Sharp isoperimetric inequalities

for Steklov eigenvalues

Alexandre Girouard

Université Laval

July 2013

The *Steklov spectral problem* on a bounded domain $\Omega \subset \mathbb{R}^d$ is

 $\Delta u = 0$ in Ω , $\partial_n u = \sigma u$ on $\partial \Omega$.

$$\mathbf{0} = \sigma_0 < \sigma_1 \leq \sigma_2 \leq \cdots \nearrow \infty$$

The *Steklov spectral problem* on a bounded domain $\Omega \subset \mathbb{R}^d$ is

 $\Delta u = 0 \text{ in } \Omega, \qquad \partial_n u = \sigma u \text{ on } \partial \Omega.$

$$\mathbf{0} = \sigma_0 < \sigma_1 \leq \sigma_2 \leq \cdots \nearrow \infty$$

The Steklov eigenvalues are the eigenvalues of the *Dirichlet-to-Neumann operator* $\Lambda : C^{\infty}(\partial \Omega) \to C^{\infty}(\partial \Omega)$, defined by

 $\Lambda f = \partial_n u$

where $\Delta u = 0$ in Ω and u = f on $\partial \Omega$.

The *Steklov spectral problem* on a bounded domain $\Omega \subset \mathbb{R}^d$ is

 $\Delta u = 0 \text{ in } \Omega, \qquad \partial_n u = \sigma u \text{ on } \partial \Omega.$

$$\mathbf{0} = \sigma_0 < \sigma_1 \leq \sigma_2 \leq \cdots \nearrow \infty$$

The Steklov eigenvalues are the eigenvalues of the *Dirichlet-to-Neumann operator* $\Lambda : C^{\infty}(\partial \Omega) \to C^{\infty}(\partial \Omega)$, defined by

$$\Lambda f = \partial_n u$$

where $\Delta u = 0$ in Ω and u = f on $\partial \Omega$.

The operator Λ is an elliptic self-adjoint Ψ do of order 1, with principal symbol $|\xi|$. It follows that

$$\sigma_k \sim \mathcal{C}(d) \left(rac{k}{|\partial \Omega|}
ight)^{1/(d-1)} \quad ext{as} \quad k
earrow \infty.$$

Isoperimetric problems for Steklov eigenvalues

Problem

Maximize $\sigma_k(\Omega)$ among domains $\Omega \subset \mathbb{R}^d$ with $|\partial \Omega| = 1$.

Isoperimetric problems for Steklov eigenvalues

Problem

Maximize $\sigma_k(\Omega)$ among domains $\Omega \subset \mathbb{R}^d$ with $|\partial \Omega| = 1$.

Given c > 0, it is clear that

$$\sigma_k(\mathbf{c}\Omega) = \frac{1}{\mathbf{c}}\sigma_k(\Omega).$$

Therefore, the functional

$$\Omega\mapsto ilde{\sigma}_k(\Omega):=\sigma_k(\Omega)|\partial\Omega|^{1/d-1}$$

is scaling invariant.

Isoperimetric problems for Steklov eigenvalues

Problem

Maximize $\sigma_k(\Omega)$ among domains $\Omega \subset \mathbb{R}^d$ with $|\partial \Omega| = 1$.

Given c > 0, it is clear that

$$\sigma_k(\mathbf{c}\Omega) = \frac{1}{\mathbf{c}}\sigma_k(\Omega).$$

Therefore, the functional

 $|\Omega\mapsto ilde{\sigma}_k(\Omega):=\sigma_k(\Omega)|\partial \Omega|^{1/d-1}$

is scaling invariant.

Equivalent problem

Maximize $\tilde{\sigma}_k(\Omega)$ among all regular domains $\Omega \subset \mathbb{R}^d$.

Variational characterization of σ_k

The starting point of many strategies to obtain isoperimetric results is to use a variational characterization...

Let

$$\mathcal{H}_{\textit{k}} = \{ \textit{V} \subset \textit{H}^1(\Omega) \, : \, \mathsf{dim} \; \textit{V} = k \}.$$

$$\sigma_{k} = \min_{V \in \mathcal{H}_{k}} \max_{f \in V \setminus \{0\}} \frac{\int_{\Omega} |\nabla f|^{2} dx}{\int_{\partial \Omega} f^{2} dS}$$

Variational characterization of σ_k

The starting point of many strategies to obtain isoperimetric results is to use a variational characterization...

Let

$$\mathcal{H}_{\textit{k}} = \{ \textit{V} \subset \textit{H}^1(\Omega) \, : \, \dim \textit{V} = k \}.$$

$$\sigma_{k} = \min_{V \in \mathcal{H}_{k}} \max_{f \in V \setminus \{0\}} \frac{\int_{\Omega} |\nabla f|^{2} dx}{\int_{\partial \Omega} f^{2} dS}$$

Observation The *infimum* of $\sigma_k(\Omega)$ among domains with $|\partial \Omega| = 1$ is *zero*.

Variational characterization of σ_k

The starting point of many strategies to obtain isoperimetric results is to use a variational characterization...

Let

$$\mathcal{H}_{\textit{k}} = \{ \textit{V} \subset \textit{H}^1(\Omega) \, : \, \dim \textit{V} = k \}.$$

$$\sigma_{k} = \min_{V \in \mathcal{H}_{k}} \max_{f \in V \setminus \{0\}} \frac{\int_{\Omega} |\nabla f|^{2} dx}{\int_{\partial \Omega} f^{2} dS}$$

Observation

The *infimum* of $\sigma_k(\Omega)$ among domains with $|\partial \Omega| = 1$ is *zero*.

This is related to loss of compactness for the trace map

 $H^1(\Omega) \to L^2(\partial \Omega)$

Channels, cusps,...

The *non homogeneous Neumann* spectral problem with density $0 < \rho \in C^{\infty}(\overline{\Omega})$ is

 $-\Delta u = \mu \rho u$ in Ω , $\partial_n u = 0$ on $\partial \Omega$.

$$0 = \mu_0 < \mu_1(\rho) \le \mu_2(\rho) \le \cdots \nearrow \infty$$

The *non homogeneous Neumann* spectral problem with density $0 < \rho \in C^{\infty}(\overline{\Omega})$ is

 $-\Delta u = \mu \rho u$ in Ω , $\partial_n u = 0$ on $\partial \Omega$.

$$\mathbf{0} = \mu_{\mathbf{0}} < \mu_{\mathbf{1}}(\rho) \leq \mu_{\mathbf{2}}(\rho) \leq \cdots \nearrow \infty$$

These are characterized using the Rayleigh quotient

 $\frac{\int_{\Omega} |\nabla f|^2 \, dx}{\int_{\Omega} f^2 \, \rho \, dx}$

The *non homogeneous Neumann* spectral problem with density $0 < \rho \in C^{\infty}(\overline{\Omega})$ is

 $-\Delta u = \mu \rho u$ in Ω , $\partial_n u = 0$ on $\partial \Omega$.

$$\mathbf{0} = \mu_{\mathbf{0}} < \mu_{\mathbf{1}}(\rho) \leq \mu_{\mathbf{2}}(\rho) \leq \cdots \nearrow \infty$$

These are characterized using the Rayleigh quotient

 $\frac{\int_{\Omega} |\nabla f|^2 \, dx}{\int_{\Omega} f^2 \, \rho \, dx}$

If $\rho_n dx \xrightarrow{n \to \infty} dS$, then for $f \in H^1(\Omega)$ $\lim_{n \to \infty} \frac{\int_{\Omega} |\nabla f|^2 dx}{\int_{\Omega} f^2 \rho_n dx} = \frac{\int_{\Omega} |\nabla f|^2 dx}{\int_{\partial \Omega} f^2 dS}$

The *non homogeneous Neumann* spectral problem with density $0 < \rho \in C^{\infty}(\overline{\Omega})$ is

 $-\Delta u = \mu \rho u$ in Ω , $\partial_n u = 0$ on $\partial \Omega$.

$$\mathbf{0} = \mu_{\mathbf{0}} < \mu_{\mathbf{1}}(\rho) \leq \mu_{\mathbf{2}}(\rho) \leq \cdots \nearrow \infty$$

These are characterized using the Rayleigh quotient

 $\frac{\int_{\Omega} |\nabla f|^2 \, dx}{\int_{\Omega} f^2 \, \rho \, dx}$

If $\rho_n dx \xrightarrow{n \to \infty} dS$, then for $f \in H^1(\Omega)$ $\lim_{n \to \infty} \frac{\int_{\Omega} |\nabla f|^2 dx}{\int_{\Omega} f^2 \rho_n dx} = \frac{\int_{\Omega} |\nabla f|^2 dx}{\int_{\partial \Omega} f^2 dS}$

One can think of the Steklov problem as a free membrane with its mass uniformly distributed along its boundary.

Weinstock, 1954 If $\Omega \subset \mathbb{R}^2$ is simply connected,

 $\sigma_1(\Omega)|\partial \Omega| \leq \sigma_1(\mathbb{D})|\partial \mathbb{D} = 2\pi.$

Szegő, 1954 $\label{eq:stable} \mbox{If } \Omega \subset \mathbb{R}^2 \mbox{ is simply connected,}$

 $\mu_1(\Omega)|\Omega| \leq \mu_1(\mathbb{D})|\mathbb{D}|.$

Weinstock, 1954 If $\Omega \subset \mathbb{R}^2$ is simply connected,

 $\sigma_1(\Omega)|\partial \Omega| \leq \sigma_1(\mathbb{D})|\partial \mathbb{D} = 2\pi.$

Weinberger, 1956. If $\Omega \subset \mathbb{R}^2$ is simply connected,

 $\mu_1(\Omega)|\Omega| \leq \mu_1(\mathbb{D})|\mathbb{D}|.$

Weinstock, 1954 If $\Omega \subset \mathbb{R}^2$ is simply connected,

Weinberger, 1956. If $\Omega \subset \mathbb{R}^2$ is simply connected,

 $\sigma_1(\Omega)|\partial \Omega| \leq \sigma_1(\mathbb{D})|\partial \mathbb{D} = 2\pi.$

 $|\mu_1(\Omega)|\Omega| \leq \mu_1(\mathbb{D})|\mathbb{D}|.$

Observation Let $A_{\epsilon} = \mathbb{D} \setminus B(0, \epsilon)$. Then for small $\epsilon > 0$ one has

 $|\sigma_1(\mathsf{A}_\epsilon)|\partial\mathsf{A}_\epsilon| > 2\pi$

Weinstock, 1954 If $\Omega \subset \mathbb{R}^2$ is simply connected,

 $\sigma_1(\Omega)|\partial \Omega| \leq \sigma_1(\mathbb{D})|\partial \mathbb{D} = 2\pi.$

Weinberger, 1956. If $\Omega \subset \mathbb{R}^2$ is simply connected,

 $\mu_1(\Omega)|\Omega| \leq \mu_1(\mathbb{D})|\mathbb{D}|.$

ObservationLet $A_{\epsilon} = \mathbb{D} \setminus B(0, \epsilon)$. Then for small $\epsilon > 0$ one has $\sigma_1(A_{\epsilon}) |\partial A_{\epsilon}| > 2\pi$

Simple-connectedness is not merely a technical assumption!

Weinstock, 1954

 $|\sigma_1(\Omega)|\partial\Omega| \leq \sigma_1(\mathbb{D})|\partial\mathbb{D} = 2\pi.$

Weinberger, 1956. If $\Omega \subset \mathbb{R}^2$ is simply connected, If $\Omega \subset \mathbb{R}^2$ is simply connected,

 $|\mu_1(\Omega)|\Omega| \leq \mu_1(\mathbb{D})|\mathbb{D}|.$

Observation Let $A_{\epsilon} = \mathbb{D} \setminus B(0, \epsilon)$. Then for small $\epsilon > 0$ one has $\sigma_1(A_{\epsilon})|\partial A_{\epsilon}| > 2\pi$

Simple-connectedness is not merely a technical assumption!

What can we say for multiply connected domains?

Normalized eigenvalues of A_{ϵ}

Higher eigenvalues for simply connected domains Hersch–Payne–Schifer, 1974. If $\Omega \subset \mathbb{R}^2$ is *simply connected*, then for each $k \in \mathbb{N}$,

 $\sigma_{\boldsymbol{k}}(\Omega)|\partial\Omega| \leq \boldsymbol{k}\sigma_{1}(\mathbb{D})|\partial\mathbb{D} = 2\boldsymbol{k}\pi.$

Higher eigenvalues for simply connected domains Hersch–Payne–Schifer, 1974. If $\Omega \subset \mathbb{R}^2$ is *simply connected*, then for each $k \in \mathbb{N}$,

 $\sigma_{\boldsymbol{k}}(\Omega)|\partial\Omega| \leq \boldsymbol{k}\sigma_{1}(\mathbb{D})|\partial\mathbb{D} = 2\boldsymbol{k}\pi.$

G.-Polterovich, 2010.

This inequality is *sharp*, and attained in the limit by a family of domains Ω_{ϵ} degenerating to *k* disjoint identical disks.

k = 4

This contrasts with Neumann eigenvalues...

Fraser–Schoen, 2011.

If Ω is a smooth compact surface of genus γ with / boundary components, then

 $|\sigma_1(\Omega)|\partial\Omega| \leq 2(\gamma + l)\pi.$

G.-Polterovich, 2012

If Ω is a smooth compact surface of genus γ with / boundary components, then for each $k \in \mathbb{N}$

 $\sigma_k(\Omega)|\partial \Omega| \leq 2\pi(\gamma + l)k.$

G.-Polterovich, 2012

If Ω is a smooth compact surface of genus γ with / boundary components, then for each $k \in \mathbb{N}$

$$\sigma_k(\Omega)|\partial \Omega| \leq 2\pi(\gamma + l)k.$$

- Weinstock: $\gamma = 0, I = 1, k = 1$.
- Hersch–Payne–Schiffer: $\gamma = 0$, l = 1, arbitrary $k \in \mathbb{N}$.
- Fraser–Schoen, 2011: k = 1, arbitrary γ and l.

G.-Polterovich, 2012

If Ω is a smooth compact surface of genus γ with / boundary components, then for each $k \in \mathbb{N}$

$$\sigma_k(\Omega)|\partial \Omega| \leq 2\pi(\gamma + l)k.$$

- Weinstock: $\gamma = 0$, l = 1, k = 1.
- Hersch–Payne–Schiffer: $\gamma = 0$, l = 1, arbitrary $k \in \mathbb{N}$.
- Fraser–Schoen, 2011: k = 1, arbitrary γ and l.

These inequality are in general not sharp. For instance,

Fraser–Schoen, 2011

For I = 2 and $\gamma = 0$, the maximum of $\sigma_1(\Omega)|\partial \Omega|$ is attained at the *critical catenoid*. (max $\approx 4\pi/1.2$)

G.-Polterovich, 2012

If Ω is a smooth compact surface of genus γ with / boundary components, then for each $k \in \mathbb{N}$

$$\sigma_k(\Omega)|\partial \Omega| \leq 2\pi(\gamma + l)k.$$

- Weinstock: $\gamma = 0, I = 1, k = 1$.
- Hersch–Payne–Schiffer: $\gamma = 0$, l = 1, arbitrary $k \in \mathbb{N}$.
- Fraser–Schoen, 2011: k = 1, arbitrary γ and l.

These inequality are in general not sharp. For instance,

Fraser–Schoen, 2011

For I = 2 and $\gamma = 0$, the maximum of $\sigma_1(\Omega)|\partial \Omega|$ is attained at the *critical catenoid*. (max $\approx 4\pi/1.2$)

Also, not sharp for large *l*...

Let Ω is a smooth compact surface of genus γ with / boundary components.

$$\sigma_k(\Omega)|\partial \Omega| \leq 2\pi (\gamma + l)k$$

Let Ω is a smooth compact surface of genus γ with / boundary components.

$$\sigma_k(\Omega)|\partial \Omega| \leq 2\pi (\gamma + l)k$$

Problem

Find sharp upper bounds in the general case

Let Ω is a smooth compact surface of genus γ with / boundary components.

$$\sigma_k(\Omega)|\partial \Omega| \leq 2\pi (\gamma + l)k$$

Problem

Find sharp upper bounds in the general case (good luck!)

Let Ω is a smooth compact surface of genus γ with / boundary components.

$$\sigma_k(\Omega)|\partial \Omega| \leq 2\pi (\gamma + l)k$$

Problem

Find sharp upper bounds in the general case (good luck!)

Ongoing project with Bruno Colbois

There exists a sequence Ω_n of surfaces such that

 $\sigma_1(\Omega_n)|\partial\Omega_n| \nearrow \infty.$

(In this situation, the genus will have to diverge.)

Thank you for your attention!