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Time Dependent Ginzburg-Landau equation.

Consider a superconductor placed at a temperature lower than the
critical one. It is well-understood from numerous experimental
observations, that a sufficiently strong current, applied through the
sample, will force the superconductor to arrive at the normal state.
To explain this phenomenon mathematically, we use the
time-dependent Ginzburg-Landau model which is defined by the
following system of equations, and will be referred to as (TDGL1)
(Time Dependent Ginzburg-Landau equation).
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(TDGL1)

∂ψ

∂t
+ iφψ = (∇− iA)2 ψ + ψ

(
1− |ψ|2

)
, in R+ × Ω ,

(1a)

κ2 curl 2A + σ

(
∂A

∂t
+∇φ

)
= Im (ψ̄ · (∇− iA)ψ) , in R+ × Ω ,

(1b)

ψ = 0 , on R+ × ∂Ωc ,
(1c)

(∇− iA)ψ · ν = 0 , on R+ × ∂Ωi ,
(1d)

σ

(
∂A

∂t
+∇φ

)
· ν = J , on R+ × ∂Ωc ,

(1e)

σ

(
∂A

∂t
+∇φ

)
· ν = 0 , on R+ × ∂Ωi .

(1f)
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1

|∂Ω|

∫
∂Ω

curl A(t, x) ds = hex , on R+ , (1g)

ψ(0, x) = ψ0(x) , in Ω , (1h)

A(0, x) = A0(x) , in Ω , (1i) .
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In the above ψ denotes the order parameter, A is the magnetic
potential, φ is the electric potential, κ denotes the
Ginzburg-Landau parameter, which is a material property, and the
normal conductivity of the sample is denoted by σ. ds denotes the
induced measure on ∂Ω. The domain Ω ⊂⊂ R2, occupied by the
superconducting sample, has a smooth interface, denoted by ∂Ωc ,
with a conducting metal which is at the normal state.
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We require that ψ would vanish on ∂Ωc in (1c), and allow for a
smooth current

J = jJr ,

satisfying

(J)

∫
∂Ωc

Jr ds = 0 , (3)

and

(2) the sign of Jr is constant on each connected component of ∂Ωc .
(4)

We also require:

Both ∂Ωc and ∂Ωi have two components. (5)
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Figure 1 presents a typical sample.
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We assume, for the initial conditions (1h,i), that

ψ0 ∈ H1(Ω,C) and A0 ∈ H1(Ω,R2) , (6)

and:
‖ψ0‖∞ ≤ 1 . (7)

We consider Coulomb gauge solutions of (1):

div A = 0 in Ω, A · ν = 0 on ∂Ω . (8)
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Stationary normal solutions.

If we assume time independence and a solution of (TDGL1)
(0,An, φn), we get in the Coulomb gauge for the magnetic and
electric normal potentials An and φn. These equations are obtained
by setting ψ ≡ 0 in (1b), yielding

−c curl 2An +∇φn = 0 in Ω ,

−σ ∂φn∂ν = j Jr on ∂Ω ,
1

|∂Ω|
∫
∂Ω curl An ds = hex ,

in which c = κ2/σ.
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One possible mechanism which contributes to the breakdown of
superconductivity by a strong current is the magnetic field induced
by the current. In the absence of electric current, it was proved by
Giorgi-Phillips that, when a sufficiently strong magnetic field is
applied on the sample’s boundary (or when hex is sufficiently
large), the normal state, for which ψ ≡ 0, becomes the unique
solution for the steady-state version of (1) (cf. also
Fournais-Helffer and the references therein).
For the time-dependent Ginzburg-Landau equations it was proved
in Feireisl-Takac that every solution must reach an equilibrium in
the long-time limit. When combined with the results in
Giorgii-Phillips, it follows that when the applied magnetic field is
sufficiently large the normal state becomes globally stable.
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Much less is known in the presence of electric currents. Moreover,
the magnetic field is not the only mechanism which forces the
sample into the normal state when the electric current is
sufficiently large.
Prove global stability of the normal state, as a solution of (1), for
sufficiently large currents. Determine the right notions of critical
fields or of critical curves

f (hex , j , κ, σ) = 0 ,

determining the stability or not of the solutions.
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A non self-adjoint operator.

The linearization of the problem at the normal stationary state
leads to the analysis: Let

Lh = −∇2
hAn

+ i hφn ,

be defined over the domain

D(Lh) = {u ∈ H2(Ω) | u|∂Ωc = 0 ; ∇u · ν|∂Ωi
= 0 } .

The goal is to prove that a proper bound on the resolvent of Lh.
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The general question is to prove that if the current is strong
enough, the magnetic field induced by this current forces the
stability, that is the convergence as t → +∞ to the normal
stationary state. Let

µ(h) = inf
u∈H1(Ω,C)

u|∂Ωc =0 ; ‖u‖2=1

‖∇hAnu‖2
2 .

This is simply the ground state energy of the magnetic Laplacian
(selfadjoint part of Lh).
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In some asymptotic regime, the following model plays a role and
one open question is:
Show that the spectrum of

(Dy −
x2

2
)2 + D2

x + icy

in R2
+ (Dirichlet) is non empty when c 6= 0.

Known results (Almog-Helffer-Pan) are for c small and c large.
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References : Fournais-Helffer (book), Almog, Almog-Helffer-Pan,
Almog-Helffer.
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