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Periodic potentials
Waves\electrons in a periodic medium

E.g., Kronnig-Penny model
(
− d2

dx2 + V0 ∑∞
n=−∞ δ (x− na)

)
ψ = k2ψ

gives rise to band structure (measured in terms of k).

momentum band density
pσ :=probability that a random (uniformly
chosen) momentum belongs to the spectrum.

Example (Kronig-Penny model)
Band width →

k→∞
constant

Gap width →
k→∞

0

}
⇒ pσ = 1

Gap creation mechanisms
Bethe-Sommerfeld conjecture -

occurence of a finite number of gaps

figures taken from http://nanohub.org/
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Periodic graphs
Consider − d2

dx2 ψ = k2ψ on a Zd-periodic graph,
with Neumann vertex conditions: ψ is continuous at v and ∑ ψ′|v = 0.

pσ :=probability that a random (uniformly chosen)
momentum, k, belongs to the spectrum, σ.

How does pσ depend on the decoration?

(a)

(b) (c) (d) (e)

k

Denote pσ (K) := |σ∩[0,K]|
K , the band density in [0, K]

so that pσ := limK→∞ pσ (K)
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Periodic graphs
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Theorem (RB, Berkolaiko)
Consider a d-dimensional periodic graph. Then

1 The limit pσ := limK→∞ pσ (K) exists.
2 If there exists at least one gap, then pσ < 1.

If there exists at least one non-flat band, then pσ > 0.
3 If the edge lengths are incommensurate,

then pσ does not depend on their specific values.
4 pσ is independent on some details of the decoration’s topology.
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Periodic is Magnetic
The band structure of graphs - previous results:
metric - Avron, Exner, Last (’94); Kuchment (’04);

Brüning, Geyler, Pankrashkin (’07)
discrete - Schenker, Aizenman (’00)

An equivalent problem is
a compact graph with a magnetic flux:(
−i d

dx + A(x)
)2

ψ = k2ψ ,

with magnetic flux α =
∮

cycle A (x)dx.

The nth band is Bn := [minα kn (α) , maxα kn (α)]

pσ (K) := |(∪n Bn)∩[0,K]|
|[0,K]|

pσ := limK→∞ pσ (K)
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A glance at the proof

For a graph with E edges,
the eigenvalues are

{
k2; F (kl1, . . . , klE; ~α) = 0

}
,

where F is 2π-periodic in its first E variables.

⇒ Eigenvalues described by a flow on a torus, T = [0, 2π)E:
k is “time” and (κ1, . . . κE) = (kl1, . . . klE)

Torus idea from Barra, Gaspard (’00)

Zero magnetic flux
{F (κ1, κ2; 0) = 0}

Half magnetic flux
{F (κ1, κ2; π) = 0}

All magnetic fluxes
{F (κ1, κ2; α) = 0}α∈(0,π)
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A glance at the proof

Theorem (RB, Berkolaiko)
1 The limit pσ = limK→∞ pσ (K) exists.
2 If there exists at least one gap, then pσ < 1.
3 If edge lengths are incommensurate,

then pσ does not depend on their specific values.
4 pσ is independent on some details of the decoration’s topology.
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⇔

Due to ergodic motion, pσ equals the ratio of shaded area within the torus.
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A glance at the proof
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0
arctan (2 cot (θ/2)) dθ

≈ 0.637
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Further directions

How does pσ depend on the topology of the decoration and the periodicity?

Bounds on possible sizes of bands and gaps

Understanding better the gap openning mechanism

Adding potentials and non-trivial vertex conditions

Nodal count of the eigenfunctions on the edges of the Brillouin zone
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