The isoperimetric problem for the ground state energy of a Schrödinger operator

Rupert L. Frank
Caltech
Joint work with Eric Carlen and Elliott Lieb
Stability estimates for the lowest eigenvalue of a Schrödinger operator
Geom. and Funct. Anal., to appear
Preprint: arXiv:1301.5032
Spectral theory of Laplace and Schrödinger operators
Banff, August 1, 2013

Introduction - Functional inequalities

Sharp constants \rightarrow Characterization \rightarrow Stability of optimizers bounds

The quantitative isoperimetric inequality of Fusco-Maggi-Pratelli (2008) (answering a question of Hall (1992) and extending earlier work starting with Bonnesen (1924))

$$
\frac{\operatorname{Per}(\Omega)}{|\Omega|^{(d-1) / d}} \geq d \omega_{d}^{1 / d}+c_{d} \inf _{a \in \mathbb{R}^{d}, r>0} \frac{|\Omega \Delta(r B+a)|^{2}}{|r B|^{2}}
$$

The quantitative Sobolev inequality of Bianchi-Egnell (1991) (answering a question of Brezis-Lieb (1985))

$$
\|\nabla \psi\|^{2} \geq S_{d}\|\psi\|_{2 d /(d-2)}^{2}+c_{d}^{\prime} \inf _{Q \in \mathcal{M}}\|\nabla(\psi-Q)\|^{2}
$$

where $\mathcal{M}=\left\{c h(b(\cdot-a)): c \in \mathbb{R}, b>0, a \in \mathbb{R}^{d}\right\}$ is the manifold of optimizers
Bianchi-Egnell introduced compactness + linearization method
Further results on Faber-Krahn, Szegő-Weinberger, Brunn-Minkowski, . . .

The isoperimetric problem for Schrödinger operators

Problem (Keller (1961)): Given $1 \leq p<\infty$ and $m>0$, how small can

$$
\lambda_{1}(-\Delta+V)=\inf _{\psi} \frac{\int_{\mathbb{R}^{d}}\left(|\nabla \psi|^{2}+V|\psi|^{2}\right) d x}{\int_{\mathbb{R}^{d}}|\psi|^{2} d x}
$$

be under the constraint $\int_{\mathbb{R}^{d}}|V|^{p} d x=m$?
Properties: • By Sobolev inequalities, answer is $-\infty$ if $p=1$ in $d=2, p<d / 2$ in $d \geq 3$. Answer for $p=d / 2$ in $d \geq 3$ depends on m. From now on $p=\gamma+d / 2>d / 2$.

- Positive and negative parts of V play a different role. May assume $V \leq 0$.
- By scale covariance, this problem is equivalent to computing

$$
\mathcal{C}_{\gamma, d}=\inf _{V} \frac{\lambda_{1}(-\Delta+V)}{\left(\int_{\mathbb{R}^{d}} V_{-}^{\gamma+d / 2} d x\right)^{1 / \gamma}}
$$

- Problem is translation invariant and rotation invariant.
- Keller suggests an explicit solution in $d=1$, namely, $V(x)=-c_{\gamma} \cosh ^{-2}(x)$.

Main result I

Recall

$$
\mathcal{C}_{\gamma, d}=\inf _{V} \frac{\lambda_{1}(-\Delta+V)}{\left(\int_{\mathbb{R}^{d}} V_{-}^{\gamma+d / 2} d x\right)^{1 / \gamma}} .
$$

Theorem 1 (Existence and uniqueness of an optimal potential). Let $\gamma>1 / 2$ if $d=1$ and $\gamma>0$ if $d \geq 2$. There is a non-positive function \mathcal{V}, which is unique up to translations and dilations, such that

$$
\begin{aligned}
\mathcal{M} & :=\left\{V \in L^{\gamma+d / 2}\left(\mathbb{R}^{d}\right): \lambda_{1}(-\Delta+V)=\mathcal{C}_{\gamma, d}\left(\int_{\mathbb{R}^{d}} V_{-}^{\gamma+d / 2} d x\right)^{1 / \gamma}\right\} \\
& =\left\{b^{2} \mathcal{V}(b(\cdot-a)): b>0, a \in \mathbb{R}^{d}\right\} .
\end{aligned}
$$

Remark. The functions \mathcal{V} are known explicitly only in 1D.

MAIN RESULT II

Theorem 2 (Stability). Let $\gamma>1 / 2$ if $d=1$ and $\gamma>0$ if $d \geq 2$. Then:
(i) For $\gamma+d / 2 \leq 2$, there is a constant $c_{\gamma, d}>0$ such that for any $V \in L^{\gamma+d / 2}\left(\mathbb{R}^{d}\right)$,

$$
\frac{\lambda_{1}(-\Delta+V)}{\left(\int_{\mathbb{R}^{d}} V_{-}^{\gamma+d / 2} d x\right)^{1 / \gamma}} \geq \mathcal{C}_{\gamma, d}+c_{\gamma, d} \inf _{W \in \mathcal{M}} \frac{\left\|V_{-}-W_{-}\right\|_{\gamma+d / 2}^{2}}{\left\|V_{-}\right\|_{\gamma+d / 2}^{2}}
$$

(ii) For $\gamma+d / 2 \geq 2$, there is a constant $c_{\gamma, d}>0$ such that for any $V \in L^{\gamma+d / 2}\left(\mathbb{R}^{d}\right)$,

$$
\frac{\lambda_{1}(-\Delta+V)}{\left(\int_{\mathbb{R}^{d}} V_{-}^{\gamma+d / 2} d x\right)^{1 / \gamma}} \geq \mathcal{C}_{\gamma, d}+c_{\gamma, d} \inf _{W \in \mathcal{M}} \frac{\left\|V_{-}^{2 /(q-2)}-W_{-}^{2 /(q-2)}\right\|_{q / 2}^{2}}{\left\|V_{-}^{2 /(q-2)}\right\|_{q / 2}^{2}}
$$

where q is related to γ and d by $1 /(\gamma+d / 2)+2 / q=1$.

Interchanging the infima

Let again $1 /(\gamma+d / 2)+2 / q=1$ and, wlog, assume that $\int V_{-}^{\gamma+d / 2} d x=1$.

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}\left(|\nabla \psi|^{2}+V|\psi|^{2}\right) d x= & \underbrace{\int_{\mathbb{R}^{d}}|\nabla \psi|^{2} d x-\left(\int_{\mathbb{R}^{d}}|\psi|^{q} d x\right)^{2 / q}}_{=: \mathcal{A}} \\
& +\underbrace{\left(\int_{\mathbb{R}^{d}}|\psi|^{q} d x\right)^{2 / q}-\int_{\mathbb{R}^{d}} V_{-}|\psi|^{2} d x}_{=: \mathcal{B}}+\underbrace{\int_{\mathbb{R}^{d}} V_{+}|\psi|^{2} d x}_{=: \mathcal{C}}
\end{aligned}
$$

- Clearly, $\mathcal{C} \geq 0$.
- By Hölder, $\mathcal{B} \geq 0$ with equality iff $V_{-}=\|\psi\|_{q}^{(2-q) / q}|\psi|^{q-2}$.
- By a Gagliardo-Nirenberg-Sobolev (GNS) inequality, $\mathcal{A} \geq-C_{q, d}^{\prime}\|\psi\|^{2}$.

This argument (essentially due to Lieb-Thirring (1976)) shows that

$$
\mathcal{C}_{\gamma, d}=\inf _{V} \frac{\lambda_{1}(-\Delta+V)}{\left(\int_{\mathbb{R}^{d}} V_{-}^{\gamma+d / 2} d x\right)^{1 / \gamma}}=\inf _{\psi} \frac{\int_{\mathbb{R}^{d}}|\nabla \psi|^{2} d x-\left(\int_{\mathbb{R}^{d}}|\psi|^{q} d x\right)^{2 / q}}{\int_{\mathbb{R}^{d}}|\psi|^{2} d x}=\mathcal{C}_{q, d}^{\prime}
$$

Strategy of our proof

Recall

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}\left(|\nabla \psi|^{2}+V|\psi|^{2}\right) d x= & \underbrace{\int_{\mathbb{R}^{d}}|\nabla \psi|^{2} d x-\left(\int_{\mathbb{R}^{d}}|\psi|^{q} d x\right)^{2 / q}}_{=: \mathcal{A}} \\
& +\underbrace{\left(\int_{\mathbb{R}^{d}}|\psi|^{q} d x\right)^{2 / q}-\int_{\mathbb{R}^{d}} V_{-}|\psi|^{2} d x}_{=: \mathcal{B}}+\underbrace{\int_{\mathbb{R}^{d}} V_{+}|\psi|^{2} d x}_{=: \mathcal{C}}
\end{aligned}
$$

Existence and uniqueness of an optimal V in the isoperimetric problem (Theorem 1) follows from the existence and uniqueness of an optimal ψ for GNS.

Stability in the isoperimetric problem (Theorem 2) follows from both a stability result for Hölder and for GNS.

This is what we will discuss below.

HÖLDER'S INEQUALITY with REMAINDER

For $f \in L^{p}(X, \mu)$ define the duality map

$$
\mathcal{D}_{p}(f)=\|f\|_{p}^{1-p}|f|^{p-2} \bar{f} .
$$

Theorem 3. Let $p \geq 2$. Let $f \in L^{p}(X, \mu)$ and $g \in L^{p^{\prime}}(X, \mu)$ with $\|f\|_{p}=\|g\|_{p^{\prime}}=1$. Then

$$
\left|\int_{X} f g \mathrm{~d} \mu\right| \leq 1-\frac{p^{\prime}-1}{4}\left\|\mathcal{D}_{p}(f)-e^{i \theta} g\right\|_{p^{\prime}}^{2},
$$

and

$$
\left|\int_{X} f g \mathrm{~d} \mu\right| \leq 1-\frac{1}{p 2^{p-1}}\left\|e^{i \theta} f-\mathcal{D}_{p^{\prime}}(g)\right\|_{p}^{p}
$$

where $\theta \in[0,2 \pi)$ is such that $e^{i \theta} \int_{X} f g \mathrm{~d} \mu$ is non-negative. The exponents 2 and p on the right sides are best possible.

Proof uses uniform convexity of L^{p} in the form that for unit vectors u and v,

$$
\left\|\frac{u+v}{2}\right\|_{p^{\prime}} \leq 1-\frac{p^{\prime}-1}{8}\|u-v\|_{p^{\prime}}^{2}, \quad\left\|\frac{u+v}{2}\right\|_{p} \leq 1-\frac{1}{p 2^{p}}\|u-v\|_{p}^{p}
$$

GNS INEQUALITY WITH REMAINDER

Set $\mathcal{E}_{q}[\psi]=\int_{\mathbb{R}^{d}}|\nabla \psi|^{2} d x-\left(\int_{\mathbb{R}^{d}}|\psi|^{q} d x\right)^{2 / q}$ and recall that

$$
\mathcal{C}_{q, d}^{\prime}=\inf \left\{\mathcal{E}_{q}[\psi]:\|\psi\|=1\right\}
$$

Theorem 4. Let $2<q<\infty$ if $d=1,2$ and $2<q<2 d /(d-2)$ if $d \geq 3$. There is a function Q, which is unique up to translations and a sign, such that

$$
\begin{aligned}
\mathcal{G} & :=\left\{\psi \in H^{1}\left(\mathbb{R}^{d}\right): \mathcal{E}_{q}[\psi]=\mathcal{C}_{q, d}^{\prime},\|\psi\|^{2}=1\right\} \\
& =\left\{\sigma Q(\cdot-a): a \in \mathbb{R}^{d}, \sigma= \pm 1\right\}
\end{aligned}
$$

Theorem 5. Let $2<q<\infty$ if $d=1,2$ and $2<q<2 d /(d-2)$ if $d \geq 3$. Then there is a constant $c_{q, d}^{\prime}>0$ such that for all $\psi \in H^{1}\left(\mathbb{R}^{d}\right)$ with $\|\psi\|=1$

$$
\mathcal{E}_{q}[\psi] \geq \mathcal{C}_{q, d}^{\prime}+c_{q, d}^{\prime} \inf _{\phi \in \mathcal{G}}\|\psi-\phi\|_{H^{1}}^{2}
$$

Remark. Our $c_{q, d}^{\prime}$ comes via compactness and is not explicit. Dolbeault-Toscani (Preprint 2012) have stability for a different GNS inequality, but with explicit constants.

GNS INEQUALITY WITH REMAINDER, CONT'D

Finally, need to bound the remainder $\|\psi-\phi\|_{H^{1}}^{2}$ from below.
Lemma 6. Let $f, g \in L^{q}(X, \mu)$ Then for all $q \geq 2$,

$$
\|f-g\|_{q} \geq \frac{1}{4} \max \left\{\|f\|_{q},\|g\|_{q}\right\}\left\|\frac{|f|^{2}}{\|f\|_{q}^{2}}-\frac{|g|^{2}}{\|g\|_{q}^{2}}\right\|_{q / 2}
$$

Moreover, if $q \geq 4$, then

$$
\|f-g\|_{q} \geq \frac{1}{4(q-2)} \max \left\{\|f\|_{q},\|g\|_{q}\right\}\left\|\frac{|f|^{q-2}}{\|f\|_{q}^{q-2}}-\frac{|g|^{q-2}}{\|g\|_{q}^{q-2}}\right\|_{q /(q-2)}
$$

Ingredients in the proofs of Theorems 4 and 5:

- Existence of a minimizer, possible loss of compactness due to translations, Lieb (1983)
- Every positive solution of the Euler-Lagrange equation is radial (MMP or strict Riesz).
- Kwong's theorem I (1989): There is a unique positive radial solution vanishing at infinity.
- Kwong's theorem II (1989): This solution is non-degenerate, i.e., the linearization of the equation around the solution has only the trivial zero modes due to translation.

THANK YOU FOR YOUR ATTENTION!

