Sharp isoperimetric inequalities
 for Steklov eigenvalues

Alexandre Girouard

Université Laval
July 2013

The Steklov spectral problem on a bounded domain $\Omega \subset \mathbb{R}^{d}$ is

$$
\Delta u=0 \text { in } \Omega, \quad \partial_{n} u=\sigma u \text { on } \partial \Omega .
$$

$$
0=\sigma_{0}<\sigma_{1} \leq \sigma_{2} \leq \cdots \nearrow \infty
$$

The Steklov spectral problem on a bounded domain $\Omega \subset \mathbb{R}^{d}$ is

$$
\Delta u=0 \text { in } \Omega, \quad \partial_{n} u=\sigma u \text { on } \partial \Omega .
$$

$$
0=\sigma_{0}<\sigma_{1} \leq \sigma_{2} \leq \cdots \nearrow \infty
$$

The Steklov eigenvalues are the eigenvalues of the Dirichlet-to-Neumann operator $\Lambda: C^{\infty}(\partial \Omega) \rightarrow C^{\infty}(\partial \Omega)$, defined by

$$
\wedge f=\partial_{n} u
$$

where $\Delta u=0$ in Ω and $u=f$ on $\partial \Omega$.

The Steklov spectral problem on a bounded domain $\Omega \subset \mathbb{R}^{d}$ is

$$
\Delta u=0 \text { in } \Omega, \quad \partial_{n} u=\sigma u \text { on } \partial \Omega .
$$

$$
0=\sigma_{0}<\sigma_{1} \leq \sigma_{2} \leq \cdots \nearrow \infty
$$

The Steklov eigenvalues are the eigenvalues of the Dirichlet-to-Neumann operator $\Lambda: C^{\infty}(\partial \Omega) \rightarrow C^{\infty}(\partial \Omega)$, defined by

$$
\Lambda f=\partial_{n} u
$$

where $\Delta u=0$ in Ω and $u=f$ on $\partial \Omega$.

The operator \wedge is an elliptic self-adjoint Ψ do of order 1 , with principal symbol $|\xi|$. It follows that

$$
\sigma_{k} \sim C(d)\left(\frac{k}{|\partial \Omega|}\right)^{1 /(d-1)} \text { as } k \nearrow \infty .
$$

Isoperimetric problems for Steklov eigenvalues

Problem

Maximize $\sigma_{k}(\Omega)$ among domains $\Omega \subset \mathbb{R}^{d}$ with $|\partial \Omega|=1$.

Isoperimetric problems for Steklov eigenvalues

Problem

Maximize $\sigma_{k}(\Omega)$ among domains $\Omega \subset \mathbb{R}^{d}$ with $|\partial \Omega|=1$.
Given $c>0$, it is clear that

$$
\sigma_{k}(\Omega \Omega)=\frac{1}{c} \sigma_{k}(\Omega) .
$$

Therefore, the functional

$$
\Omega \mapsto \tilde{\sigma}_{k}(\Omega):=\sigma_{k}(\Omega)|\partial \Omega|^{1 / d-1}
$$

is scaling invariant.

Isoperimetric problems for Steklov eigenvalues

Problem

Maximize $\sigma_{k}(\Omega)$ among domains $\Omega \subset \mathbb{R}^{d}$ with $|\partial \Omega|=1$.

Given $c>0$, it is clear that

$$
\sigma_{k}(c \Omega)=\frac{1}{c} \sigma_{k}(\Omega) .
$$

Therefore, the functional

$$
\Omega \mapsto \tilde{\sigma}_{k}(\Omega):=\sigma_{k}(\Omega)|\partial \Omega|^{1 / d-1}
$$

is scaling invariant.
Equivalent problem
Maximize $\tilde{\sigma}_{k}(\Omega)$ among all regular domains $\Omega \subset \mathbb{R}^{d}$.

Variational characterization of σ_{k}

The starting point of many strategies to obtain isoperimetric results is to use a variational characterization...

Let

$$
\begin{gathered}
\mathcal{H}_{k}=\left\{V \subset H^{1}(\Omega): \operatorname{dim} V=k\right\} . \\
\sigma_{k}=\min _{V \in \mathcal{H}_{k}} \max _{f \in V \backslash\{0\}} \frac{\int_{\Omega}|\nabla f|^{2} d x}{\int_{\partial \Omega} f^{2} d S}
\end{gathered}
$$

Variational characterization of σ_{k}

The starting point of many strategies to obtain isoperimetric results is to use a variational characterization...

Let

$$
\begin{gathered}
\mathcal{H}_{k}=\left\{V \subset H^{1}(\Omega): \operatorname{dim} V=k\right\} . \\
\sigma_{k}=\min _{V \in \mathcal{H}_{k}} \max _{f \in V \backslash\{0\}} \frac{\int_{\Omega}|\nabla f|^{2} d x}{\int_{\partial \Omega} f^{2} d S}
\end{gathered}
$$

Observation

The infimum of $\sigma_{k}(\Omega)$ among domains with $|\partial \Omega|=1$ is zero.

Variational characterization of σ_{k}

The starting point of many strategies to obtain isoperimetric results is to use a variational characterization...

Let

$$
\begin{gathered}
\mathcal{H}_{k}=\left\{V \subset H^{1}(\Omega): \operatorname{dim} V=k\right\} . \\
\sigma_{k}=\min _{V \in \mathcal{H}_{k}} \max _{f \in V \backslash\{0\}} \frac{\int_{\Omega}|\nabla f|^{2} d x}{\int_{\partial \Omega} f^{2} d S}
\end{gathered}
$$

Observation

The infimum of $\sigma_{k}(\Omega)$ among domains with $|\partial \Omega|=1$ is zero.
This is related to loss of compactness for the trace map

$$
H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega)
$$

Channels, cusps,.

Physical interpretation in two dimension

The non homogeneous Neumann spectral problem with density $0<\rho \in C^{\infty}(\bar{\Omega})$ is

$$
-\Delta u=\mu \rho u \text { in } \Omega, \quad \partial_{n} u=0 \text { on } \partial \Omega .
$$

$$
0=\mu_{0}<\mu_{1}(\rho) \leq \mu_{2}(\rho) \leq \cdots \nearrow \infty
$$

Physical interpretation in two dimension

The non homogeneous Neumann spectral problem with density $0<\rho \in C^{\infty}(\bar{\Omega})$ is

$$
-\Delta u=\mu \rho u \text { in } \Omega, \quad \partial_{n} u=0 \text { on } \partial \Omega .
$$

$$
0=\mu_{0}<\mu_{1}(\rho) \leq \mu_{2}(\rho) \leq \cdots \nearrow \infty
$$

These are characterized using the Rayleigh quotient

$$
\frac{\int_{\Omega}|\nabla f|^{2} d x}{\int_{\Omega} f^{2} \rho d x}
$$

Physical interpretation in two dimension

The non homogeneous Neumann spectral problem with density $0<\rho \in C^{\infty}(\bar{\Omega})$ is

$$
-\Delta u=\mu \rho u \text { in } \Omega, \quad \partial_{n} u=0 \text { on } \partial \Omega .
$$

$$
0=\mu_{0}<\mu_{1}(\rho) \leq \mu_{2}(\rho) \leq \cdots \nearrow \infty
$$

These are characterized using the Rayleigh quotient

$$
\frac{\int_{\Omega}|\nabla f|^{2} d x}{\int_{\Omega} f^{2} \rho d x}
$$

If $\rho_{n} d x \xrightarrow{n \rightarrow \infty} d S$, then for $f \in H^{1}(\Omega)$

$$
\lim _{n \rightarrow \infty} \frac{\int_{\Omega}|\nabla f|^{2} d x}{\int_{\Omega} f^{2} \rho_{n} d x}=\frac{\int_{\Omega}|\nabla f|^{2} d x}{\int f^{2} d S}
$$

Physical interpretation in two dimension

The non homogeneous Neumann spectral problem with density $0<\rho \in C^{\infty}(\bar{\Omega})$ is

$$
-\Delta u=\mu \rho u \text { in } \Omega, \quad \partial_{n} u=0 \text { on } \partial \Omega .
$$

$$
0=\mu_{0}<\mu_{1}(\rho) \leq \mu_{2}(\rho) \leq \cdots \nearrow \infty
$$

These are characterized using the Rayleigh quotient

$$
\frac{\int_{\Omega}|\nabla f|^{2} d x}{\int_{\Omega} f^{2} \rho d x}
$$

If $\rho_{n} d x \xrightarrow{n \rightarrow \infty} d S$, then for $f \in H^{1}(\Omega)$

$$
\lim _{n \rightarrow \infty} \frac{\int_{\Omega}|\nabla f|^{2} d x}{\int_{\Omega} f^{2} \rho_{n} d x}=\frac{\int_{\Omega}|\nabla f|^{2} d x}{\int f^{2} d S}
$$

One can think of the Steklov problem as a free membrane with its mass uniformly distributed along its boundary.

Isoperimetric inequalities for planar domains.

Weinstock, 1954
If $\Omega \subset \mathbb{R}^{2}$ is simply connected,

$$
\sigma_{1}(\Omega)|\partial \Omega| \leq \sigma_{1}(\mathbb{D}) \mid \partial \mathbb{D}=2 \pi .
$$

Szegő, 1954
If $\Omega \subset \mathbb{R}^{2}$ is simply connected, $\mu_{1}(\Omega)|\Omega| \leq \mu_{1}(\mathbb{D})|\mathbb{D}|$.

Isoperimetric inequalities for planar domains.

Weinstock, 1954
If $\Omega \subset \mathbb{R}^{2}$ is simply connected,

$$
\sigma_{1}(\Omega)|\partial \Omega| \leq \sigma_{1}(\mathbb{D}) \mid \partial \mathbb{D}=2 \pi .
$$

Weinberger, 1956.
If $\Omega \subset \mathbb{R}^{2}$ is-simply connected,

$$
\mu_{1}(\Omega)|\Omega| \leq \mu_{1}(\mathbb{D})|\mathbb{D}| .
$$

Isoperimetric inequalities for planar domains.

Weinstock, 1954
If $\Omega \subset \mathbb{R}^{2}$ is simply connected,

$$
\sigma_{1}(\Omega)|\partial \Omega| \leq \sigma_{1}(\mathbb{D}) \mid \partial \mathbb{D}=2 \pi .
$$

Weinberger, 1956.
If $\Omega \subset \mathbb{R}^{2}$ is-simply connected,

$$
\mu_{1}(\Omega)|\Omega| \leq \mu_{1}(\mathbb{D})|\mathbb{D}| .
$$

Observation
Let $A_{\epsilon}=\mathbb{D} \backslash B(0, \epsilon)$. Then for small $\epsilon>0$ one has

$$
\sigma_{1}\left(A_{\epsilon}\right)\left|\partial A_{\epsilon}\right|>2 \pi
$$

Isoperimetric inequalities for planar domains.

Weinstock, 1954
If $\Omega \subset \mathbb{R}^{2}$ is simply connected,

$$
\sigma_{1}(\Omega)|\partial \Omega| \leq \sigma_{1}(\mathbb{D}) \mid \partial \mathbb{D}=2 \pi .
$$

Weinberger, 1956.
If $\Omega \subset \mathbb{R}^{2}$ is simply connected,

$$
\mu_{1}(\Omega)|\Omega| \leq \mu_{1}(\mathbb{D})|\mathbb{D}| .
$$

Observation

Let $A_{\epsilon}=\mathbb{D} \backslash B(0, \epsilon)$. Then for small $\epsilon>0$ one has

$$
\sigma_{1}\left(\mathrm{~A}_{\epsilon}\right)\left|\partial \boldsymbol{A}_{\epsilon}\right|>2 \pi
$$

Simple-connectedness is not merely a technical assumption!

Isoperimetric inequalities for planar domains.

Weinstock, 1954
If $\Omega \subset \mathbb{R}^{2}$ is simply connected,
$\sigma_{1}(\Omega)|\partial \Omega| \leq \sigma_{1}(\mathbb{D}) \mid \partial \mathbb{D}=2 \pi$.

Weinberger, 1956.
If $\Omega \subset \mathbb{R}^{2}$ is simply connected,

$$
\mu_{1}(\Omega)|\Omega| \leq \mu_{1}(\mathbb{D})|\mathbb{D}| .
$$

Observation
Let $A_{\epsilon}=\mathbb{D} \backslash B(0, \epsilon)$. Then for small $\epsilon>0$ one has

$$
\sigma_{1}\left(\mathrm{~A}_{\epsilon}\right)\left|\partial \boldsymbol{A}_{\epsilon}\right|>2 \pi
$$

Simple-connectedness is not merely a technical assumption!
What can we say for multiply connected domains?

Normalized eigenvalues of A_{ϵ}

Higher eigenvalues for simply connected domains

Hersch-Payne-Schifer, 1974.
If $\Omega \subset \mathbb{R}^{2}$ is simply connected, then for each $k \in \mathbb{N}$,

$$
\sigma_{k}(\Omega)|\partial \Omega| \leq k \sigma_{1}(\mathbb{D}) \mid \partial \mathbb{D}=2 k \pi .
$$

Higher eigenvalues for simply connected domains

Hersch-Payne-Schifer, 1974.
If $\Omega \subset \mathbb{R}^{2}$ is simply connected, then for each $k \in \mathbb{N}$,

$$
\sigma_{k}(\Omega)|\partial \Omega| \leq k \sigma_{1}(\mathbb{D}) \mid \partial \mathbb{D}=2 k \pi .
$$

G.-Polterovich, 2010.

This inequality is sharp, and attained in the limit by a family of domains Ω_{ϵ} degenerating to k disjoint identical disks.

This contrasts with Neumann eigenvalues. . .

Upper bounds for surfaces

Fraser-Schoen, 2011.
If Ω is a smooth compact surface of genus γ with / boundary components, then

$$
\sigma_{1}(\Omega)|\partial \Omega| \leq 2(\gamma+I) \pi
$$

Upper bounds for surfaces

G.-Polterovich, 2012

If Ω is a smooth compact surface of genus γ with / boundary components, then for each $k \in \mathbb{N}$

$$
\sigma_{k}(\Omega)|\partial \Omega| \leq 2 \pi(\gamma+I) k .
$$

Upper bounds for surfaces

G.-Polterovich, 2012

If Ω is a smooth compact surface of genus γ with / boundary components, then for each $k \in \mathbb{N}$

$$
\sigma_{k}(\Omega)|\partial \Omega| \leq 2 \pi(\gamma+\prime) k
$$

- Weinstock: $\gamma=0, I=1, k=1$.
- Hersch-Payne-Schiffer: $\gamma=0, I=1$, arbitrary $k \in \mathbb{N}$.
- Fraser-Schoen, 2011: $k=1$, arbitrary γ and l.

Upper bounds for surfaces

G.-Polterovich, 2012

If Ω is a smooth compact surface of genus γ with / boundary components, then for each $k \in \mathbb{N}$

$$
\sigma_{k}(\Omega)|\partial \Omega| \leq 2 \pi(\gamma+I) k .
$$

- Weinstock: $\gamma=0, l=1, k=1$.
- Hersch-Payne-Schiffer: $\gamma=0, I=1$, arbitrary $k \in \mathbb{N}$.
- Fraser-Schoen, 2011: $k=1$, arbitrary γ and l.

These inequality are in general not sharp. For instance,

Fraser-Schoen, 2011

For $I=2$ and $\gamma=0$, the maximum of $\sigma_{1}(\Omega)|\partial \Omega|$ is attained at the critical catenoid. ($\max \approx 4 \pi / 1.2$)

Upper bounds for surfaces

G.-Polterovich, 2012

If Ω is a smooth compact surface of genus γ with / boundary components, then for each $k \in \mathbb{N}$

$$
\sigma_{k}(\Omega)|\partial \Omega| \leq 2 \pi(\gamma+\prime) k .
$$

- Weinstock: $\gamma=0, I=1, k=1$.
- Hersch-Payne-Schiffer: $\gamma=0, I=1$, arbitrary $k \in \mathbb{N}$.
- Fraser-Schoen, 2011: $k=1$, arbitrary γ and I.

These inequality are in general not sharp. For instance,

Fraser-Schoen, 2011

For $I=2$ and $\gamma=0$, the maximum of $\sigma_{1}(\Omega)|\partial \Omega|$ is attained at the critical catenoid. ($\max \approx 4 \pi / 1.2$)
Also, not sharp for large $/$.

Open problems/projects

Let Ω is a smooth compact surface of genus γ with / boundary components.

$$
\sigma_{k}(\Omega)|\partial \Omega| \leq 2 \pi(\gamma+\prime) k
$$

Open problems/projects

Let Ω is a smooth compact surface of genus γ with / boundary components.

$$
\sigma_{k}(\Omega)|\partial \Omega| \leq 2 \pi(\gamma+\prime) k
$$

Problem

Find sharp upper bounds in the general case

Open problems/projects

Let Ω is a smooth compact surface of genus γ with / boundary components.

$$
\sigma_{k}(\Omega)|\partial \Omega| \leq 2 \pi(\gamma+\prime) k
$$

Problem

Find sharp upper bounds in the general case (good luck!)

Open problems/projects

Let Ω is a smooth compact surface of genus γ with / boundary components.

$$
\sigma_{k}(\Omega)|\partial \Omega| \leq 2 \pi(\gamma+I) k
$$

Problem

Find sharp upper bounds in the general case (good luck!)

Ongoing project with Bruno Colbois

There exists a sequence Ω_{n} of surfaces such that

$$
\sigma_{1}\left(\Omega_{n}\right)\left|\partial \Omega_{n}\right| \nearrow \infty
$$

(In this situation, the genus will have to diverge.)

Thank you for your attention!

