r^{2}\right)^{2}} d V
$$

P1 conforming elements

$\lambda_{c, h}$	Err	N
10.95	$1.35135 \mathrm{e}-15$	207
10.7602	$1.92541 \mathrm{e}-14$	768
10.7115	$5.18084 \mathrm{e}-14$	2978
10.6988	$-4.31549 \mathrm{e}-14$	11748
10.6957	$-5.93197 \mathrm{e}-13$	46224

P1 non-conforming elements

$\lambda_{n c, h}$	Err	N
10.5863	$-1.25056 \mathrm{e}-14$	558
10.664	$3.22682 \mathrm{e}-14$	2181
10.6861	$2.67427 \mathrm{e}-14$	8691
10.6921	$-1.05844 \mathrm{e}-12$	34761
10.6938	$-7.48835 \mathrm{e}-12$	137709

Concretely: Dirichlet evp

$$
E r r_{N}:=\int_{\Omega}\left\|\nabla u_{N}\right\|^{2} d V-\lambda_{N} \int_{\Omega} \frac{4\left|u_{N}\right|^{2}}{\left(1+r^{2}\right)^{2}} d V
$$

P1 conforming elements

$\lambda_{c, h}$	Err	N
10.95	$1.35135 \mathrm{e}-15$	207

$10.7602 \quad 1.92541 \mathrm{e}-14 \quad 768$
$\begin{array}{lll}10.7115 & 5.18084 \mathrm{e}-14 & 2978\end{array} \quad$ Conjecture:
10.6988 -4.31549e-14 11748
$10.6957 \quad-5.93197 \mathrm{e}-13 \quad 46224$
$\lambda>10.69$
P1 non-conforming elements

$\lambda_{n c, h}$	Err	N
10.5863	$-1.25056 \mathrm{e}-14$	558
10.664	$3.22682 \mathrm{e}-14$	2181
10.6861	$2.67427 \mathrm{e}-14$	8691
10.6921	$-1.05844 \mathrm{e}-12$	34761
10.6938	$-7.48835 \mathrm{e}-12$	137709

Jakobson, Levitin, Nadirashvili and Polterovich (preprint '04, JCAM 2006)

- Consider the Bolza surface, $\gamma=2$, orientable.
- Let $\mathcal{P}:=\left\{(z, w) \in \mathbb{C}^{2}: w^{2}=F(z)=z \frac{(z-1)(z-i)}{(z+1)(z+i)}\right\}$
- \mathcal{P} has the conformal structure of the Bolza surface.
- Let g be the pullback of the round metric $\frac{4 d z d \bar{z}}{\left(1+|z|^{2}\right)}$ to \mathcal{P}.

Jakobson, Levitin, Nadirashvili and Polterovich, preprint 2004, JCAM 2006

Conjecture 1

$$
\lambda_{1}(\mathcal{P}) \operatorname{Area}(\mathcal{P}, g)=16 \pi
$$

To show:

$$
\lambda_{1}(\mathcal{P}) \operatorname{Area}(\mathcal{P}, g)=16 \pi
$$

- Let $\Pi: \mathcal{P} \rightarrow \mathbb{S}^{2}$ be a branched covering of second degree, with 6 ramification points.
- The metric g has singularities at these points.
- Define $\lambda_{1}:=\inf _{u \in H_{0}^{1}(\mathcal{P})} \frac{\|\nabla u\|^{2}}{\|u\|^{2}}$
- $\operatorname{Area}(\mathcal{P}, g)=2 \operatorname{Area}\left(\mathbb{S}^{2}\right)=8 \pi$.

Show:

$$
\lambda_{1}(\mathcal{P})=2
$$

Cannot do this directly!

- Let Ω be the half-disk in \mathbb{R}^{2}
- Prescribe Dirichlet data on solid segments, Neumann on rest
- Find first eigenvalue of

$$
-\Delta u=\lambda \frac{4}{\left(1+r^{2}\right)^{2}} u \text { in } \Omega,
$$

- Let Ω be the half-disk in \mathbb{R}^{2}
- Prescribe Dirichlet data on solid segments, Neumann on rest
- Find first eigenvalue of

$$
-\Delta u=\lambda \frac{4}{\left(1+r^{2}\right)^{2}} u \text { in } \Omega,
$$

Conjecture 2

$$
\lambda>2 .
$$

Theorem
 Conjecture 2 implies Conjecture 1.

Use numerics to assist?

This is still hard....use careful numerical simulation.

Find $\lambda \in \mathbb{R}, u \in H_{\partial D}^{1}(\Omega)$ so

$$
-\Delta u=\lambda \frac{4}{\left(1+r^{2}\right)^{2}} u \text { in } \Omega
$$

with mixed Dirichlet-Neumann data.
Generalized eigenvalue problem: $\lambda_{N} \in \mathbb{R}, u_{N} \in V_{N}$

$$
\int_{\Omega} \nabla u_{N} \cdot v_{N} d V=\lambda_{N} 4 \int_{\Omega} \frac{u_{N} v_{N}}{\left(1+r^{2}\right)^{2}} d V
$$

- True solution is not available.
- Need to conclude, after a fixed number of refinements that $\lambda_{N}>2 \Rightarrow \lambda>2$.

Numerical results

$$
E r r_{N}:=\int_{\Omega}\left\|\nabla u_{N}\right\|^{2} d V-\lambda_{N} \int_{\Omega} \frac{4\left|u_{N}\right|^{2}}{\left(1+r^{2}\right)^{2}} d V
$$

P1 conforming elements

$\lambda_{c . h}$	Err	N
2.42641	$-2.32063 \mathrm{e}-15$	253
2.34502	$-7.59321 \mathrm{e}-16$	965
2.31024	$-1.20319 \mathrm{e}-14$	3733
2.29249	$-2.32825 \mathrm{e}-13$	14880
2.28383	$-1.76215 \mathrm{e}-12$	58563

P1 non-conforming elements

$\lambda_{n c, h}$	Err	N
2.14419	$-1.46411 \mathrm{e}-15$	696
2.20874	$8.27631 \mathrm{e}-15$	2772
2.24127	$-1.16138 \mathrm{e}-13$	10956
2.25803	$-1.02808 \mathrm{e}-12$	44157
2.26656	$-1.58561 \mathrm{e}-11$	174726

Observation

$$
\lambda_{N, n} \searrow, \quad \lambda_{N, c} \nearrow
$$

Observation

$$
\lambda_{N, n} \searrow, \quad \lambda_{N, c} \nearrow
$$

Conclude $\lambda>2$?
Numerical evidence. [Jakobson, Levitin, Nadirishvili, NN, Polterovich '05.]

- Write original EVP in variational form
- Use conforming or non-conforming finite elements to write discrete EVP
- Have theorems to obtain bounds $\lambda_{n c h} \leq \lambda \leq \lambda_{c h}$ No
- For fixed $h>0+$, approximate discrete eigenvalues $\tilde{\lambda}_{n c h}, \tilde{\lambda}_{c h}$
- Have theorems to estimate $\lambda_{h}-\tilde{\lambda}_{h}$ in exact arithmetic!
- Theorem

Let $h>0$ be sufficiently small. Then the discrete eigenvalues using non-conforming linear FEM approximate λ from below.

- Derivatives of eigenfunction are singular. Eg, near origin,

$$
w_{j, n}(r, \theta)=r^{b}\left(1+r^{2}\right)^{\frac{1-\sqrt{1+\lambda}}{2}}{ }_{2} F_{1}\left(\tilde{\alpha}, \tilde{\alpha}+1 ; 1+b ;-r^{2}\right) \sin \left(\frac{j \pi}{2 \alpha} \theta\right)
$$

- Discrete eigenvalues using non-conforming Crouziex-Raviert elements approximate the true eigenvalue from below.
- Write original EVP in variational form
- Use conforming or non-conforming finite elements to write discrete EVP
- Have theorems to obtain bounds $\lambda_{\text {nch }} \leq \lambda \leq \lambda_{c h}$
- For fixed $h>0+$, approximate discrete eigenvalues $\tilde{\lambda}_{n c h}, \tilde{\lambda}_{c h}$
- Have theorems to estimate $\lambda_{h}-\tilde{\lambda}_{h}$ in exact arithmetic!
- Use interval arithmetic to estimate

Perhaps what we could do.

Perhaps what we could do.

Conjecture

Perhaps what we could do.

Conjecture

Perhaps what we could do.

Conjecture

Validated numerics

Theorem

Perhaps what we could do.

Conjecture

Perhaps what we could do.

Thanks to

4. 4 Canada Research Chairs

Thanks to the organizers

Fonds de recherche sur la nature

Québec 준 중

- Fix the mesh
- Let $\left(\lambda_{N, n}, u_{N, n}\right)$ be a non-conforming approximation
- interpolate $u_{N, n}$ by conforming elements on same mesh
- Check residual

$$
\left.E r r_{n \rightarrow c} \int_{\Omega}\left|\nabla \mathcal{I}_{n \rightarrow c} u_{N, n}\right|^{2}-\lambda_{N, n} \frac{4}{\left(1+r^{2}\right)^{2}} \right\rvert\, \mathcal{I}_{n \rightarrow c} u_{N, n} \|^{2} d A
$$

Cross-checking residuals

$E r r_{n \rightarrow c}$	$N_{\text {dof }}$	$E r r_{c \rightarrow n}$	$N_{\text {dof }}$
-0.295619	253	0.282211	696
0.0484749	965	0.13628	2772
0.0106499	3733	0.0689692	10956
0.00450842	14880	0.0344616	44157
-0.00149719	58563	0.0172685	174726

