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4. What we should retain from this presentation: (a) We propose
in this work a complete program for wedge-like membranes; (b) For
convex cones in higher-dimensions. (Only part (a), in this
presentation)

5. Problem is a model for “manifolds with density”

6. What we describe is a model for eigenvalue problems associated
with degenerate elliptic operators.

7. Renewed interest in “wedge-like membrane” isoperimetric
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What to retain:
Old:
Kohler-Jobin -+ Saint-Venant = Faber-Krahn.

New:

weighted Kohler-Jobin +weighted Saint-Venant = Payne-Weinberger

Why care?
Consider right isoceles triangle with equal sides of unit length
(Payne-Weinberger)

a =1, > 45.0734
o =2, > 47.6325
o =4, )\ > 45.9094

Faber-Krahn (among all domains): A; > 36.3368
2

V3A
Exact value: A\; = 49.350625
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~ 45.5858

Faber-Krahn (among all triangles): A1 >



1. History and Motivation: Four Classical Inequalities

Rayleigh-Faber-Krahn (1897, 1920, 1923) inequality Let
D c R9. Consider,

Au+Xiu = 0inD (1)
u = 0ondD.

Rayleigh-Ritz Principle:

2
d
A= inf dp VoL o Wf} : 2)
pewg(D) [p ¢*dx
Cj/d-/s 2—-1,1
MD) 2 A(DY) = = e 3)

where j4/o_1 1 denotes the first positive zero of the Bessel function
Jaja—1(x) and Cy = 79/2 /T (1 + d/2) the volume of the unit ball.

D| = D"



Four Classical Inequalities

2. De Saint Venant Inequality: Consider,

—Av = 1inD (4)
v = 0ondD.

Torsional rigidity is defined by

P:/Dvdx:/D Vv |? dx. (5)

Rayleigh-Ritz Principle:

2
1_ o dolVelex il (6)
Proewi o) ([, ¢dx)



Four Classical Inequalities

2. De Saint Venant Inequality (proved by Pdlya in 1948,

Cont’d)
‘D‘1+2/d

P(D) < P(D*) = d(d+2)
d

Ford =2, P < p*=CC

3. Poélya-Szeg6 Conjecture, 1951 (proved by Kohler-Jobin,
1978)

i
d12 d+2 411
=5 > * *\ 55 2 s
PID)AD)'T" = P(D)NDY)Y = Cy gy
For d = 2, the original conjecture:

16.77
4

P(D)N\* > mjg,/8=



Four Classical Inequalities

This was proved by Kohler-Jobin (1975, 1978).
For d = 2, There were improvements by Payne, Payne-Weinberger,
Payne-Rayner (1972),

1
P(D) \* > %

4. Pélya-Szeg6 (1951)
From (4), and the Rayleigh-Ritz principle for A(D), it is clear that

2 2
P:/ VdX:/ |vv|2dX:M S |D|M
D D

Ip ‘vadx Ip ‘vadx
D]

= D)

Therefore
P(D)A(D) < |D|



Combining Kohler-Jobin & Saint Venant improves

Faber-Krahn.

Combining the Kohler-Jobin Theorem, and the St. Venant
Inequality, it is clear one fairs better than Faber-Krahn, viz.

2

> Cd a+2 .2
= <P(D)d(d+2)) Jd 11

2/d 2
Cy Jdj2—11

- |D’2/d

A(D)



Payne-Rayner inequality (1973): For D C R?

2 A
Jullf — 4
with equality for the disk. This is a reverse Holder inequality.
Kohler-Jobin (1977, 1981): For D C RY
lul3 A9/
|| H2 — 2dC .d—2 ) (8)
Yily dJdj2—11

with equality if D is a ball.
Chiti (1982) gave the most general version of this reverse Holder
inequality for [[ully/||ullo»q > p > 0.



Payne-Rayner/Chiti to Motivate Pdlya-Szegd/Kohler-Jobin

Start with (6), applied to the fundamental eigenfunction u to
obtain

fD|Vu’ dx fD|Vu‘2dx fD u? dx

T (Jpud)® o wtdx ([, udk)”

Therefore, applying Chiti with p =1, g = 2, we obtain

1 AL+S

< [
2dCdJ§_11

-d+2
Jd 11

d+2
@2 b
P/\2_Cdd(d 2)

>2dCd_/d 11



-
Jtm 2 +1)2(v+2)

m=1

Apply for v = % — 1. (See "“The Rayleigh Function”, Kishore,
1963, or the Lehmer Tables, 1943)

I

%Y,

Wedge: W, = {(r,0):0<6 <7w/a},a>1




Wedge-Like Membrane Inequalities

Payne-Weinberger inequality for wedge-like membranes
(1955): Let D C W,. Then

A> N = (40‘(0‘“)/ h2(r,0)r dr d9> oy (9)

T Ja,1
where h = r®sinaf. Here (r, ) are polar coordinates taken at the

apex of the wedge, and j, 1 the first zero of the Bessel function
Ja(x). Equality holds if and only if D is a circular sector W,.

A(D )ID!/‘J“ > A\(D")[D; o (10)

where D* denotes any circular sector. Here

yDy,,:/ h2(r,0)r dr df.
D



This inequality improves on the Faber-Krahn inequality for certain
domains (as is the case of certain triangles) and has the
interpretation of being a version of Faber-Krahn in dimension
2a+ 2 for axially symmetric domains (Bandle, Payne have the
details).

The proof of this inequality relies on a geometric isoperimetric
inequality for the quantity

ID|p = Aq = / h?(r,0)r dr dé
D
which is optimized for the circular sector in W,, and a carefully

crafted symmetrization argument (weighted symmetric decreasing
rearrangement).



Geometric inequality for wedge-like membranes

For DC Wy ={(r,0):0<6<7w/a}, a>1.

(2a+2)/(2a+1)
(2@ 7{ w(r, 0)d5> > daletl) )

™

with equality for the circular sector.

Obviously, one would like to see if one can improve the other
three inequalities (of Saint Venant, Pélya-Szego,
Kohler-Jobin) for wedge-like membranes.



Our work: Three Problems for wedge-like membranes

For D C W,, we consider

D, - Au+Xlu = 0 inD
S 7 = 0 ondD,

D, . —div(hkVw) = hkf inD
27w =0 in DN W,

Here k > 0 and h(r,0) = r® sinaf, as above, where the function f
belongs to the weighted Lebesgue space L?(D, dy), and du is the
measure defined by

dp = h*(r,0) rdrd® = r®**1 (sin a0)* drde. (11)
The case k =2;f =1 of P,

D, - —div(h*’Vw) = h?> inD
91 w = 0 indDNW,



Three problems, cont'd

We claim that Pj3 is equivalent to

D, - —Av = h(r,0) inD
v =0 in 0D N W,

To see this, let v = hw, in P;3.
Relative torsional rigidity is defined via the variational

formulation )
V| rdrdf
1 — inf M' (12)
Pa gewp*(D) ([, ¢h rdrd®)

which is in fact equivalent to

2
1 JolVeldn (13)

Po  6eWa(Ddn) ([5¢dp)”
where du = h?(r,0) rdrdf.
I A isoperimetric inequality of Saint-Venant-type for a wedge-li



Payne Interpretation in Fractional Weinstein Space

@ Case a = 1. In this case, D is such that y > 0, and P4

reduces to
D, - Av+y = 0 inD
Yl v = 0 indDNW,
With v = y w, the problem is then
2 0w
Aw+—-—— = -1 inD
Py y Oy
% =0 in 9D N {y > 0},

Let the function ®(x1, x2, x3, xa) be defined by

®(x1,x2,x3,x4) = w(x,y) where x =x4; y=1/x2+x3 + x3.

This function has axial symmetry with respect to the xz-axis.
It is defined on

Dy = {(x1,%2,%3,%a) € R¥|x = x4,y = \/x} + 3§ + x3,(x,y) € D}




Payne Interpretation in Fractional Weinstein Space, Cont'd

D, C R* is obtained from D via rotation around the x-axis. The
function ® satisfies

A4(D:—1 in D4, ®=0on 8D4

Note that d = 2a+ 2 = 4. Let dV = dxydxodxzdxs, and

P:/ ddV
Dy

Then

1 P
Plz/vydxdy:/wy2dxdy:/ ddV = —
D D 4 Dy 4



Payne Interpretation in Fractional Weinstein Space, Cont'd

Therefore, applying the previous inequalities for P
o Pdlya-Szegs:
P < [D4\7t

So

1
Pi < ——|D4A7?!
47

_ %(477) ( /D x2dxdy> A1

= A N1

where A; = [}, y2dxdy.
@ Payne-Rayner:

2
PA3 > 8% 721
Therefore
PN > 73,



Payne Interpretation in Fractional Weinstein Space, Cont'd

@ Saint Venant: a2
P< VD4’
- 247

1
1/1\2 3
Pr<c (=) A¥2
1_3<87r> 1

The original interpretation in the case of A was observed by

Payne.
1 s 1/2 5
1T .
Az <2A1> S11

and is also optimized for the half-disk.

So



Payne Interpretation in Fractional Weinstein Space, Cont'd

o Case a = 2. In this case, D is such that x > 0,y > 0, and P4

reduces to

D, - Av+2xy = 0 inD

Yl v = 0 indaDNwW,
With v = 2x y w, the problem is then
20w 20w

A -——+— = -1 inD
Py W+x8x+y8y in

% =0 in 9D N {x >0,y > 0},

Let the function ®(x1, x2, x3, y1, ¥2, ¥3) be defined by
¢(X1)X25X37y17y27y3) — W(X7y)

with x = 1/X12—|-X22—|-X§; y:\/y12+y22+y32. This

function has x and y as axes of symmetry. It is defined on

6
De = {(x1, X2, X3, 1, ¥2,¥3) € R'|x = \/Xf+x§+x32,y: \/y12+y22+y327(xyy) € D}

obtained via two “rotations” of D around the coordinate axes.




Payne Interpretation in Fractional Weinstein Space, Cont'd

The function ® satisfies

A6¢:—1 in D6, ® =0on 8D6.

Note that d =2a+ 2 = 6. Let dV = dxydxodxsdy;dy»>dys, and

P:/ ddV

De

Then

P —2/ v Xy dxd —4/ w x% y2dxd —4/ <1>dv—i
2 = D .y y_ D .y .y_ (47T)2 D6 - 47_(_2'
Also

|Ds| = / dv = (477)2/ x2y? dxdy = 4% A,
Ds D

where Ay = 4 [, x? y? dxdy.



Payne Interpretation in Fractional Weinstein Space, Cont'd

Therefore, applying the previous inequalities for P

@ Pdlya-Szegé:
P < |Dg|\!

which leads to
P> < A AL
@ Payne-Rayner:
3
Pﬁzlzgﬁr
Therefore

™
PoA* > 23



Payne Interpretation in Fractional Weinstein Space, Cont'd

@ Saint Venant:
- 61/3|D6|4/3

- 481

1
1/ 1\%
<-(=—) A¥3
P2—4<727r> 2

Again the original interpretation in the case of A was observed

by Payne
1 ™ 1/3 .2
> 2 =
= <12A2> 2.1

and isoperimetry holds for the last two inequalities for the
quarter disk with the same A, as D.

which simplifies as



Pdlya-Szego for wedge-like membrane

Theorem. For a wedge-like membrane D C W,
Po < |D|p A1

where

D]y = Aq = / h? dxdy
D
Proof. Start with

D, - —Av = h(r,§) inD
) v =0 indDNW,

(Jpvhady)” _ [pv2 [ph?
fD’VV|2 B fDW"f
A7LD|,

«

IA



Another Proof inspired by Pdlya-Szego

Since the eigenfunctions {u,}%°; form an orthonormal basis of
L?(D), corresponding to the eigenvalues
0< A=< <. <)\ — 00, one can write

\D|h:/Dh2dA:§: </DhundA>2, (14)
n=1

o0

Pazz)\i(/DhundA)z. (15)

n=1

and

The result is then immediate from the ordering of the eigenvalues,

VIZ. 1 o 9 1
P, < — hu,dA) = —|D|,.
a<>\12</ou ) >\1Hh

n=1

Key: Expand h =377 ap u, with oy = [ hu, dA, and
v = 220:1 0Bn u,, then use Plancherel-Parseval.



Payne-Rayner for wedge-like membrane

Theorem. For a wedge-like membrane D C W,

P )\a+2 m Jo%a

Proof. Start with Rayleigh-Ritz

1 fD |Vul? rdrd9

Pa ( [, uh rdrd6)?
u being the fundamental eigenfunction. Then

< [p|Vul? rdrdo [ u? rdrd6
P Jp u? rdrdd (fDuhrdrdH)'

We need a reverse Holder inequality.



Chiti for wedge-like membranes

Theorem. For a wedge-like membrane D C W,

(/ uqh2qu)q < K(p,q,\ @) </ uP h2pdA)p (16)
D D

with K(p, g,2a + 2) as given in the Chiti statement i.e.

1
pP—q _ Jor,d r(2*q)a+1jg(r)dr 9

K(p, g\ @) = (%) P (et 1) Az ( : )
(fé“vl r(2—p)a+1jg(r)dr> P

-

Equality holds when D is the circular sector.



Proof of Payne-Rayner result

Apply this theorem with p = 1, g = 2 This takes the explicit form

2
/fdAgiavﬂ (/ uhdA) . (17)
D Wja,l D



Saint Venant for wedge-like membrane

Theorem (Hasnaoui-H.) For a wedge-like membrane D C W,

a 1/(a+1)
P, < 1 ( Q‘D‘hﬂ )

a+2 \4(a+1)>r

Equality holds for the circular sector.
Scale-free version:

2a+4 2a+4

Pa(D)|D|;2a+2 < Pa(D*)’D*|;2a+2. (18)

This is a corollary (case k =2, f = 1 of the following more general
setting)



Dirichlet Boundary Value Problem for a wedge-like
membrane

Consider again the more general

P, . —div(hkVu) = hkf inD
2w = 0 indDNW,

Here k > 0 and h(r,8) = r® sina#, as above, where the function f
belongs to the weighted Lebesgue space L?(D, dyu), and dp is the
measure defined by

dp = h* dA = r***1 (sin af)* drd6. (19)

Let f be a smooth function defined in D, and f* denote its
weighted symmetrization. We let ;(D) = [ du, and Sp be the
sector such that u(D) = u(So), with ry denoting the radius of Sp.



Let u be the weak solution to problem (P2) and v the function
defined by

rn é
“(r.8)=v'() = [ ( | ok dp) 5k 45, (20)
r 0
which is the weak solution to the problem

{—div(thv) = hkf* in S
Py :

v =0 in 35y N W.
Then
u*(x,y) < v(x,y) a.e in S. (21)
and
/D\Vu\qdu < /5 IVv|9du, 0<qg<2 (22)
0



Prove of Saint Venant

Let ry as above, then v, = wy h where

N 40z1+4(r02 =) h(r,0) V(r.0)€S.  (23)

vi(r, 6)

is the explicit solution of (the symmetrized problem on Sp)

on 05.

174 =

—-Av = h inS
0

Pa:/ vhdA = /Wd,u:/ IVwl|?du
D D D

|VW*\2dM:/ v.hdA = P,
50 50

IA



Kohler-Jobin for wedge-like membrane (Hasnaoui-H.,

Preprint 2013)

We also have the isoperimetric result improving Payne-Weinberger

« * [e2 * ﬂ- e}
Po(D)XF?(D) > Po(D*)X*F3(D*) = 160{(&“)2(&”)@;4.

(24)

M

2



Let u be the solution of problem P,. Then
(1) For p> 1+a7k,

ess sup |u(r, )| < p(D)== "5 e k)l;((g(kpti)) —h (/D f|pd'u>P

2(ak+2)
ak+4 !

[ vulan < 4401 ( / Iflpdu>p,
D D

()
()

ak+1 1/(ak+2)
= (2120 (1517

and B denoting the Euler Beta function.

p(ak+2)

akta—p» One has

(2) For 1<p<

and g =

where




A Geometric Isoperimetric Inequality

Proposition. Let D be a bounded subset of W with a
Cl-boundary. Then, for any nonnegative number p, we have

(ak+1)/(ak+2)
/ h5(r,0)\/dr2 + r2d62 > C(a, k) (/ hk(r,H)rdrd9> :
oD D
With
/(ak+2)
C((ak 27K 1 k1)
Cla, k) = <a B > .

Equality holds if and only if D is a circular sector of angle T
o

Remark: kK =0, a > 1; see Bandle's book (a-symmetrization);
Lions-Pacella k = 0, higher d using Brun-Minkowski;
Payne-Weinberger k =2, o > 1; Maderna-Salsa a =1, k >0



