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The Steklov spectral problem on a bounded domain Ω ⊂ Rd is

∆u = 0 in Ω, ∂nu = σu on ∂Ω.

0 = σ0 < σ1 ≤ σ2 ≤ · · · ↗ ∞

The Steklov eigenvalues are the eigenvalues of the
Dirichlet–to–Neumann operator Λ : C∞(∂Ω)→ C∞(∂Ω),

defined by
Λf = ∂nu

where ∆u = 0 in Ω and u = f on ∂Ω.

The operator Λ is an elliptic self-adjoint Ψdo of order 1, with
principal symbol |ξ|. It follows that

σk ∼ C(d)

(
k

|∂Ω|

)1/(d−1)

as k ↗∞.
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Isoperimetric problems for Steklov eigenvalues

Problem

Maximize σk(Ω) among domains Ω ⊂ Rd with |∂Ω| = 1.

Given c > 0, it is clear that

σk(cΩ) =
1

c
σk(Ω).

Therefore, the functional

Ω 7→ σ̃k(Ω) := σk(Ω)|∂Ω|1/d−1

is scaling invariant.

Equivalent problem

Maximize σ̃k(Ω) among all regular domains Ω ⊂ Rd.
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Variational characterization of σk

The starting point of many strategies to obtain isoperimetric
results is to use a variational characterization. . .

Let
Hk = {V ⊂ H1(Ω) : dim V = k}.

σk = min
V∈Hk

max
f∈V\{0}

∫
Ω |∇f |2 dx∫
∂Ω f2 dS

Observation
The infimum of σk(Ω) among domains with |∂Ω| = 1 is zero.

This is related to loss of compactness for the trace map

H1(Ω)→ L2(∂Ω)

Channels, cusps,. . .
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Physical interpretation in two dimension
The non homogeneous Neumann spectral problem with
density 0 < ρ ∈ C∞(Ω) is

−∆u = µρu in Ω, ∂nu = 0 on ∂Ω.

0 = µ0 < µ1(ρ) ≤ µ2(ρ) ≤ · · · ↗ ∞

These are characterized using the Rayleigh quotient∫
Ω |∇f |2 dx∫
Ω f2 ρdx

If ρndx
n→∞−→ dS, then for f ∈ H1(Ω)

lim
n→∞

∫
Ω |∇f |2 dx∫
Ω f2 ρn dx

=

∫
Ω |∇f |2 dx∫
∂Ω f2 dS

One can think of the Steklov problem as a free membrane
with its mass uniformly distributed along its boundary.
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Isoperimetric inequalities for planar domains.

Weinstock, 1954
If Ω ⊂ R2 is simply connected,

σ1(Ω)|∂Ω| ≤ σ1(D)|∂D = 2π.

Szegő, 1954

If Ω ⊂ R2 is simply connected,

µ1(Ω)|Ω| ≤ µ1(D)|D|.

Observation
Let Aε = D \ B(0, ε). Then for small ε > 0 one has

σ1(Aε)|∂Aε| > 2π

Simple-connectedness is not merely a technical assumption!

What can we say for multiply connected domains?
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Normalized eigenvalues of Aε
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Higher eigenvalues for simply connected domains

Hersch–Payne–Schifer, 1974.

If Ω ⊂ R2 is simply connected, then for each k ∈ N,

σk(Ω)|∂Ω| ≤ kσ1(D)|∂D = 2kπ.

G.–Polterovich, 2010.
This inequality is sharp, and attained in the limit by a family of
domains Ωε degenerating to k disjoint identical disks.

k = 4

This contrasts with Neumann eigenvalues. . .

8 / 11



Higher eigenvalues for simply connected domains

Hersch–Payne–Schifer, 1974.

If Ω ⊂ R2 is simply connected, then for each k ∈ N,

σk(Ω)|∂Ω| ≤ kσ1(D)|∂D = 2kπ.

G.–Polterovich, 2010.
This inequality is sharp, and attained in the limit by a family of
domains Ωε degenerating to k disjoint identical disks.

k = 4

This contrasts with Neumann eigenvalues. . .
8 / 11



Upper bounds for surfaces

Fraser–Schoen, 2011.
If Ω is a smooth compact surface of genus γ with l boundary
components, then

σ1(Ω)|∂Ω| ≤ 2(γ + l)π.

• Weinstock: γ = 0, l = 1, k = 1.

• Hersch–Payne–Schiffer: γ = 0, l = 1, arbitrary k ∈ N.

• Fraser–Schoen, 2011: k = 1, arbitrary γ and l.

These inequality are in general not sharp. For instance,

Fraser–Schoen, 2011
For l = 2 and γ = 0, the maximum of σ1(Ω)|∂Ω| is attained at
the critical catenoid. (max ≈ 4π/1.2)

Also, not sharp for large l. . .
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Open problems/projects

Let Ω is a smooth compact surface of genus γ with l boundary
components.

σk(Ω)|∂Ω| ≤ 2π(γ + l)k

Problem
Find sharp upper bounds in the general case (good luck!)

Ongoing project with Bruno Colbois

There exists a sequence Ωn of surfaces such that

σ1(Ωn)|∂Ωn| ↗ ∞.

(In this situation, the genus will have to diverge.)
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Thank you for your attention!


