Complex spectra of self-adjoint operator pencils

Michael Levitin

University of Reading

based on joint works with

Daniel Elton (Lancaster) and Iosif Polterovich (Montreal) (http://arxiv.org/abs/1303.2185, now in revision)

and

with E Brian Davies (King's College London) (in preparation)

イロト イポト イヨト イヨト

Let

$$\mathcal{P} = \mathcal{P}(\lambda) := A_0 + \lambda A_1 + \dots + \lambda^n A_n$$

be a family of operators in a Hilbert space \mathcal{H} , depending on a parameter $\lambda \in \mathbb{C}$, with self-adjoint operator coefficients

 $A_j = (A_j)^*, \qquad j = 1, \ldots, n$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let

$$\mathcal{P} = \mathcal{P}(\lambda) := A_0 + \lambda A_1 + \dots + \lambda^n A_n$$

be a family of operators in a Hilbert space \mathcal{H} , depending on a parameter $\lambda \in \mathbb{C}$, with self-adjoint operator coefficients

$$A_j = (A_j)^*, \qquad j = 1, \ldots, n$$

Such a family is called a self-adjoint (polynomial) operator pencil.

Sac

イロト 不得 トイヨト イヨト 二日

Let

$$\mathcal{P} = \mathcal{P}(\lambda) := A_0 + \lambda A_1 + \dots + \lambda^n A_n$$

be a family of operators in a Hilbert space \mathcal{H} , depending on a parameter $\lambda \in \mathbb{C}$, with self-adjoint operator coefficients

$$A_j = (A_j)^*, \qquad j = 1, \ldots, n$$

Such a family is called a *self-adjoint (polynomial) operator pencil*. I shall only deal in this talk with *linear* self-adjoint operator pencils written (with some abuse of notation) as

$$\mathcal{P}(\lambda) = A - \lambda B, \qquad A = A^*, B = B^*.$$

Let

$$\mathcal{P} = \mathcal{P}(\lambda) := A_0 + \lambda A_1 + \dots + \lambda^n A_n$$

be a family of operators in a Hilbert space \mathcal{H} , depending on a parameter $\lambda \in \mathbb{C}$, with self-adjoint operator coefficients

$$A_j = (A_j)^*, \qquad j = 1, \ldots, n$$

Such a family is called a *self-adjoint (polynomial) operator pencil*. I shall only deal in this talk with *linear* self-adjoint operator pencils written (with some abuse of notation) as

$$\mathcal{P}(\lambda) = A - \lambda B, \qquad A = A^*, B = B^*.$$

We say that $\lambda_0 \in \text{spec}(\mathcal{P})$ if $\mathcal{P}(\lambda_0)$ is not invertible, or, equivalently, if $0 \in \text{spec}(\mathcal{P}(\lambda_0))$.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We say that $\lambda_0 \in \text{spec}(\mathcal{P})$ if $\mathcal{P}(\lambda_0)$ is not invertible, or, equivalently, if $0 \in \text{spec}(\mathcal{P}(\lambda_0))$.

We say that λ_0 is an *eigenvalue* of \mathcal{P} if there exists $u \in \mathcal{H} \setminus \{0\}$ such that $\mathcal{P}(\lambda_0)u = 0$, or, equivalently, if 0 is an eigenvalue of $\mathcal{P}(\lambda_0)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

We say that $\lambda_0 \in \operatorname{spec}(\mathcal{P})$ if $\mathcal{P}(\lambda_0)$ is not invertible, or, equivalently, if $0 \in \operatorname{spec}(\mathcal{P}(\lambda_0))$.

We say that λ_0 is an *eigenvalue* of \mathcal{P} if there exists $u \in \mathcal{H} \setminus \{0\}$ such that $\mathcal{P}(\lambda_0)u = 0$, or, equivalently, if 0 is an eigenvalue of $\mathcal{P}(\lambda_0)$.

Let us look in more detail at a linear pencil $\mathcal{P} = A - \lambda B$. Suppose that *B* is positive. Then for an eigenvalue λ of \mathcal{P} we have

We say that $\lambda_0 \in \operatorname{spec}(\mathcal{P})$ if $\mathcal{P}(\lambda_0)$ is not invertible, or, equivalently, if $0 \in \operatorname{spec}(\mathcal{P}(\lambda_0))$.

We say that λ_0 is an *eigenvalue* of \mathcal{P} if there exists $u \in \mathcal{H} \setminus \{0\}$ such that $\mathcal{P}(\lambda_0)u = 0$, or, equivalently, if 0 is an eigenvalue of $\mathcal{P}(\lambda_0)$.

Let us look in more detail at a linear pencil $\mathcal{P} = A - \lambda B$. Suppose that *B* is positive. Then for an eigenvalue λ of \mathcal{P} we have

 $Au = \lambda Bu$

We say that $\lambda_0 \in \operatorname{spec}(\mathcal{P})$ if $\mathcal{P}(\lambda_0)$ is not invertible, or, equivalently, if $0 \in \operatorname{spec}(\mathcal{P}(\lambda_0))$.

We say that λ_0 is an *eigenvalue* of \mathcal{P} if there exists $u \in \mathcal{H} \setminus \{0\}$ such that $\mathcal{P}(\lambda_0)u = 0$, or, equivalently, if 0 is an eigenvalue of $\mathcal{P}(\lambda_0)$.

Let us look in more detail at a linear pencil $\mathcal{P} = A - \lambda B$. Suppose that *B* is positive. Then for an eigenvalue λ of \mathcal{P} we have

$$Au = \lambda Bu \quad \Longleftrightarrow B^{-1/2} A B^{-1/2} v = \lambda v,$$

We say that $\lambda_0 \in \operatorname{spec}(\mathcal{P})$ if $\mathcal{P}(\lambda_0)$ is not invertible, or, equivalently, if $0 \in \operatorname{spec}(\mathcal{P}(\lambda_0))$.

We say that λ_0 is an *eigenvalue* of \mathcal{P} if there exists $u \in \mathcal{H} \setminus \{0\}$ such that $\mathcal{P}(\lambda_0)u = 0$, or, equivalently, if 0 is an eigenvalue of $\mathcal{P}(\lambda_0)$.

Let us look in more detail at a linear pencil $\mathcal{P} = A - \lambda B$. Suppose that *B* is positive. Then for an eigenvalue λ of \mathcal{P} we have

$$Au = \lambda Bu \quad \Longleftrightarrow B^{-1/2} A B^{-1/2} v = \lambda v,$$

with $v = B^{1/2}u$, and the problem is equivalent to a standard one for a self-adjoint operator

We say that $\lambda_0 \in \operatorname{spec}(\mathcal{P})$ if $\mathcal{P}(\lambda_0)$ is not invertible, or, equivalently, if $0 \in \operatorname{spec}(\mathcal{P}(\lambda_0))$.

We say that λ_0 is an *eigenvalue* of \mathcal{P} if there exists $u \in \mathcal{H} \setminus \{0\}$ such that $\mathcal{P}(\lambda_0)u = 0$, or, equivalently, if 0 is an eigenvalue of $\mathcal{P}(\lambda_0)$.

Let us look in more detail at a linear pencil $\mathcal{P} = A - \lambda B$. Suppose that *B* is positive. Then for an eigenvalue λ of \mathcal{P} we have

$$Au = \lambda Bu \quad \Longleftrightarrow B^{-1/2} A B^{-1/2} v = \lambda v,$$

with $v = B^{1/2}u$, and the problem is equivalent to a standard one for a self-adjoint operator; the spectrum is real!

We say that $\lambda_0 \in \text{spec}(\mathcal{P})$ if $\mathcal{P}(\lambda_0)$ is not invertible, or, equivalently, if $0 \in \text{spec}(\mathcal{P}(\lambda_0))$.

We say that λ_0 is an *eigenvalue* of \mathcal{P} if there exists $u \in \mathcal{H} \setminus \{0\}$ such that $\mathcal{P}(\lambda_0)u = 0$, or, equivalently, if 0 is an eigenvalue of $\mathcal{P}(\lambda_0)$.

Let us look in more detail at a linear pencil $\mathcal{P} = A - \lambda B$. Suppose that *B* is positive. Then for an eigenvalue λ of \mathcal{P} we have

$$Au = \lambda Bu \quad \Longleftrightarrow B^{-1/2} A B^{-1/2} v = \lambda v,$$

with $v = B^{1/2}u$, and the problem is equivalent to a standard one for a self-adjoint operator; the spectrum is real!

Thus, the interesting case is when *both* A and B are not sign-definite — the pencil spectrum can be non-real.

M Levitin (Reading)

Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ :

 $(Au, u) = \lambda(Bu, u)$

and so,

 $Im\lambda \neq 0 \implies$

Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ :

 $(Au, u) = \lambda(Bu, u)$

and so,

$$Im\lambda \neq 0 \implies (Au, u) = (Bu, u) = 0$$

just reduces the dimension slightly. We need to do real work in each particular case.

Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ :

 $(Au, u) = \lambda(Bu, u)$

and so,

$$Im\lambda \neq 0 \implies (Au, u) = (Bu, u) = 0$$

just reduces the dimension slightly. We need to do real work in each particular case.

Typical problems include:

Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ :

 $(Au, u) = \lambda(Bu, u)$

and so,

$$Im\lambda \neq 0 \implies (Au, u) = (Bu, u) = 0$$

just reduces the dimension slightly. We need to do real work in each particular case.

Typical problems include: localisation of non-real eigenvalues,

Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ :

 $(Au, u) = \lambda(Bu, u)$

and so,

$$Im\lambda \neq 0 \implies (Au, u) = (Bu, u) = 0$$

just reduces the dimension slightly. We need to do real work in each particular case.

Typical problems include: localisation of non-real eigenvalues, asymptotics of counting functions of all,

Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ :

 $(Au, u) = \lambda(Bu, u)$

and so,

$$Im\lambda \neq 0 \implies (Au, u) = (Bu, u) = 0$$

just reduces the dimension slightly. We need to do real work in each particular case.

Typical problems include: localisation of non-real eigenvalues, asymptotics of counting functions of all, or only real eigenvalues,

Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ :

 $(Au, u) = \lambda(Bu, u)$

and so,

$$Im\lambda \neq 0 \implies (Au, u) = (Bu, u) = 0$$

just reduces the dimension slightly. We need to do real work in each particular case.

Typical problems include: localisation of non-real eigenvalues, asymptotics of counting functions of all, or only real eigenvalues, dependence on parameters, etc., and often the use of complex analysis.

Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ :

 $(Au, u) = \lambda(Bu, u)$

and so,

$$Im\lambda \neq 0 \implies (Au, u) = (Bu, u) = 0$$

just reduces the dimension slightly. We need to do real work in each particular case.

Typical problems include: localisation of non-real eigenvalues, asymptotics of counting functions of all, or only real eigenvalues, dependence on parameters, etc., and often the use of complex analysis.We look at two examples.

Simple matrix pencil

We consider the following class of problems. Fix an integer $N \in \mathbb{N}$, and define the classes of $N \times N$ matrices $H_{N;c}$ and $D_{m,n;\sigma,\tau}$, where

$$\mathcal{H}_{N;c} = egin{pmatrix} c & 1 & 0 & \dots & 0 \ 1 & c & 1 & \dots & 0 \ & \ddots & \ddots & \ddots & \ 0 & \dots & 1 & c & 1 \ 0 & \dots & 0 & 1 & c \end{pmatrix}$$

is tri-diagonal, $c \in \mathbb{R}$ is a parameter, and

< ∃ >

Simple matrix pencil (contd.)

is diagonal, where $m, n \in \mathbb{N}$ and $\sigma, \tau \in \mathbb{C}$ are parameters, and we assume m + n = N.

We are only going to consider the case $\sigma = -\tau = 1$, and denote for brevity

$$D_{m,n} := D_{m,n;1,-1}$$

We study the eigenvalues of the linear operator pencil

$$\mathcal{P}_{m,n;c} = \mathcal{P}_{m,n;c}(\lambda) = H_{m+n;c} - \lambda D_{m,n}$$

as $N = m + n \rightarrow \infty$.

M Levitin (Reading)

Basics

We start with the following easy result on the localisation of eigenvalues of the pencil $\mathcal{P}_{m,n;c}$.

Theorem

(a) The spectrum spec $\mathcal{P}_{m,n;c}$ is invariant under the symmetry $\lambda \to \overline{\lambda}$.

3

∃ ► < ∃ ►</p>

Basics

We start with the following easy result on the localisation of eigenvalues of the pencil $\mathcal{P}_{m,n;c}$.

Theorem

- (a) The spectrum spec $\mathcal{P}_{m,n;c}$ is invariant under the symmetry $\lambda \to \overline{\lambda}$.
- (b) All the eigenvalues $\lambda \in \operatorname{spec} \mathcal{P}_{m,n;c}$ satisfy

 $|\lambda| < 2 + |c|.$

3

∃ ► < ∃ ►</p>

< 17 < <

Basics

We start with the following easy result on the localisation of eigenvalues of the pencil $\mathcal{P}_{m,n;c}$.

Theorem

- (a) The spectrum spec $\mathcal{P}_{m,n;c}$ is invariant under the symmetry $\lambda \to \overline{\lambda}$.
- (b) All the eigenvalues $\lambda \in \operatorname{spec} \mathcal{P}_{m,n;c}$ satisfy

 $|\lambda| < 2 + |c|.$

(c) If $|c| \geq 2$, then spec $\mathcal{P}_{m,n;c} \subset \mathbb{R}$.

3

∃ ► < ∃ ►</p>

Rough asymptotics of eigenvalues as $N \to \infty$ is given by

Theorem

The non-real eigenvalues of $\mathcal{P}_{m,n;c}$ converge uniformly to the real axis as $n, m \to \infty$. More precisely,

3

∃ ► < ∃ ►</p>

< 17 < <

Rough asymptotics of eigenvalues as $N \to \infty$ is given by

Theorem

The non-real eigenvalues of $\mathcal{P}_{m,n;c}$ converge uniformly to the real axis as $n, m \to \infty$. More precisely,

$$\max\{|\operatorname{Im}(\lambda)| : \lambda \in \operatorname{spec} \mathcal{P}_{m,n;c}\} \\ \leq \max\left\{\frac{\log(m)}{m}(1+o(1)), \frac{\log(n)}{n}(1+o(1))\right\}$$
(1)

as $m, n \rightarrow \infty$.

Rough asymptotics of eigenvalues as $N \to \infty$ is given by

Theorem

The non-real eigenvalues of $\mathcal{P}_{m,n;c}$ converge uniformly to the real axis as $n, m \to \infty$. More precisely,

$$\max\{|\operatorname{Im}(\lambda)| : \lambda \in \operatorname{spec} \mathcal{P}_{m,n;c}\} \\ \leq \max\left\{\frac{\log(m)}{m}(1+o(1)), \frac{\log(n)}{n}(1+o(1))\right\}$$
(1)

as $m, n \rightarrow \infty$.

Note that

Rough asymptotics of eigenvalues as $N \to \infty$ is given by

Theorem

The non-real eigenvalues of $\mathcal{P}_{m,n;c}$ converge uniformly to the real axis as $n, m \to \infty$. More precisely,

$$\max\{|\operatorname{Im}(\lambda)| : \lambda \in \operatorname{spec} \mathcal{P}_{m,n;c}\} \\ \leq \max\left\{\frac{\log(m)}{m}(1+o(1)), \frac{\log(n)}{n}(1+o(1))\right\}$$
(1)

as $m, n \rightarrow \infty$.

Note that the estimate is sharp in the following sense: it's attained, and it needs both $n, m \rightarrow \infty$.

M Levitin	(Reading)
-----------	-----------

▲ロ ▶ ▲帰 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Example, c = 0, n = m = N/2

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example, c = 0, n = m = N/2

M Levitin (Reading)

Banff, 31 July 2013 9 / 32

E

Asymptotics, c = 0, n = m = N/2

Theorem

Let c = 0, $n = m = N/2 \rightarrow \infty$. The eigenvalues of $\mathcal{P}_{n,n:0}$ are all non-real, and satisfy

 $\operatorname{Im} \lambda = \pm 1/N * Y(|\operatorname{Re} \lambda|) + o(N^{-1}),$

where

$$Y(u):=\sqrt{4-u^2}\log\cot(\pi/4-rccos(u/2)/2)$$

Example, $c \neq 0$, n = m = N/2

11 / 32

Example, $c \neq 0$, n = m = N/2

M Levitin (Reading)

Banff, 31 July 2013 11 / 32

Ξ

900

< ∃ >

∃ ⊳

< 🗗 🕨 🔹

Asymptotics, $c \neq 0$, n = m = N/2

Theorem

Let $c \neq 0$, $n = m = N/2 \rightarrow \infty$. The eigenvalues of $\mathcal{P}_{n,n;c}$ satisfy

 $|\operatorname{Im} \lambda| \leq 1/N * Y_c(|\operatorname{Re} \lambda|) + o(N^{-1}),$

where Y_c is some explicitly described but complicated function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~
Asymptotics, $c \neq 0$, n = m = N/2

Theorem

Let $c \neq 0$, $n = m = N/2 \rightarrow \infty$. The eigenvalues of $\mathcal{P}_{n,n;c}$ satisfy

 $|\operatorname{Im} \lambda| \leq 1/N * Y_c(|\operatorname{Re} \lambda|) + o(N^{-1}),$

where Y_c is some explicitly described but complicated function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

Idea of proof

Do not try to analyse directly a characteristic polynomial in λ .

M Levitin (Reading)

프 ト - 프 ト

Image: A math display="block">A math display="block"/A math display="block"/>A math display="block"/A math display="block"/>A math display="block"/A math display="block"/>A math display="block"/A math display="block"/>A math display="block"/>A math display="block"/A math display="block"/>A math display="block"/A math display="block"/>A math display="block"/A m

3

996

Idea of proof

Do not try to analyse directly a characteristic polynomial in λ .

Set $\lambda - c = z + 1/z$, $\lambda + c = w + 1/w$. Then for non-real eigenvalues

 $F_m(z)F_n(w)=-1,$

where

$$F_m(z) = \frac{z^{n+1} - z^{-n-1}}{z^n - z^{-n}} = \frac{\sinh((n+1)\log z)}{\sinh(n\log z)}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Define a self-adjoint operator

$$\mathsf{T}_V = egin{pmatrix} V+k & -
abla \
abla & V-k \end{pmatrix} = -i\sigma_2
abla + k\sigma_3 + V,$$

where $\nabla = \frac{d}{dx}$, σ_2, σ_3 are Pauli matrices, k is the mass, and V(x) is a potential.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Define a self-adjoint operator

$$\mathsf{T}_V = egin{pmatrix} V+k & -
abla \
abla & V-k \end{pmatrix} = -i\sigma_2
abla + k\sigma_3 + V,$$

where $\nabla = \frac{d}{dx}$, σ_2, σ_3 are Pauli matrices, k is the mass, and V(x) is a potential.

For a given potential V, we denote by Σ_V the spectrum of the linear operator pencil

$$\gamma \mapsto \mathsf{T}_0 + \gamma \mathsf{V} = \begin{pmatrix} k & -\nabla \\ \nabla & -k \end{pmatrix} + \gamma \begin{pmatrix} \mathsf{V} & 0 \\ 0 & \mathsf{V} \end{pmatrix}.$$

(The spectral parameter is denoted γ in this problem for historical reasons.)

Define a self-adjoint operator

$$\mathsf{T}_V = egin{pmatrix} V+k & -
abla \
abla & V-k \end{pmatrix} = -i\sigma_2
abla + k\sigma_3 + V,$$

where $\nabla = \frac{d}{dx}$, σ_2, σ_3 are Pauli matrices, k is the mass, and V(x) is a potential.

For a given potential V, we denote by Σ_V the spectrum of the linear operator pencil

$$\gamma \mapsto \mathsf{T}_{\mathsf{0}} + \gamma \mathsf{V} = \begin{pmatrix} k & -\nabla \\ \nabla & -k \end{pmatrix} + \gamma \begin{pmatrix} \mathsf{V} & \mathsf{0} \\ \mathsf{0} & \mathsf{V} \end{pmatrix}.$$

(The spectral parameter is denoted γ in this problem for historical reasons.) Equivalently,

$$\Sigma_{\boldsymbol{V}} = \big\{ \gamma \in \mathbb{C} : \mathbf{0} \in \operatorname{spec}(\mathsf{T}_{\gamma \boldsymbol{V}}) \big\}.$$

(zero modes)

M Levitin (Reading)

Define a self-adjoint operator

$$\mathsf{T}_V = egin{pmatrix} V+k & -
abla \
abla & V-k \end{pmatrix} = -i\sigma_2
abla + k\sigma_3 + V,$$

where $\nabla = \frac{d}{dx}$, σ_2, σ_3 are Pauli matrices, k is the mass, and V(x) is a potential.

For a given potential V, we denote by Σ_V the spectrum of the linear operator pencil

$$\gamma \mapsto \mathsf{T}_{\mathsf{0}} + \gamma \mathsf{V} = \begin{pmatrix} k & -\nabla \\ \nabla & -k \end{pmatrix} + \gamma \begin{pmatrix} \mathsf{V} & \mathsf{0} \\ \mathsf{0} & \mathsf{V} \end{pmatrix}.$$

(The spectral parameter is denoted γ in this problem for historical reasons.) Equivalently,

$$\Sigma_{\boldsymbol{V}} = \big\{ \gamma \in \mathbb{C} : \mathbf{0} \in \operatorname{spec}(\mathsf{T}_{\gamma \boldsymbol{V}}) \big\}.$$

(zero modes)

M Levitin (Reading)

1d Dirac operator - history

Similar problems, as well as some other related questions, have been studied in a variety of situations in mathematical literature, e.g [Birman Solomyak 1977], [Klaus 1980], [Gesztesy et al. 1988], [Birman Laptev 1994], [Safronov 2001], [Schmidt 2010].

In physical literature, our problem appears in the study of electron waveguides in graphene (see [Hartmann Robinson Portnoi 2010], [Stone Downing Portnoi 2012] and many references there).

It was shown in [Hartmann Robinson Portnoi 2010] that for the potential $V_{\rm HRP}(x) = -1/\cosh(x)$ the solutions can be found explicitly in terms of special functions. Moreover, there exists an infinite sequence of coupling constants γ such that 0 is an eigenvalue of the operator $T_{\gamma V_{\rm HRP}}$.

M Levitin (Reading)

Function classes

All our potentials V are real valued and locally L^2 .

∃ ► < ∃ ►</p>

E 990

Function classes

All our potentials V are real valued and locally L^2 .

Let \mathbb{V}_0 denote the class of such potentials which additionally satisfy

 $\|V\|_{L^2(x-1,x+1)} o 0$ as $|x| \to \infty$.

In the literature, \mathbb{V}_0 is sometimes denoted as $c_0(L^2)$.

Function classes

All our potentials V are real valued and locally L^2 .

Let \mathbb{V}_0 denote the class of such potentials which additionally satisfy

$$\|V\|_{L^2(x-1,x+1)} o 0$$
 as $|x| o \infty$.

In the literature, \mathbb{V}_0 is sometimes denoted as $c_0(L^2)$.

Let \mathbb{V}_1 denote the class of real valued locally L^2 potentials which satisfy

$$\int_{\mathbb{R}} |V(x)| \, \mathrm{d}x < +\infty;$$

that is, we require V to be integrable. Equivalently, we can define $\mathbb{V}_1 = \mathbb{V}_0 \cap L^1$. The class \mathbb{V}_1 is sometimes denoted as $\ell^1(L^2)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

General bounds

Firstly we consider the number of points of Σ_V lying inside the disc $\{z \in \mathbb{C} : |z| \le R\}$ of radius $R \ge 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

General bounds

Firstly we consider the number of points of Σ_V lying inside the disc $\{z \in \mathbb{C} : |z| < R\}$ of radius R > 0.

Theorem

Suppose $V \in \mathbb{V}_1$. Then

 $\#(\Sigma_V \cap \{z \in \mathbb{C} : |z| \le R\}) \le C \|V\|_{L^1}R$

for any $R \ge 0$, where C is a universal constant (we can take $C = 4e/\pi$).

Sac

General bounds (contd.)

Restricting our attention to real points we have the following complementary lower bound

Theorem

Suppose $V \in \mathbb{V}_1$. Then

$$\#(\Sigma_V \cap [0, R]) \geq \frac{R}{\pi} \left| \int_{\mathbb{R}} V(x) \, \mathrm{d}x \right| + o(R)$$

as $R \to \infty$, while the same estimate holds for $\#(\Sigma_V \cap [-R, 0])$ (by symmetry).

▲ロ ▶ ▲帰 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

General bounds (contd.)

Restricting our attention to real points we have the following complementary lower bound

Theorem

Suppose $V \in \mathbb{V}_1$. Then

$$\#(\Sigma_V \cap [0, R]) \geq \frac{R}{\pi} \left| \int_{\mathbb{R}} V(x) \, \mathrm{d}x \right| + o(R)$$

as $R \to \infty$, while the same estimate holds for $\#(\Sigma_V \cap [-R, 0])$ (by symmetry). In particular, $\Sigma_V \cap \mathbb{R}$ contains infinitely many points if $\int_{\mathbb{R}} V(x) dx \neq 0$.

イロト 不得下 イヨト イヨト 二日

In general, the set Σ_V may contain complex eigenvalues — even though the operator T_V is self-adjoint. However

ヨト 《ヨト ヨ のへで

In general, the set Σ_V may contain complex eigenvalues — even though the operator T_V is self-adjoint. However

Theorem

If $V \in \mathbb{V}_0$ is single-signed then $\Sigma_V \subset \mathbb{R}$.

< 4 P ► <

200

In general, the set Σ_V may contain complex eigenvalues — even though the operator T_V is self-adjoint. However

Theorem

If $V \in \mathbb{V}_0$ is single-signed then $\Sigma_V \subset \mathbb{R}$.

Then the general bound turns into asymptotics:

Sac

In general, the set Σ_V may contain complex eigenvalues — even though the operator T_V is self-adjoint. However

Theorem

If $V \in \mathbb{V}_0$ is single-signed then $\Sigma_V \subset \mathbb{R}$.

Then the general bound turns into asymptotics:

```
Theorem

Suppose V \in \mathbb{V}_1 is single-signed. Then

\#(\Sigma_V \cap [0, R]) = \frac{R}{\pi} \left| \int_{\mathbb{R}} V(x) \, \mathrm{d}x \right| + o(R) = \frac{\|V\|_{L^1}}{\pi} R + o(R)
as R \to \infty.
```

For potentials of variable sign the behaviour of the γ -spectrum may be different, in some cases quite drastically so. For anti-symmetric potentials we have the following

Sar

For potentials of variable sign the behaviour of the γ -spectrum may be different, in some cases quite drastically so. For anti-symmetric potentials we have the following

Theorem

If $V \in \mathbb{V}_0$ is anti-symmetric then $\Sigma_V \cap \mathbb{R} = \emptyset$.

For potentials of variable sign the behaviour of the γ -spectrum may be different, in some cases quite drastically so. For anti-symmetric potentials we have the following

Theorem

If $V \in \mathbb{V}_0$ is anti-symmetric then $\Sigma_V \cap \mathbb{R} = \emptyset$.

Note that, the γ -spectrum may still contain an infinite number of complex eigenvalues.

∃ ► < ∃ ►</p>

For potentials of variable sign the behaviour of the γ -spectrum may be different, in some cases quite drastically so. For anti-symmetric potentials we have the following

Theorem

If $V \in \mathbb{V}_0$ is anti-symmetric then $\Sigma_V \cap \mathbb{R} = \emptyset$.

Note that, the γ -spectrum may still contain an infinite number of complex eigenvalues.

The absence of real points in the γ -spectrum shows that the general lower bound obtained is quite sharp.

- 4 同 1 - 4 回 1 - 4 回 1

For potentials of variable sign the behaviour of the γ -spectrum may be different, in some cases quite drastically so. For anti-symmetric potentials we have the following

Theorem

If $V \in \mathbb{V}_0$ is anti-symmetric then $\Sigma_V \cap \mathbb{R} = \emptyset$.

Note that, the γ -spectrum may still contain an infinite number of complex eigenvalues.

The absence of real points in the γ -spectrum shows that the general lower bound obtained is quite sharp.

Theorem also applies to potentials V satisfying the condition V(a+x) = -V(a-x) for some $a \in \mathbb{R}$ and all $x \in \mathbb{R}$.

Discussion of the results

Our results give information about the asymptotics of the counting function $\#(\Sigma_V \cap [0, R])$ as $R \to \infty$. We've already seen two cases when the results give leading term asymptotic behaviour of

$$\frac{R}{\pi} \int_{\mathbb{R}} |V(x)| \, \mathrm{d}x \quad \text{and} \quad \frac{R}{\pi} \left| \int_{\mathbb{R}} V(x) \, \mathrm{d}x \right| \tag{2}$$

respectively.

Sac

イロト イポト イヨト イヨト 二日

Discussion of the results

Our results give information about the asymptotics of the counting function $\#(\Sigma_V \cap [0, R])$ as $R \to \infty$. We've already seen two cases when the results give leading term asymptotic behaviour of

$$\frac{R}{\pi} \int_{\mathbb{R}} |V(x)| \, \mathrm{d}x \quad \text{and} \quad \frac{R}{\pi} \left| \int_{\mathbb{R}} V(x) \, \mathrm{d}x \right| \tag{2}$$

respectively. (Though they coincide if V is sign-definite).

Discussion of the results (contd.)

The above results may lead to a hypothesis that, in fact, the lower bound always gives the leading order term in the asymptotics of the counting function of the spectrum. However, this is not the case; for general (variable-signed) potentials the precise asymptotic behaviour of $\#(\Sigma_V \cap [0, R])$ as $R \to \infty$ appears to depend on V in a rather subtle way. In particular, this behaviour appears to be sensitive to 'gaps' in the potential, namely intervals where $V \equiv 0$ appearing between components of $\supp(V)$.

▲ロ ▶ ▲帰 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Discussion of the results (contd.)

The above results may lead to a hypothesis that, in fact, the lower bound always gives the leading order term in the asymptotics of the counting function of the spectrum. However, this is not the case; for general (variable-signed) potentials the precise asymptotic behaviour of $\#(\Sigma_V \cap [0, R])$ as $R \to \infty$ appears to depend on V in a rather subtle way. In particular, this behaviour appears to be sensitive to 'gaps' in the potential, namely intervals where $V \equiv 0$ appearing between components of $\supp(V)$.

Surprise

We can construct potentials for which the actual asymptotic coefficient lies anywhere between the modulus of the integral of the potential and the L^1 norm, modulo multiplication by R/π .

Examples — general setup

We restrict our attention mostly to piecewise constant potentials with compact support; these allow the easiest analysis and already demonstrate the full range of effects. Consider points $a_0 < a_1 < \cdots < a_m$ which partition the real line into *m* finite intervals $I_j = (a_{j-1}, a_j), j = 1, \ldots, m$, and two semi-infinite intervals $I_- = (-\infty, a_0)$ and $I_+ = (a_m, +\infty)$. Consider a potential

▲ロ ▶ ▲帰 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Examples — general setup

We restrict our attention mostly to piecewise constant potentials with compact support; these allow the easiest analysis and already demonstrate the full range of effects. Consider points $a_0 < a_1 < \cdots < a_m$ which partition the real line into *m* finite intervals $I_j = (a_{j-1}, a_j), j = 1, \ldots, m$, and two semi-infinite intervals $I_- = (-\infty, a_0)$ and $I_+ = (a_m, +\infty)$. Consider a potential

$$V(x) = W(x; [a_0, \dots, a_m]; \{v_1, \dots, v_m\}) := \begin{cases} v_j, & x \in I_j, \ j = 1, \dots, m, \\ 0, & x \in I_- \cup I_+, \end{cases}$$
(3)

with some given real constants v_j .

▲ロ ▶ ▲帰 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Examples — general setup (contd.)

On each interval, we can solve the equations explicitly in trigonometric functions; matching conditions lead to an explicit characteristic equation for eigenvalues: $\gamma \in \Sigma_V$ if and only if $D_V(\gamma) = 0$.

Examples — general setup (contd.)

On each interval, we can solve the equations explicitly in trigonometric functions; matching conditions lead to an explicit characteristic equation for eigenvalues: $\gamma \in \Sigma_V$ if and only if $D_V(\gamma) = 0$.

Thus, in each particular case our problem is reduced to constructing $D_V(\gamma)$ and finding its real or complex roots. We visualise the real roots of $D_V(\gamma)$ by simply plotting its graph for real arguments.

Example — One-gap non-zero-integral potentials

Consider the one-gap potentials $V_{3,g}(x) := W(x; [-g-1, -g, 0, 2]; \{-1, 0, 1\})$ parametrised by the gap length g. For each of these potentials, $\int_{\mathbb{R}} V_{3,g} = 1$ and $\|V_{3,g}\|_{L^1} = 3$. The graphs of $D_{V_{3,g}}(\gamma)$ for real γ and g = 0 or g = 1:

Example — One-gap non-zero-integral potentials (contd.)

We can expect asymptotics of the form

$$\#(\Sigma_{V_{3,g}} \cap [0,R]) = C_g \frac{R}{\pi} + O(1),$$

as $R \to \infty$. For the no-gap potential $V_{3,0}$ one of our Theorems gives such an asymptotics with $C_0 = 1 = \int_{\mathbb{R}} V_{3,1}$. On the hand, $D_{V_{3,1}}(\gamma)$ has three times as many real roots as $D_{V_{3,0}}(\gamma)$ (for sufficiently large γ). This leads to a constant $C_1 = 3 = ||V_{3,0}||_{L^1}$ in the asymptotics for the gap potential $V_{3,1}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Example — One-gap non-zero-integral potentials (contd.)

This example is just a partial case of a more complicated phenomenon Consider a general (not necessarily piecewise constant) one gap compact potential V(x) such that $\operatorname{supp}(V) = l_1 \cup l_2$, where l_1 and l_2 are compact intervals separated by a gap of length g > 0, and assume additionally that V(x) does not change sign on either I_i . If the signs of $V|_{I_1}$ and $V|_{I_2}$ coincide, then the asymptotic counting function involves $C = \|V\|_{L^1} = |\int_{\mathbb{D}} V|$. If, however, the signs of $V|_{l_1}$ and $V|_{l_2}$ are different, then the asymptotic behaviour is given by a complicated formula which depends not only upon the gap length g and the values of $\left|\int_{L} V\right|$ but also upon the rationality or irrationality of the ratio of these two integrals! The rigorous approach to this involves an intricate analysis based on the following version of a classical problem

Counting zeros

Define a function $f : \mathbb{R} \to \mathbb{R}$ by

 $f(x) = \cos(x) + a\cos(bx),$

where *a* and *b* are real parameters satisfying $0 \le a < 1$ and b > 0. For any function $\phi : \mathbb{R} \to \mathbb{R}$ we also set $f_{\phi} = f + \phi$. We want to consider f_{ϕ} as a perturbation of $f = f_0$ for large *x*. To this end introduce the family of conditions

$$\phi \in \mathcal{C}^k(\mathbb{R}), \quad \phi^{(k)}(x) = o(1) \text{ as } x \to \infty$$
 (Ak)

where $k \in \mathbb{N}_0$ (we'll only need to consider k = 0, 1, 2). Fix a perturbation ϕ . Introduce the counting function

 $N_{\phi}(R) = \# \{ x \in [0, R] \}, | f_{\phi}(x) = 0 \} \in \mathbb{N} \cup \{0, \infty\}$

We are interested in the asymptotic behaviour of $N_{\phi}(R)$ as $R \to \infty$, and how this behaviour depends on the parameters *a* and *b*.
Counting zeros — small ab

Proposition

Suppose ab < 1 and ϕ satisfies (A0), (A1). Then

$$\mathsf{N}_\phi(R) = rac{1}{\pi}\,R + O(1) \quad ext{as } R o \infty.$$

Remark

When ab < 1 we get the same asymptotic behaviour for $N_{\phi}(R)$ as in the case a = 0 (that is, when $f = \cos$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

Counting zeros — large *ab*, irrational case

When ab > 1 we can define $\alpha, \beta \in (0, \pi/2)$ by

$$\alpha = \arcsin \frac{\sqrt{a^2 b^2 - 1}}{\sqrt{b^2 - 1}} \quad \text{and} \quad \beta = \arcsin \frac{\sqrt{1 - a^2}}{a\sqrt{b^2 - 1}}.$$
 (4)

Also set $u = \frac{2}{\pi} (b\alpha + \beta)$. If we fix b > 1 and vary *a* from 1/b to 1 it is easy to check that α increases from 0 to $\pi/2$ and β decreases from $\pi/2$ to 0; it follows that *u* varies from 1 to *b*.

Proposition

Suppose ab > 1, b is irrational and ϕ satisfies (A0), (A1), (A2). Then

$$\lim_{R\to\infty}\frac{\mathsf{N}_{\phi}(R)}{R}=\frac{1}{\pi}\,u.$$

M Levitin (Reading)

∃ → < ∃ →</p>

Sac

Counting zeros — large *ab*, rational case

Proposition

Suppose ab > 1, b is rational and ϕ satisfies (A0), (A1). Write b = p/q where $p, q \in \mathbb{N}$ are coprime. If p and q are odd set P = p and Q = q; if p and q have opposite parity set P = 2p and Q = 2q. If $P + Qu \notin 4\mathbb{Z}$ then

$$\lim_{R \to \infty} \frac{\mathsf{N}_{\phi}(R)}{R} = \frac{1}{\pi} \left(\frac{4}{Q} \left[\frac{1}{4} (P + Qu) \right] - \frac{P}{Q} + \frac{2}{Q} \right).$$
(5)

We are using $\lfloor x \rfloor$ to denote the largest integer which does not exceed x.

▲ロ ▶ ▲帰 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Counting zeros — large *ab*, rational case (contd.)

Remark

From (5) and the bounds $x - 1 \le \lfloor x \rfloor \le x$ we get

$$\frac{1}{\pi} u - \frac{2}{Q\pi} \leq \lim_{R \to \infty} \frac{\mathsf{N}_{\phi}(R)}{R} \leq \frac{1}{\pi} u + \frac{2}{Q\pi}.$$

Using the size of Q as a measure of 'how irrational' b is it follows that the result for irrational b can be viewed as a limit of the rational case.