The momentum band density of periodic graphs

Ram Band

University of Bristol

Joint work with Gregory Berkolaiko

Spectral Theory of Laplace and Schrödinger Operators, Banff, Aug 2013

Periodic potentials

Waves\electrons in a periodic medium
$$\bigcap^{\bullet} \bigcap^{\bullet} \bigcap^{$$

gives rise to band structure (measured in terms of k).

Periodic potentials

Waves\electrons in a periodic medium

E.g., Kronnig-Penny model (-

$$-\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V_0 \sum_{n=-\infty}^{\infty} \delta\left(x - na\right) \psi = k^2 \psi$$

gives rise to band structure (measured in terms of k).

momentum band density

 p_{σ} :=probability that a random (uniformly chosen) momentum belongs to the spectrum.

Example (Kronig-Penny model)

 $\left.\begin{array}{l} \text{Band width} \xrightarrow{k \to \infty} \text{constant} \\ \text{Gap width} \xrightarrow{k \to \infty} 0 \end{array}\right\} \Rightarrow \ p_{\sigma} = 1$

Periodic potentials

Waves\electrons in a periodic medium

E.g., Kronnig-Penny model

$$-rac{\mathrm{d}^2}{\mathrm{d}x^2} + V_0 \sum_{n=-\infty}^{\infty} \delta\left(x - na
ight) \psi = k^2 \psi$$

gives rise to band structure (measured in terms of k).

momentum band density

 p_{σ} :=probability that a random (uniformly chosen) momentum belongs to the spectrum.

Example (Kronig-Penny model)

 $\left.\begin{array}{l} \text{Band width} \xrightarrow[k \to \infty]{} \text{constant} \\ \text{Gap width} \xrightarrow[k \to \infty]{} 0 \end{array}\right\} \Rightarrow p_{\sigma} = 1$

- Gap creation mechanisms
- Bethe-Sommerfeld conjecture occurence of a finite number of gaps

Consider $-rac{\mathrm{d}^2}{\mathrm{d}x^2}\psi=k^2\psi$ on a \mathbb{Z}^d -periodic graph,

with Neumann vertex conditions: ψ is continuous at v and $\sum \psi'|_v = 0$.

 p_{σ} :=probability that a random (uniformly chosen) momentum, k, belongs to the spectrum, σ .

How does p_{σ} depend on the decoration?

Consider $-\frac{d^2}{dx^2}\psi = k^2\psi$ on a \mathbb{Z}^d -periodic graph, with Neumann vertex conditions: ψ is continuous at v and $\sum \psi'|_v = 0$.

 $p_{\sigma} :=$ probability that a random (uniformly chosen) momentum, k, belongs to the spectrum, σ .

How does p_{σ} depend on the decoration?

Theorem (RB, Berkolaiko)

Consider a *d*-dimensional periodic graph. Then

- The limit $p_{\sigma} := \lim_{K \to \infty} p_{\sigma}(K)$ exists.
- **(2)** If there exists at least one gap, then $p_{\sigma} < 1$. If there exists at least one non-flat band, then $p_{\sigma} > 0$.
- If the edge lengths are incommensurate, then p_σ does not depend on their specific values.
- p_σ is independent on some details of the decoration's topology.

Periodic is Magnetic

The band structure of graphs - previous results: metric - Avron, Exner, Last ('94); Kuchment ('04); Brüning, Geyler, Pankrashkin ('07) discrete - Schenker, Aizenman ('00)

An equivalent problem is

a compact graph with a magnetic flux: $\left(-i\frac{\mathrm{d}}{\mathrm{d}x} + A(x)\right)^2 \psi = k^2 \psi \text{ ,} \\ \text{with magnetic flux } \alpha = \oint_{\mathrm{cycle}} A(x) \, \mathrm{d}x.$

Periodic is Magnetic

The band structure of graphs - previous results: metric - Avron, Exner, Last ('94); Kuchment ('04); Brüning, Geyler, Pankrashkin ('07) discrete - Schenker, Aizenman ('00)

An equivalent problem is

a compact graph with a magnetic flux: $\left(-i \frac{\mathrm{d}}{\mathrm{d}x} + A(x) \right)^2 \psi = k^2 \psi \text{ ,} \\ \text{with magnetic flux } \alpha = \oint_{\mathrm{cycle}} A(x) \, \mathrm{d}x.$

The n^{th} band is $B_n := [\min_{\alpha} k_n(\alpha), \max_{\alpha} k_n(\alpha)]$

 $p_{\sigma}(K) := \frac{|(\cup_n B_n) \cap [0,K]|}{|[0,K]|}$

 $p_{\sigma} := \lim_{K \to \infty} p_{\sigma}(K)$

For a graph with *E* edges, the eigenvalues are $\{k^2; F(kl_1, ..., kl_E; \vec{\alpha}) = 0\}$, where *F* is 2π -periodic in its first *E* variables.

⇒ Eigenvalues described by a flow on a torus, $\mathbb{T} = [0, 2\pi)^E$: k is "time" and $(\kappa_1, \dots, \kappa_E) = (kl_1, \dots, kl_E)$

Zero magnetic flux $\{F(\kappa_1, \kappa_2; 0) = 0\}$

For a graph with *E* edges, the eigenvalues are $\{k^2; F(kl_1, ..., kl_E; \vec{\alpha}) = 0\}$, where *F* is 2π -periodic in its first *E* variables.

⇒ Eigenvalues described by a flow on a torus, $\mathbb{T} = [0, 2\pi)^E$: k is "time" and $(\kappa_1, \dots, \kappa_E) = (kl_1, \dots, kl_E)$

Zero magnetic flux $\{F(\kappa_1, \kappa_2; 0) = 0\}$

For a graph with *E* edges, the eigenvalues are $\{k^2; F(kl_1, ..., kl_E; \vec{\alpha}) = 0\}$, where *F* is 2π -periodic in its first *E* variables.

⇒ Eigenvalues described by a flow on a torus, $\mathbb{T} = [0, 2\pi)^E$: k is "time" and $(\kappa_1, \dots, \kappa_E) = (kl_1, \dots, kl_E)$

Torus idea from Barra, Gaspard ('00)

Zero magnetic flux $\{F(\kappa_1, \kappa_2; 0) = 0\}$

For a graph with *E* edges, the eigenvalues are $\{k^2; F(kl_1, ..., kl_E; \vec{\alpha}) = 0\}$, where *F* is 2π -periodic in its first *E* variables.

⇒ Eigenvalues described by a flow on a torus, $\mathbb{T} = [0, 2\pi)^E$: k is "time" and $(\kappa_1, \dots, \kappa_E) = (kl_1, \dots, kl_E)$

Zero magnetic flux $\{F(\kappa_1, \kappa_2; 0) = 0\}$

Half magnetic flux $\{F(\kappa_1, \kappa_2; \pi) = 0\}$

For a graph with *E* edges, the eigenvalues are $\{k^2; F(kl_1, ..., kl_E; \vec{\alpha}) = 0\}$, where *F* is 2π -periodic in its first *E* variables.

⇒ Eigenvalues described by a flow on a torus, $\mathbb{T} = [0, 2\pi)^E$: k is "time" and $(\kappa_1, \dots, \kappa_E) = (kl_1, \dots, kl_E)$

Zero magnetic flux $\{F(\kappa_1, \kappa_2; 0) = 0\}$

Half magnetic flux $\{F(\kappa_1, \kappa_2; \pi) = 0\}$

All magnetic fluxes $\{F(\kappa_1, \kappa_2; \alpha) = 0\}_{\alpha \in (0, \pi)}$

For a graph with *E* edges, the eigenvalues are $\{k^2; F(kl_1, ..., kl_E; \vec{\alpha}) = 0\}$, where *F* is 2π -periodic in its first *E* variables.

⇒ Eigenvalues described by a flow on a torus, $\mathbb{T} = [0, 2\pi)^E$: k is "time" and $(\kappa_1, \dots, \kappa_E) = (kl_1, \dots, kl_E)$

Zero magnetic flux $\{F(\kappa_1, \kappa_2; 0) = 0\}$

Half magnetic flux $\{F(\kappa_1, \kappa_2; \pi) = 0\}$

All magnetic fluxes $\{F(\kappa_1, \kappa_2; \alpha) = 0\}_{\alpha \in (0, \pi)}$

For a graph with *E* edges, the eigenvalues are $\{k^2; F(kl_1, ..., kl_E; \vec{\alpha}) = 0\}$, where *F* is 2π -periodic in its first *E* variables.

⇒ Eigenvalues described by a flow on a torus, $\mathbb{T} = [0, 2\pi)^E$: k is "time" and $(\kappa_1, \dots \kappa_E) = (kl_1, \dots kl_E)$

Zero magnetic flux $\{F(\kappa_1, \kappa_2; 0) = 0\}$

Half magnetic flux $\{F(\kappa_1, \kappa_2; \pi) = 0\}$

All magnetic fluxes $\{F(\kappa_1, \kappa_2; \alpha) = 0\}_{\alpha \in (0, \pi)}$

Theorem (RB, Berkolaiko)

- The limit $p_{\sigma} = \lim_{K \to \infty} p_{\sigma}(K)$ exists.
- 2) If there exists at least one gap, then $p_{\sigma} < 1$.
- If edge lengths are incommensurate, then p_σ does not depend on their specific values.
- \bullet p_{σ} is independent on some details of the decoration's topology.

Theorem (RB, Berkolaiko)

- The limit $p_{\sigma} = \lim_{K \to \infty} p_{\sigma}(K)$ exists.
- 2) If there exists at least one gap, then $p_{\sigma} < 1$.
- If edge lengths are incommensurate, then p_σ does not depend on their specific values.
- \bullet p_{σ} is independent on some details of the decoration's topology.

Theorem (RB, Berkolaiko)

- The limit $p_{\sigma} = \lim_{K \to \infty} p_{\sigma}(K)$ exists.
- 2) If there exists at least one gap, then $p_{\sigma} < 1$.
- If edge lengths are incommensurate, then p_σ does not depend on their specific values.
- p_σ is independent on some details of the decoration's topology.

Due to ergodic motion, p_σ equals the ratio of shaded area within the torus.

Due to ergodic motion, p_{σ} equals the ratio of shaded area within the torus.

• How does p_{σ} depend on the topology of the decoration and the periodicity?

• How does p_{σ} depend on the topology of the decoration and the periodicity?

• Bounds on possible sizes of bands and gaps

• How does p_{σ} depend on the topology of the decoration and the periodicity?

- Bounds on possible sizes of bands and gaps
- Understanding better the gap openning mechanism

• How does p_{σ} depend on the topology of the decoration and the periodicity?

- Bounds on possible sizes of bands and gaps
- Understanding better the gap openning mechanism
- Adding potentials and non-trivial vertex conditions

• How does p_{σ} depend on the topology of the decoration and the periodicity?

- Bounds on possible sizes of bands and gaps
- Understanding better the gap openning mechanism
- Adding potentials and non-trivial vertex conditions

• Nodal count of the eigenfunctions on the edges of the Brillouin zone

The momentum band density of periodic graphs

Ram Band

University of Bristol

Joint work with Gregory Berkolaiko

Spectral Theory of Laplace and Schrödinger Operators, Banff, Aug 2013