Counting intersections of nodal lines with curves on real analytic surfaces

Yaiza Canzani and John Toth
Spectral Theory of Laplace and Schroedinger Operators
Banff International Research Station

July 28- August 2, 2013

Nodal sets

Nodal sets

- (M, g) a compact, real-analytic Riemann surface with $\partial M=\emptyset$.

Nodal sets

- (M, g) a compact, real-analytic Riemann surface with $\partial M=\emptyset$.
- Consider an L^{2}-basis of Laplace eigenfunctions $\varphi_{\lambda} \in C^{\omega}(M)$ with

$$
-\Delta_{g} \varphi_{\lambda}=\lambda^{2} \varphi_{\lambda}
$$

Nodal sets

- (M, g) a compact, real-analytic Riemann surface with $\partial M=\emptyset$.
- Consider an L^{2}-basis of Laplace eigenfunctions $\varphi_{\lambda} \in C^{\omega}(M)$ with

$$
-\Delta_{g} \varphi_{\lambda}=\lambda^{2} \varphi_{\lambda}
$$

- The nodal set of φ_{λ} is by definition

$$
\mathcal{N}_{\varphi_{\lambda}}=\left\{x \in M: \varphi_{\lambda}(x)=0\right\} .
$$

$\mathcal{N}_{\varphi_{\lambda}}$ is the least likely place for a quantum particle in the state φ_{λ} to be.

Nodal sets

Nodal sets

Length [Donelly-Fefferman '88]: length $\left(\mathcal{N}_{\varphi_{\lambda}}\right) \asymp \lambda$

Nodal sets

Length [Donelly-Fefferman '88]: length $\left(\mathcal{N}_{\varphi_{\lambda}}\right) \asymp \lambda$
Inner radius [Brüning '78],[Mangoubi '06]: \quad inrad (nodal domain of $\left.\varphi_{\lambda}\right) \asymp \lambda^{-1}$

The Problem

The Problem

- For H real analytic curve, find upper bounds for $\#\left(\mathcal{N}_{\varphi_{\lambda}} \cap H\right)$.

"Bad" curves on the Torus

On $M=\mathbb{T}^{2}$, the eigenfunctions

$$
\varphi_{n, m}(x, y)=\sin (2 \pi n x) \sin (2 \pi m y)
$$

vanish on $H=\{y=0\}$ and on $H=\{x=0\}$.

"Bad" curves on the Torus

On $M=\mathbb{T}^{2}$, the eigenfunctions

$$
\varphi_{n, m}(x, y)=\sin (2 \pi n x) \sin (2 \pi m y)
$$

vanish on $H=\{y=0\}$ and on $H=\{x=0\}$.

A more general result holds:

"Bad" curves on the Torus

On $M=\mathbb{T}^{2}$, the eigenfunctions

$$
\varphi_{n, m}(x, y)=\sin (2 \pi n x) \sin (2 \pi m y)
$$

vanish on $H=\{y=0\}$ and on $H=\{x=0\}$.

A more general result holds:

Theorem [Bourgain-Rudnick, 2010].
H is a segment of a closed geodesic $\Leftrightarrow \exists\left\{\varphi_{\lambda_{j_{k}}}\right\}_{k}$ with $\left.\varphi_{\lambda_{j_{k}}}\right|_{H}=0$.

Good curves

Good curves

- Definition. A curve H is said to be good if for some constants $C_{0}>0$, $\lambda_{0}>0$

$$
\left\|\varphi_{\lambda}\right\|_{L^{2}(H)} \geq e^{-C_{0} \lambda} \quad \text { for all } \lambda>\lambda_{0} .
$$

Good curves

- Definition. A curve H is said to be good if for some constants $C_{0}>0$, $\lambda_{0}>0$

$$
\left\|\varphi_{\lambda}\right\|_{L^{2}(H)} \geq e^{-C_{0} \lambda} \quad \text { for all } \lambda>\lambda_{0} .
$$

- Example. The domain boundary $H=\partial \Omega$ for $\Omega \subset \mathbb{R}^{2}$ is always good (Neumann boundary conditions).

Good curves

- Definition. A curve H is said to be good if for some constants $C_{0}>0$, $\lambda_{0}>0$

$$
\left\|\varphi_{\lambda}\right\|_{L^{2}(H)} \geq e^{-C_{0} \lambda} \quad \text { for all } \lambda>\lambda_{0}
$$

- Example. The domain boundary $H=\partial \Omega$ for $\Omega \subset \mathbb{R}^{2}$ is always good (Neumann boundary conditions).
- The goodness condition is likely to be generically satisfied BUT for general curves the goodness condition is not easy to verify for all eigenfunctions.

Positive results known

Positive results known

Theorem [Toth - Zelditch, 2009]
Let $\Omega \subset \mathbb{R}^{2}$ be an analytic, bounded planar domain. Let $H \subset \operatorname{int}(\Omega)$ be a real analytic good curve. For all Neumann eigenfunctions

$$
\#\left(\mathcal{N}_{\varphi_{\lambda}} \cap H\right) \leq O_{H, \Omega}(\lambda) .
$$

Positive results known

Positive results known

Theorem [Burgain-Rudnick, 2010].
Let $M=\mathbb{T}^{2}$ and $H \subset M$ have strictly positive curvature.
Then H is good and $\#\left(\mathcal{N}_{\varphi_{\lambda}} \cap H\right) \leq O_{H, \Omega}(\lambda)$.

Positive results known

Theorem [Burgain-Rudnick, 2010].
Let $M=\mathbb{T}^{2}$ and $H \subset M$ have strictly positive curvature.
Then H is good and $\#\left(\mathcal{N}_{\varphi_{\lambda}} \cap H\right) \leq O_{H, \Omega}(\lambda)$.

Theorem [Jung, 2011].
Let $M=$ compact hyperbolic surface and $H=$ geodesic circle.
Then H is good and $\#\left(\mathcal{N}_{\varphi_{\lambda}} \cap H\right) \leq O_{H, \Omega}(\lambda)$.

Positive results known

Theorem [EI-Hajj -Toth, 2012].
Let $\Omega \subset \mathbb{R}^{2}$ bounded, piecewise-smooth convex domain with ergodic billiard flow.

Positive results known

Theorem [EI-Hajj -Toth, 2012].
Let $\Omega \subset \mathbb{R}^{2}$ bounded, piecewise-smooth convex domain with ergodic billiard flow. Let H be a closed C^{ω} interior curve with strictly positive geodesic curvature.

Positive results known

Theorem [EI-Hajj -Toth, 2012].
Let $\Omega \subset \mathbb{R}^{2}$ bounded, piecewise-smooth convex domain with ergodic billiard flow. Let H be a closed C^{ω} interior curve with strictly positive geodesic curvature.

Let $\left(\varphi_{\lambda_{j_{k}}}\right)_{k=1}^{\infty}$ be a quantum ergodic sequence of Neumann or Dirichlet eigenfunctions in Ω.

Positive results known

Theorem [El-Hajj -Toth, 2012].
Let $\Omega \subset \mathbb{R}^{2}$ bounded, piecewise-smooth convex domain with ergodic billiard flow. Let H be a closed C^{ω} interior curve with strictly positive geodesic curvature.

Let $\left(\varphi_{\lambda_{j_{k}}}\right)_{k=1}^{\infty}$ be a quantum ergodic sequence of Neumann or Dirichlet eigenfunctions in Ω.

Then H is good and $\#\left(\mathcal{N}_{\varphi_{\lambda_{j_{k}}}} \cap H\right)=O_{H, \Omega}\left(\lambda_{j_{k}}\right)$.

Main result: Compact surfaces

Theorem [C- Toth, 2013]
Let (M, g) be a compact, real analytic Riemann surface with $\partial M=\emptyset$.

Main result: Compact surfaces

Theorem [C- Toth, 2013]
Let (M, g) be a compact, real analytic Riemann surface with $\partial M=\emptyset$. Let $H \subset M$ be a closed analytic good curve.

Main result: Compact surfaces

Theorem [C- Toth, 2013]
Let (M, g) be a compact, real analytic Riemann surface with $\partial M=\emptyset$. Let $H \subset M$ be a closed analytic good curve.

Then, for all $\lambda \geq \lambda_{0}$,

$$
\#\left(\mathcal{N}_{\varphi_{\lambda}} \cap H\right) \leq O_{M, H}(\lambda) .
$$

Application

Application

Let (M, g) be a compact, real-analytic surface with $\partial M=\emptyset$. Suppose there exists an isometric involution that fixes γ with

$$
M=M_{-} \cup M_{+}, \quad \gamma=\partial M_{+}
$$

Application

Let (M, g) be a compact, real-analytic surface with $\partial M=\emptyset$. Suppose there exists an isometric involution that fixes γ with

$$
M=M_{-} \cup M_{+}, \quad \gamma=\partial M_{+}
$$

Application

Let (M, g) be a compact, real-analytic surface with $\partial M=\emptyset$. Suppose there exists an isometric involution that fixes γ with

$$
M=M_{-} \cup M_{+}, \quad \gamma=\partial M_{+}
$$

Application

Application

Theorem [C - Toth, 2013]
Let (M, g) be a compact, real-analytic surface with $\partial M=\emptyset$. Suppose there exists an isometric involution that fixes γ.

Application

Theorem [C - Toth, 2013]
Let (M, g) be a compact, real-analytic surface with $\partial M=\emptyset$. Suppose there exists an isometric involution that fixes γ.

Let $U \subset M$ be a Fermi collar neighbourhood of γ and suppose that $H \subset U$ is a real-analytic curve with strictly-positive geodesic curvature.

Application

Theorem [C - Toth, 2013]
Let (M, g) be a compact, real-analytic surface with $\partial M=\emptyset$. Suppose there exists an isometric involution that fixes γ.

Let $U \subset M$ be a Fermi collar neighbourhood of γ and suppose that $H \subset U$ is a real-analytic curve with strictly-positive geodesic curvature.

Let $\left(\varphi_{\lambda_{j_{k}}}\right)_{j=1}^{\infty}$ be a quantum ergodic sequence of Laplace eigenfunctions that are even (odd) with respect to the involution.

Then,

$$
\#\left(\mathcal{N}_{\varphi_{\lambda_{j_{k}}}} \cap H\right)=O_{M, H}\left(\lambda_{j_{k}}\right) .
$$

Application

Theorem [C - Toth, 2013]
Let (M, g) be a compact, real-analytic surface with $\partial M=\emptyset$. Suppose there exists an isometric involution that fixes γ.

Let $U \subset M$ be a Fermi collar neighbourhood of γ and suppose that $H \subset U$ is a real-analytic curve with strictly-positive geodesic curvature.

Let $\left(\varphi_{\lambda_{j_{k}}}\right)_{j=1}^{\infty}$ be a quantum ergodic sequence of Laplace eigenfunctions that are even (odd) with respect to the involution.

Then,

$$
\#\left(\mathcal{N}_{\varphi_{\lambda_{j_{k}}}} \cap H\right)=O_{M, H}\left(\lambda_{j_{k}}\right) .
$$

Remark. The result holds for ALL eigenfunctions on QUE surfaces with isometric involution (e.g arithmetic surfaces with isometric involutions [Lindenstrauss]).

Complexification of Riemannian surfaces

Complexification of Riemannian surfaces

- A compact real analytic Riemannian manifold (M, g) can always be complexified to $M^{\mathbb{C}}$ (Bruhat-Whitney).

Complexification of Riemannian surfaces

- A compact real analytic Riemannian manifold (M, g) can always be complexified to $M^{\mathbb{C}}$ (Bruhat-Whitney).

Example: $\left(\mathbb{R}^{n}\right)^{\mathbb{C}}=\mathbb{C}^{n}$

Complexification of Riemannian surfaces

- A compact real analytic Riemannian manifold (M, g) can always be complexified to $M^{\mathbb{C}}$ (Bruhat-Whitney).

Example: $\left(\mathbb{R}^{n}\right)^{\mathbb{C}}=\mathbb{C}^{n}$
Example: $\left(\mathbb{R}^{n} / \mathbb{Z}^{n}\right)^{\mathbb{C}}=\mathbb{C}^{n} / \mathbb{Z}^{n}$.

Complexification of Riemannian surfaces

- A compact real analytic Riemannian manifold (M, g) can always be complexified to $M^{\mathbb{C}}$ (Bruhat-Whitney).

Example: $\left(\mathbb{R}^{n}\right)^{\mathbb{C}}=\mathbb{C}^{n}$ Example: $\left(\mathbb{R}^{n} / \mathbb{Z}^{n}\right)^{\mathbb{C}}=\mathbb{C}^{n} / \mathbb{Z}^{n}$.

- C^{w} functions on M extend to holomorphic functions on $M^{\mathbb{C}}$.

Complexification of Riemannian surfaces

- A compact real analytic Riemannian manifold (M, g) can always be complexified to $M^{\mathbb{C}}$ (Bruhat-Whitney).

Example: $\left(\mathbb{R}^{n}\right)^{\mathbb{C}}=\mathbb{C}^{n}$
Example: $\left(\mathbb{R}^{n} / \mathbb{Z}^{n}\right)^{\mathbb{C}}=\mathbb{C}^{n} / \mathbb{Z}^{n}$.

- C^{w} functions on M extend to holomorphic functions on $M^{\mathbb{C}}$.

Example: $\varphi_{n}(x)=e^{i n x}$ extends to

$$
\varphi_{n}^{\mathbb{C}}(x+i y)=e^{i n(x+i y)}=e^{-n y} e^{i n x}
$$

Complexification of Riemannian surfaces

- A compact real analytic Riemannian manifold (M, g) can always be complexified to $M^{\mathbb{C}}$ (Bruhat-Whitney).

Example: $\left(\mathbb{R}^{n}\right)^{\mathbb{C}}=\mathbb{C}^{n}$
Example: $\left(\mathbb{R}^{n} / \mathbb{Z}^{n}\right)^{\mathbb{C}}=\mathbb{C}^{n} / \mathbb{Z}^{n}$.

- C^{w} functions on M extend to holomorphic functions on $M^{\mathbb{C}}$.

Example: $\varphi_{n}(x)=e^{i n x}$ extends to

$$
\varphi_{n}^{\mathbb{C}}(x+i y)=e^{i n(x+i y)}=e^{-n y} e^{i n x}
$$

Example: squared Riemann distance $r^{2}\left(x_{1}, x_{2}\right)$ is analytic close to the diagonal so it extends to $r_{\mathbb{C}}^{2}\left(z_{1}, z_{2}\right)$.

Complexification of Riemannian surfaces

Complexification of Riemannian surfaces

- Tube function: Set $\rho(z)=-r_{\mathbb{C}}^{2}(z, \bar{z})$.

Complexification of Riemannian surfaces

- Tube function: Set $\rho(z)=-r_{\mathbb{C}}^{2}(z, \bar{z})$. Example: In $\mathbb{R}^{\mathbb{C}}=\mathbb{C}$, and $\sqrt{\rho}(z)=\sqrt{-(z-\bar{z})^{2}}=2|\Im z|$.

Complexification of Riemannian surfaces

- Tube function: Set $\rho(z)=-r_{\mathbb{C}}^{2}(z, \bar{z})$. Example: $\operatorname{In} \mathbb{R}^{\mathbb{C}}=\mathbb{C}$, and $\sqrt{\rho}(z)=\sqrt{-(z-\bar{z})^{2}}=2|\Im z|$.
- Define the Grauert tube of radius $\varepsilon>0$ (small) by

$$
M_{\varepsilon}^{\mathbb{C}}=\left\{z \in M^{\mathbb{C}}: \sqrt{\rho}(z) \leq \varepsilon\right\} .
$$

Complexification of Riemannian surfaces

- Tube function: Set $\rho(z)=-r_{\mathbb{C}}^{2}(z, \bar{z})$. Example: $\operatorname{In} \mathbb{R}^{\mathbb{C}}=\mathbb{C}$, and $\sqrt{\rho}(z)=\sqrt{-(z-\bar{z})^{2}}=2|\Im z|$.
- Define the Grauert tube of radius $\varepsilon>0$ (small) by

$$
M_{\varepsilon}^{\mathbb{C}}=\left\{z \in M^{\mathbb{C}}: \sqrt{\rho}(z) \leq \varepsilon\right\} .
$$

- There is a maximal Grauert tube radius $\varepsilon_{\max }$. For $\varepsilon \leq \varepsilon_{\max }$

$$
\varphi_{\lambda}^{\mathbb{C}}: M_{\varepsilon}^{\mathbb{C}} \rightarrow \mathbb{C}
$$

is holomorphic.

Why do we complexify?

Let $B_{r} \subset \mathbb{C}$ denote the open ball centred at 0 of radius r.

Why do we complexify?

Let $B_{r} \subset \mathbb{C}$ denote the open ball centred at 0 of radius r.

For $v \in C^{\omega}\left(\bar{B}_{1}\right)$ consider its frequency function

$$
F(v)=\frac{\int_{B_{1}}\left|\partial_{z} v(z)\right|^{2} d z d \bar{z}}{\int_{\partial B_{1}}|v(z)|^{2} d \sigma(z)} .
$$

Why do we complexify?

Let $B_{r} \subset \mathbb{C}$ denote the open ball centred at 0 of radius r.

For $v \in C^{\omega}\left(\bar{B}_{1}\right)$ consider its frequency function

$$
F(v)=\frac{\int_{B_{1}}\left|\partial_{z} v(z)\right|^{2} d z d \bar{z}}{\int_{\partial B_{1}}|v(z)|^{2} d \sigma(z)}
$$

Theorem [Lin (1991)] There exists a universal $r \in(0,1)$ for which

$$
\#\left\{\mathcal{N}_{v} \cap B_{r}\right\} \leq 2 F(v)
$$

for all $v \in C^{\omega}\left(\overline{B_{1}}\right)$.

Translating the problem to the Disc

Translating the problem to the Disc

- Let $q:[-\pi, \pi] \rightarrow H$ be a unit speed, 2π-periodic parametrization of H, extend it to $[-2 \pi, 2 \pi]$.

Translating the problem to the Disc

- Let $q:[-\pi, \pi] \rightarrow H$ be a unit speed, 2π-periodic parametrization of H, extend it to $[-2 \pi, 2 \pi]$.
- Then $q^{\mathbb{C}}:[-2 \pi, 2 \pi]^{\mathbb{C}} \rightarrow H_{\varepsilon}^{\mathbb{C}} \subset M_{\varepsilon}^{\mathbb{C}}$.

Translating the problem to the Disc

- Let $q:[-\pi, \pi] \rightarrow H$ be a unit speed, 2π-periodic parametrization of H, extend it to $[-2 \pi, 2 \pi]$.
- Then $q^{\mathbb{C}}:[-2 \pi, 2 \pi]^{\mathbb{C}} \rightarrow H_{\varepsilon}^{\mathbb{C}} \subset M_{\varepsilon}^{\mathbb{C}}$.
- Choose $C_{\varepsilon} \subset[-2 \pi, 2 \pi]^{\mathbb{C}}$ with ∂C_{ε} analytic and $0 \notin \partial C_{\varepsilon}$.

Translating the problem to the Disc

- Let $q:[-\pi, \pi] \rightarrow H$ be a unit speed, 2π-periodic parametrization of H, extend it to $[-2 \pi, 2 \pi]$.
- Then $q^{\mathbb{C}}:[-2 \pi, 2 \pi]^{\mathbb{C}} \rightarrow H_{\varepsilon}^{\mathbb{C}} \subset M_{\varepsilon}^{\mathbb{C}}$.
- Choose $C_{\varepsilon} \subset[-2 \pi, 2 \pi]^{\mathbb{C}}$ with ∂C_{ε} analytic and $0 \notin \partial C_{\varepsilon}$.
- By Riemman mapping theorem we may think of C_{ε} as the unit disc B_{1}.

Translating the problem to the Disc

- Define $v_{h}:=\left(\varphi_{h} \circ q\right)^{\mathbb{C}} \circ \tilde{\Phi} \in C^{\omega}\left(\bar{B}_{1}\right)$.

Translating the problem to the Disc

- Define $v_{h}:=\left(\varphi_{h} \circ q\right)^{\mathbb{C}} \circ \tilde{\Phi} \in C^{\omega}\left(\bar{B}_{1}\right)$.

- Then

$$
\#\left\{\mathcal{N}_{\varphi_{h}} \cap H\right\}=\#\left\{\mathcal{N}_{\varphi_{h} \circ q} \cap[-\pi, \pi]\right\}
$$

Translating the problem to the Disc

- Define $v_{h}:=\left(\varphi_{h} \circ q\right)^{\mathbb{C}} \circ \tilde{\Phi} \in C^{\omega}\left(\bar{B}_{1}\right)$.

- Then

$$
\#\left\{\mathcal{N}_{\varphi_{h}} \cap H\right\}=\#\left\{\mathcal{N}_{\varphi_{h} \circ q} \cap[-\pi, \pi]\right\} \leq 2 F\left(v_{h}\right) .
$$

Translating the problem to the Disc

Translating the problem to the Disc

- It then follows that

$$
\#\left\{\mathcal{N}_{\varphi_{h}} \cap H\right\} \leq 2 F\left(v_{h}\right) \leq 2 \frac{\left\|\partial_{T} v_{h}\right\|_{L^{2}\left(\partial B_{1}\right)}}{\left\|v_{h}\right\|_{L^{2}\left(\partial B_{1}\right)}}
$$

Translating the problem to the Disc

- It then follows that

$$
\#\left\{\mathcal{N}_{\varphi_{h}} \cap H\right\} \leq 2 F\left(v_{h}\right) \leq 2 \frac{\left\|\partial_{T} v_{h}\right\|_{L^{2}\left(\partial B_{1}\right)}}{\left\|v_{h}\right\|_{L^{2}\left(\partial B_{1}\right)}}
$$

- Applying the change of variables $z \mapsto \tilde{\Phi}(z)$,

$$
\#\left(\mathcal{N}_{\varphi_{h}} \cap H\right) \leq C \frac{\left\|\partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}
$$

Main Theorem:

$$
H \operatorname{good} \Rightarrow \#\left(\mathcal{N}_{\varphi} \cap H\right)=O(\lambda)
$$

Let $\chi_{R} \in C_{0}^{\infty}\left(T^{*} \partial C_{\varepsilon}\right)$ with

$$
\chi_{R}(s, \sigma)= \begin{cases}1 & |\sigma| \leq R \\ 0 & |\sigma| \geq R+1\end{cases}
$$

Main Theorem:

$$
H \operatorname{good} \Rightarrow \#\left(\mathcal{N}_{\varphi_{\lambda}} \cap H\right)=O(\lambda)
$$

Let $\chi_{R} \in C_{0}^{\infty}\left(T^{*} \partial C_{\varepsilon}\right)$ with

$$
\chi_{R}(s, \sigma)= \begin{cases}1 & |\sigma| \leq R \\ 0 & |\sigma| \geq R+1\end{cases}
$$

And so

$$
\#\left(\mathcal{N}_{\varphi_{h}} \cap H\right) \leq C \frac{\left\|\partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}
$$

Main Theorem:

```
good }=>#(\mp@subsup{\mathcal{N}}{\varphi}{}\capH)=O(\lambda
```

Let $\chi_{R} \in C_{0}^{\infty}\left(T^{*} \partial C_{\varepsilon}\right)$ with

$$
\chi_{R}(s, \sigma)= \begin{cases}1 & |\sigma| \leq R \\ 0 & |\sigma| \geq R+1\end{cases}
$$

And so

$$
\begin{gathered}
\#\left(\mathcal{N}_{\varphi_{h}} \cap H\right) \leq C \frac{\left\|\partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}} \\
\leq C \frac{\left\|O p_{h}\left(\chi_{R}\right) \partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}+C \frac{\left\|\left(1-O p_{h}\left(\chi_{R}\right)\right) \partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}} .
\end{gathered}
$$

Main Theorem:

```
good }=>#(\mp@subsup{\mathcal{N}}{\varphi}{}\capH)=O(\lambda
```

Let $\chi_{R} \in C_{0}^{\infty}\left(T^{*} \partial C_{\varepsilon}\right)$ with

$$
\chi_{R}(s, \sigma)= \begin{cases}1 & |\sigma| \leq R \\ 0 & |\sigma| \geq R+1\end{cases}
$$

And so

$$
\begin{gathered}
\#\left(\mathcal{N}_{\varphi_{h}} \cap H\right) \leq C \frac{\left\|\partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}} \\
\leq \underbrace{C \frac{\left\|O p_{h}\left(\chi_{R}\right) \partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}+C \frac{\left\|\left(1-O p_{h}\left(\chi_{R}\right)\right) \partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}} .}_{O\left(h^{-1}\right)} .
\end{gathered}
$$

Main Theorem:

```
good }=>#(\mp@subsup{\mathcal{N}}{\varphi}{}\capH)=O(\lambda
```

Let $\chi_{R} \in C_{0}^{\infty}\left(T^{*} \partial C_{\varepsilon}\right)$ with

$$
\chi_{R}(s, \sigma)= \begin{cases}1 & |\sigma| \leq R \\ 0 & |\sigma| \geq R+1\end{cases}
$$

And so

$$
\begin{gathered}
\#\left(\mathcal{N}_{\varphi_{h}} \cap H\right) \leq C \frac{\left\|\partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}} \\
\leq \underbrace{C \frac{\left\|O p_{h}\left(\chi_{R}\right) \partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}+C \frac{\left\|\left(1-O p_{h}\left(\chi_{R}\right)\right) \partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}} .}_{O\left(h^{-1}\right)=O(\lambda)} .
\end{gathered}
$$

Main Theorem:

Let $\chi_{R} \in C_{0}^{\infty}\left(T^{*} \partial C_{\varepsilon}\right)$ with

$$
\chi_{R}(s, \sigma)= \begin{cases}1 & |\sigma| \leq R \\ 0 & |\sigma| \geq R+1\end{cases}
$$

And so

$$
\begin{gathered}
\#\left(\mathcal{N}_{\varphi_{h}} \cap H\right) \leq C \frac{\left\|\partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}} \\
\leq \underbrace{C \frac{\left\|O p_{h}\left(\chi_{R}\right) \partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}}_{O\left(h^{-1}\right)=O(\lambda)}+C \underbrace{C\left(1-O p_{h}\left(\chi_{R}\right)\right) \partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}} \|_{L^{2}\left(\partial C_{\varepsilon}\right)}}_{O\left(h^{-1} e^{-C / h}\right)}\| \|\left(\varphi_{h} \circ q\right)^{\mathbb{C}} \|_{L^{2}\left(\partial C_{\varepsilon}\right)}
\end{gathered} .
$$

Main Theorem: $H \operatorname{good} \Rightarrow \#\left(\mathcal{N}_{\varphi_{\lambda}} \cap H\right)=O(\lambda)$

Let $\chi_{R} \in C_{0}^{\infty}\left(T^{*} \partial C_{\varepsilon}\right)$ with

$$
\chi_{R}(s, \sigma)= \begin{cases}1 & |\sigma| \leq R \\ 0 & |\sigma| \geq R+1\end{cases}
$$

And so

$$
\begin{gathered}
\#\left(\mathcal{N}_{\varphi_{h}} \cap H\right) \leq C \frac{\left\|\partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}} \\
\leq \underbrace{C \frac{\left\|O p_{h}\left(\chi_{R}\right) \partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}}_{O\left(h^{-1}\right)=O(\lambda)}+C \underbrace{C\left(1-O p_{h}\left(\chi_{R}\right)\right) \partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}} \|_{L^{2}\left(\partial C_{\varepsilon}\right)}}_{O\left(h^{-1} e^{-C / h}\right)}\| \|\left(\varphi_{h} \circ q\right)^{\mathbb{C}} \|_{L^{2}\left(\partial C_{\varepsilon}\right)}
\end{gathered} .
$$

- Follows from L^{2}-boundedness of
$O p_{h}\left(\chi_{R}\right) h \partial_{T}$

Main Theorem: $H \operatorname{good} \Rightarrow \#\left(\mathcal{N}_{\varphi_{\lambda}} \cap H\right)=O(\lambda)$

Let $\chi_{R} \in C_{0}^{\infty}\left(T^{*} \partial C_{\varepsilon}\right)$ with

$$
\chi_{R}(s, \sigma)= \begin{cases}1 & |\sigma| \leq R \\ 0 & |\sigma| \geq R+1\end{cases}
$$

And so

$$
\begin{gathered}
\#\left(\mathcal{N}_{\varphi_{h}} \cap H\right) \leq C \frac{\left\|\partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}} \\
\leq \underbrace{C \frac{\left\|O p_{h}\left(\chi_{R}\right) \partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}}_{O\left(h^{-1}\right)=O(\lambda)}+C \underbrace{C\left(1-O p_{h}\left(\chi_{R}\right)\right) \partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}} \|_{L^{2}\left(\partial C_{\varepsilon}\right)}}_{O\left(h^{-1} e^{-C / h}\right)}\| \|\left(\varphi_{h} \circ q\right)^{\mathbb{C}} \|_{L^{2}\left(\partial C_{\varepsilon}\right)}
\end{gathered} .
$$

- We use the complexified Heat kernel to reproduce the eigenfunctions
- Follows from L^{2}-boundedness of $O p_{h}\left(\chi_{R}\right) h \partial_{T}$

Main Theorem: $H \operatorname{good} \Rightarrow \#\left(\mathcal{N}_{\varphi_{\lambda}} \cap H\right)=O(\lambda)$

Let $\chi_{R} \in C_{0}^{\infty}\left(T^{*} \partial C_{\varepsilon}\right)$ with

$$
\chi_{R}(s, \sigma)= \begin{cases}1 & |\sigma| \leq R \\ 0 & |\sigma| \geq R+1\end{cases}
$$

And so

$$
\begin{gathered}
\#\left(\mathcal{N}_{\varphi_{h}} \cap H\right) \leq C \frac{\left\|\partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}} \\
\leq \underbrace{C \frac{\left\|O p_{h}\left(\chi_{R}\right) \partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}}_{O\left(h^{-1}\right)=O(\lambda)}+C \underbrace{\frac{\left\|\left(1-O p_{h}\left(\chi_{R}\right)\right) \partial_{T}\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}{\left\|\left(\varphi_{h} \circ q\right)^{\mathbb{C}}\right\|_{L^{2}\left(\partial C_{\varepsilon}\right)}}}_{O\left(h^{-1} e^{-C / h}\right)} .
\end{gathered}
$$

- We use the complexified Heat kernel to reproduce the eigenfunctions
- We use contour deformation of ∂C_{ε} to make the phase of the FIO be positive

Picture credits

R. Aurich and F. Steiner. "Statistical properties of highly excited quantum eigenstates of a strongly chaotic system." Physica D: Nonlinear Phenomena 64.1 (1993): 185-214.

M. Berry and H. Ishio. "Nodal-line densities of chaotic quantum billiard modes satisfying mixed boundary conditions." Journal of Physics A: Mathematical and General 38.29 (2005): L513.

