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fundamental mode of vibration of a membrane, λ ,(ii) (de Saint
Venant) for “torsional ridigity”, P,(iii) Pólya-Szegő (relating
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4. What we should retain from this presentation: (a) We propose
in this work a complete program for wedge-like membranes; (b) For
convex cones in higher-dimensions. (Only part (a), in this
presentation)
5. Problem is a model for “manifolds with density”
6. What we describe is a model for eigenvalue problems associated
with degenerate elliptic operators.
7. Renewed interest in “wedge-like membrane” isoperimetric
problems (Ratzkin, Treibergs, Brock, Chiacchio, Mercaldo, etc.)
with strong connections to weighted isoperimetric inequalities.
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What to retain:
Old:

Kohler-Jobin + Saint-Venant =⇒ Faber-Krahn.

New:

weighted Kohler-Jobin +weighted Saint-Venant =⇒ Payne-Weinberger (weighted Faber-Krahn).

Why care?
Consider right isoceles triangle with equal sides of unit length
(Payne-Weinberger)

α = 1, λ1 ≥ 45.0734

α = 2, λ1 ≥ 47.6325

α = 4, λ1 ≥ 45.9094

Faber-Krahn (among all domains): λ1 ≥ 36.3368

Faber-Krahn (among all triangles): λ1 ≥
4π2

√
3 A
≈ 45.5858

Exact value: λ1 = 49.350625
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1. History and Motivation: Four Classical Inequalities

Rayleigh-Faber-Krahn (1897, 1920, 1923) inequality Let
D ⊂ Rd . Consider,

∆ u + λu = 0 in D (1)

u = 0 on ∂D.

Rayleigh-Ritz Principle:

λ = inf
φ∈W 1

0 (D)

∫
D

∣∣∇φ∣∣2 dx∫
D φ2 dx

(2)

λ (D) ≥ λ (D∗) =
C

2/d
d j2d/2−1,1

|D|2/d
(3)

where jd/2−1,1 denotes the first positive zero of the Bessel function

Jd/2−1(x) and Cd = πd/2/Γ(1 + d/2) the volume of the unit ball.

|D| = |D∗|
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Four Classical Inequalities

2. De Saint Venant Inequality: Consider,

−∆ v = 1 in D (4)

v = 0 on ∂D.

Torsional rigidity is defined by

P =

∫
D

v dx =

∫
D

∣∣∇v
∣∣2 dx . (5)

Rayleigh-Ritz Principle:

1

P
= inf

φ∈W 1
0 (D)

∫
D

∣∣∇φ∣∣2 dx(∫
D φ dx

)2 . (6)
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Four Classical Inequalities

2. De Saint Venant Inequality (proved by Pólya in 1948,
Cont’d)

P(D) ≤ P(D∗) =
|D|1+2/d

d (d + 2) C
2/d
d

For d = 2, P ≤ P∗ = |D|2
8π .

3. Pólya-Szegő Conjecture, 1951 (proved by Kohler-Jobin,
1978)

P(D)λ(D)
d+2

2 ≥ P(D∗)λ(D∗)
d+2

2 = Cd

jd+2
d
2
−1,1

d (d + 2)

For d = 2, the original conjecture:

P(D)λ2 ≥ π j40,1/8 =
16.7π

4
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Four Classical Inequalities

This was proved by Kohler-Jobin (1975, 1978).
For d = 2, There were improvements by Payne, Payne-Weinberger,
Payne-Rayner (1972),

P(D)λ2 ≥ 16π

4

4. Pólya-Szegő (1951)
From (4), and the Rayleigh-Ritz principle for λ(D), it is clear that

P =

∫
D

v dx =

∫
D

∣∣∇v
∣∣2 dx =

(∫
D v dx

)2∫
D

∣∣∇v
∣∣2 dx

≤ |D|
∫
D v2 dx∫

D

∣∣∇v
∣∣2 dx

<
|D|
λ(D)

Therefore
P(D)λ(D) < |D|
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Combining Kohler-Jobin & Saint Venant improves
Faber-Krahn.

Combining the Kohler-Jobin Theorem, and the St. Venant
Inequality, it is clear one fairs better than Faber-Krahn, viz.

λ(D) ≥
(

Cd

P(D) d (d + 2)

) 2
d+2

j2d
2
−1,1

≥
C

2/d
d j2d/2−1,1

|D|2/d
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Payne-Rayner inequality (1973): For D ⊂ R2

‖u‖22
‖u‖21

≤ λ

4π
(7)

with equality for the disk. This is a reverse Hölder inequality.
Kohler-Jobin (1977, 1981): For D ⊂ Rd

‖u‖22
‖u‖21

≤ λd/2

2d Cd jd−2
d/2−1,1

, (8)

with equality if D is a ball.
Chiti (1982) gave the most general version of this reverse Hölder
inequality for ‖u‖q/‖u‖p, q ≥ p > 0.
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Payne-Rayner/Chiti to Motivate Pólya-Szegő/Kohler-Jobin

Start with (6), applied to the fundamental eigenfunction u to
obtain

1

P
≤
∫
D

∣∣∇u
∣∣2 dx(∫

D u dx
)2 =

∫
D

∣∣∇u
∣∣2 dx∫

D u2 dx

∫
D u2 dx(∫
D u dx

)2 .
Therefore, applying Chiti with p = 1, q = 2, we obtain

1

P
≤ λ1+ d

2

2dCd jd−2
d
2
−1,1

Or,

P λ
d+2

2 ≥ Cd

jd+2
d
2
−1,1

d (d + 2)
>2d Cd jd−2

d
2
−1,1
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∞∑
m=1

1

j4ν,m
=

1

24(ν + 1)2(ν + 2)

Apply for ν = d
2 − 1. (See “The Rayleigh Function”, Kishore,

1963, or the Lehmer Tables, 1943)

Wedge: Wα = {(r , θ) : 0 ≤ θ ≤ π/α}, α ≥ 1
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Wedge-Like Membrane Inequalities

Payne-Weinberger inequality for wedge-like membranes
(1955): Let D ⊂ Wα. Then

λ ≥ λ∗ =
(4α(α + 1)

π

∫
D

h2(r , θ)r dr dθ
) −1
α+1

j2α,1 (9)

where h = rα sinαθ. Here (r , θ) are polar coordinates taken at the
apex of the wedge, and jα,1 the first zero of the Bessel function
Jα(x). Equality holds if and only if D is a circular sector Wα.

λ(D)|D|
1
α+1

h ≥ λ(D∗)|D∗|
1
α+1

h (10)

where D∗ denotes any circular sector. Here

|D|h =

∫
D

h2(r , θ)r dr dθ.
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This inequality improves on the Faber-Krahn inequality for certain
domains (as is the case of certain triangles) and has the
interpretation of being a version of Faber-Krahn in dimension
2α + 2 for axially symmetric domains (Bandle, Payne have the
details).
The proof of this inequality relies on a geometric isoperimetric
inequality for the quantity

|D|h = Aα =

∫
D

h2(r , θ)r dr dθ

which is optimized for the circular sector in Wα, and a carefully
crafted symmetrization argument (weighted symmetric decreasing
rearrangement).
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Geometric inequality for wedge-like membranes

For D ⊂ Wα = {(r , θ) : 0 ≤ θ ≤ π/α}, α ≥ 1.(
2α

π

∮
∂D

h2(r , θ)ds

)(2α+2)/(2α+1)

≥ 4α(α + 1)

π
Aα

with equality for the circular sector.

Obviously, one would like to see if one can improve the other
three inequalities (of Saint Venant, Pólya-Szegő,
Kohler-Jobin) for wedge-like membranes.
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Our work: Three Problems for wedge-like membranes

For D ⊂ Wα, we consider

P1 :

{
∆u + λu = 0 in D
u = 0 on ∂D,

P2 :

{
−div(hk∇w) = hk f in D
w = 0 in ∂D ∩W,

Here k > 0 and h(r , θ) = rα sinαθ, as above, where the function f
belongs to the weighted Lebesgue space L2(D, dµ), and dµ is the
measure defined by

dµ = hk(r , θ) rdrdθ = rαk+1 (sinαθ)k drdθ. (11)

The case k = 2; f ≡ 1 of P2

P3 :

{
−div(h2∇w) = h2 in D
w = 0 in ∂D ∩W,
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Three problems, cont’d

We claim that P3 is equivalent to

P4 :

{
−∆v = h(r , θ) in D
v = 0 in ∂D ∩W,

To see this, let v = hw , in P3.
Relative torsional rigidity is defined via the variational
formulation

1

Pα
= inf

φ∈W 1,2
0 (D)

∫
D |∇φ|

2 rdrdθ(∫
D φh rdrdθ

)2 . (12)

which is in fact equivalent to

1

Pα
= inf

φ∈W2(D,dµ)

∫
D |∇φ|

2 dµ(∫
D φ dµ

)2 , (13)

where dµ = h2(r , θ) rdrdθ.
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Payne Interpretation in Fractional Weinstein Space

Case α = 1. In this case, D is such that y > 0, and P4

reduces to

P4 :

{
∆v + y = 0 in D
v = 0 in ∂D ∩W,

With v = y w , the problem is then

P4 :

 ∆w +
2

y

∂w

∂y
= −1 in D

w = 0 in ∂D ∩ {y > 0},

Let the function Φ(x1, x2, x3, x4) be defined by

Φ(x1, x2, x3, x4) = w(x , y) where x = x4; y =
√

x2
1 + x2

2 + x2
3 .

This function has axial symmetry with respect to the x4-axis.
It is defined on

D4 = {(x1, x2, x3, x4) ∈ R4|x = x4, y =
√

x2
1 + x2

2 + x2
3 , (x , y) ∈ D}
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Payne Interpretation in Fractional Weinstein Space, Cont’d

D4 ⊂ R4 is obtained from D via rotation around the x-axis. The
function Φ satisfies

∆4 Φ = −1 in D4, Φ = 0 on ∂D4.

Note that d = 2α + 2 = 4. Let dV = dx1dx2dx3dx4, and

P =

∫
D4

ΦdV

Then

P1 =

∫
D

v y dxdy =

∫
D

w y2 dxdy =
1

4π

∫
D4

ΦdV =
P

4π
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Payne Interpretation in Fractional Weinstein Space, Cont’d

Therefore, applying the previous inequalities for P

Pólya-Szegő:
P < |D4|λ−1

So

P1 <
1

4π
|D4|λ−1

=
1

4π
(4π)

(∫
D

x2dxdy

)
λ−1

= A1 λ
−1

where A1 =
∫
D y2dxdy .

Payne-Rayner:

Pλ3 ≥ 8
π2

2
j21,1.

Therefore
P1λ

3 ≥ πj21,1
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Payne Interpretation in Fractional Weinstein Space, Cont’d

Saint Venant:

P ≤
√

2|D4|3/2

24π

So

P1 ≤
1

3

(
1

8π

) 1
2

A
3/2
1 .

The original interpretation in the case of λ was observed by
Payne.

λ ≥ 1

2

(
π

2A1

)1/2

j21,1

and is also optimized for the half-disk.
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Payne Interpretation in Fractional Weinstein Space, Cont’d

Case α = 2. In this case, D is such that x > 0, y > 0, and P4

reduces to

P4 :

{
∆v + 2xy = 0 in D
v = 0 in ∂D ∩W,

With v = 2x y w , the problem is then

P4 :

 ∆w +
2

x

∂w

∂x
+

2

y

∂w

∂y
= −1 in D

w = 0 in ∂D ∩ {x > 0, y > 0},

Let the function Φ(x1, x2, x3, y1, y2, y3) be defined by

Φ(x1, x2, x3, y1, y2, y3) = w(x , y)

with x =
√

x2
1 + x2

2 + x2
3 ; y =

√
y2
1 + y2

2 + y2
3 . This

function has x and y as axes of symmetry. It is defined on

D6 = {(x1, x2, x3, y1, y2, y3) ∈ R6|x =
√

x2
1 + x2

2 + x2
3 , y =

√
y2
1 + y2

2 + y2
3 , (x, y) ∈ D}

obtained via two “rotations” of D around the coordinate axes.
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Payne Interpretation in Fractional Weinstein Space, Cont’d

The function Φ satisfies

∆6 Φ = −1 in D6, Φ = 0 on ∂D6.

Note that d = 2α + 2 = 6. Let dV = dx1dx2dx3dy1dy2dy3, and

P =

∫
D6

ΦdV

Then

P2 = 2

∫
D

v x y dxdy = 4

∫
D

w x2 y2dxdy =
4

(4π)2

∫
D6

ΦdV =
P

4π2
.

Also

|D6| =

∫
D6

dV = (4π)2

∫
D

x2y2 dxdy = 4π2A2

where A2 = 4
∫
D x2 y2 dxdy .
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Payne Interpretation in Fractional Weinstein Space, Cont’d

Therefore, applying the previous inequalities for P

Pólya-Szegő:
P < |D6|λ−1

which leads to

P2 < A2 λ
−1.

Payne-Rayner:

Pλ4 ≥ 12
π3

6
j42,1.

Therefore
P2λ

4 ≥ π

2
j42,1
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Payne Interpretation in Fractional Weinstein Space, Cont’d

Saint Venant:

P ≤ 61/3|D6|4/3

48π

which simplifies as

P2 ≤
1

4

(
1

72π

) 1
3

A
4/3
2 .

Again the original interpretation in the case of λ was observed
by Payne

λ ≥ 1

2

(
π

12A2

)1/3

j22,1,

and isoperimetry holds for the last two inequalities for the
quarter disk with the same A2 as D.
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Pólya-Szegő for wedge-like membrane

Theorem. For a wedge-like membrane D ⊂ Wα

Pα ≤ |D|h λ−1

where

|D|h = Aα =

∫
D

h2dxdy

Proof. Start with

P4 :

{
−∆v = h(r , θ) in D
v = 0 in ∂D ∩W,

Pα =

(∫
D v h dxdy

)2∫
D

∣∣∇v
∣∣2 ≤

∫
D v2

∫
D h2∫

D

∣∣∇v
∣∣2

≤ λ−1 |D|h
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Another Proof inspired by Pólya-Szegő

Since the eigenfunctions {un}∞n=1 form an orthonormal basis of
L2(D), corresponding to the eigenvalues
0 < λ ≡ λ1 < λ2 ≤ . . . ≤ λn →∞, one can write

|D|h =

∫
D

h2 dA =
∞∑

n=1

(∫
D

h un dA

)2

, (14)

and

Pα =
∞∑

n=1

1

λn

(∫
D

h un dA

)2

. (15)

The result is then immediate from the ordering of the eigenvalues,
viz.

Pα <
1

λ1

∞∑
n=1

(∫
D

h un dA

)2

=
1

λ1
|D|h.

Key: Expand h =
∑∞

n=1 αn un with αn =
∫
D hun dA, and

v =
∑∞

n=1 βn un, then use Plancherel-Parseval.
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Payne-Rayner for wedge-like membrane

Theorem. For a wedge-like membrane D ⊂ Wα

Pαλ
α+2 ≥ π

α
j2αα

Proof. Start with Rayleigh-Ritz

1

Pα
≤
∫
D |∇u|2 rdrdθ(∫
D uh rdrdθ

)2 .
u being the fundamental eigenfunction. Then

1

Pα
≤
∫
D |∇u|2 rdrdθ∫

D u2 rdrdθ

∫
D u2 rdrdθ(∫
D uh rdrdθ

)2 .
We need a reverse Hölder inequality.
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Chiti for wedge-like membranes

Theorem. For a wedge-like membrane D ⊂ Wα(∫
D

uqh2−qdA

) 1
q

≤ K (p, q, λ, α)

(∫
D

up h2−pdA

) 1
p

(16)

with K (p, q, 2α + 2) as given in the Chiti statement i.e.

K (p, q, λ, α) =
( π

2α

) p−q
pq
λ

(α+1) q−p
pq

(∫ jα,1
0 r (2−q)α+1Jq

α(r)dr
) 1

q

(∫ jα,1
0 r (2−p)α+1Jp

α(r)dr
) 1

p

.

Equality holds when D is the circular sector.
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Proof of Payne-Rayner result

Apply this theorem with p = 1, q = 2 This takes the explicit form∫
D

u2dA ≤ α

πj2αα,1
λα+2

(∫
D

u hdA

)2

. (17)
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Saint Venant for wedge-like membrane

Theorem (Hasnaoui-H.) For a wedge-like membrane D ⊂ Wα

Pα ≤
1

α + 2

(
α |D|α+2

h

4α(α + 1)α π

)1/(α+1)

Equality holds for the circular sector.
Scale-free version:

Pα(D)|D|
− 2α+4

2α+2

h ≤ Pα(D∗)|D∗|
− 2α+4

2α+2

h . (18)

This is a corollary (case k = 2, f = 1 of the following more general
setting)
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Dirichlet Boundary Value Problem for a wedge-like
membrane

Consider again the more general

P2 :

{
−div(hk∇u) = hk f in D
u = 0 in ∂D ∩W,

Here k > 0 and h(r , θ) = rα sinαθ, as above, where the function f
belongs to the weighted Lebesgue space L2(D, dµ), and dµ is the
measure defined by

dµ = hk dA = rαk+1 (sinαθ)k drdθ. (19)

Let f be a smooth function defined in D, and f ? denote its
weighted symmetrization. We let µ(D) =

∫
D dµ, and S0 be the

sector such that µ(D) = µ(S0), with r0 denoting the radius of S0.
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Theorem 1

Let u be the weak solution to problem (P2) and v the function
defined by

v(r , θ) = v?(r) =

∫ r0

r

(∫ δ

0
f ?(ρ)ραk+1 dρ

)
δ−(αk+1) dδ, (20)

which is the weak solution to the problem

P4 :

{
−div(hk∇v) = hk f ? in S0

v = 0 in ∂S0 ∩W.

Then

u?(x , y) ≤ v(x , y) a.e in S0. (21)

and ∫
D
|∇u|qdµ ≤

∫
S0

|∇v |qdµ, 0 < q ≤ 2 (22)
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Prove of Saint Venant

Let r0 as above, then v? = w? h where

v?(r , θ) =
1

4α + 4
(r2

0 − r2) h(r , θ) ∀(r , θ) ∈ S0. (23)

is the explicit solution of (the symmetrized problem on S0){
−∆v = h in S0

v = 0 on ∂S0.

Pα =

∫
D

vhdA =

∫
D

wdµ =

∫
D
|∇w |2dµ

≤
∫

S0

|∇w∗|2dµ =

∫
S0

v∗hdA = P∗α.
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Kohler-Jobin for wedge-like membrane (Hasnaoui-H.,
Preprint 2013)

We also have the isoperimetric result improving Payne-Weinberger

Pα(D)λα+2(D) ≥ Pα(D∗)λα+2(D∗) =
π

16α(α + 1)2(α + 2)
j2α+4
α,1 .

(24)
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Theorem 2

Let u be the solution of problem P2. Then
(1) For p > 1 + αk

2 ,

ess sup |u(r , θ)| ≤ µ(D)
2

αk+2−
1
p

p(αk + 2)

C (α, k)2 (2(p − 1)− αk)

(∫
D

|f |pdµ
) 1

p

(2) For 1 < p < 2(αk+2)
αk+4 , and q = p(αk+2)

αk+2−p , one has∫
D
|∇u|qdµ ≤ AC−q(α, k)

(∫
D
|f |pdµ

) q
p

,

where

A =
p

q(p − 1)

 Γ
(

pq
q−p

)
Γ
(

q
q−p

)
Γ
(

p(q−1)
q−p

)


q
p
−1

,

C (α, k) =

(
(α k + 2)α k+1

α
B

(
1

2
,
k + 1

2

))1/(αk+2)

(25)

and B denoting the Euler Beta function.
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A Geometric Isoperimetric Inequality

Proposition. Let D be a bounded subset of W with a
C 1-boundary. Then, for any nonnegative number p, we have∫
∂D

hk(r , θ)
√

dr2 + r2dθ2 ≥ C (α, k)

(∫
D

hk(r , θ)rdrdθ

)(αk+1)/(αk+2)

.

With

C (α, k) =

(
(α k + 2)α k+1

α
B

(
1

2
,
k + 1

2

))1/(αk+2)

.

Equality holds if and only if D is a circular sector of angle
π

α
.

Remark: k = 0, α ≥ 1; see Bandle’s book (α-symmetrization);
Lions-Pacella k = 0, higher d using Brun-Minkowski;
Payne-Weinberger k = 2, α ≥ 1; Maderna-Salsa α = 1, k ≥ 0
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