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General question

I Transport properties and ergodic theory of the classical
flow generated by Hamiltonian function

H(p,q) = 1
2‖p‖

2 + V (q),

with (random) potential V on Rd .
I In particular: asymptotic velocities for initial conditions

x0 = (p0,q0)

v±(x0) := lim
T→±∞

q(T , x0)− q0

T
.

I Quantum mechanical counterpart has been
intensively studied for more than 40 years.

I A.K. and Christoph Schumacher:
Classical motion in random potentials.
Ergodic Theory and Dynamical Systems 33, 1–37, 2013
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Periodic potentials

Known: Motion in periodic 2D coulombic potentials (of finite
horizon) is diffusive:
For all energies E above a threshold energy and all probability
measures µ of initial conditions x0 on H−1(E) (of finite second
moment and absolutely continuous w.r.t. Liouville measure)

lim
t→∞

q(t ,x0)√
t

D
= N(0,D) (bivariate normal distribution).

A.K.: Ergodic and Topological Properties of Coulombic Periodic Potentials. Commun. Math. Phys. 110, 89-112 (’87)
coulombic.nb 1
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Figure: Diffusion in a periodic coulombic potential. Scale: 1/
√

t
Left: time t = 1, mid: t = 4, right: t = 16
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Periodic vs random scatterers

Motion in periodic 2D Lorentz gas (of finite horizon)

I is diffusive.
L.A. Bunimovich, N.I. Chernov, Ya.G. Sinai: Statistical properties of two-dimensional hyperbolic billiards.
Russ. Math. Surv. 46, 47–106 (1991)

I is recurrent (with probability one it returns infinitely often in
any prescribed neighborhood)
J.-P. Conze: Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications.
Ergodic Theory Dynam. Systems 19, 1233–1245 (1999)

K. Schmidt: On joint recurrence. C. R. Acad. Sci. Paris 327, 837–842 (1998)

One expects recurrence for the random case, too,
iff spatial dimension d ≤ 2.
Known for (effective) dimension d = 1:

Giampaolo Cristadoro, Marcello Seri, Marko Lenci:
Recurrence for quenched random Lorentz tubes, Chaos 20, (2010)
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Random potentials: The lattice case

Hω : Rd ×Rd → R , Hω(p,q) = 1
2‖p‖

2 + Vω(q)

with ω ∈ Ω := {1, . . . ,N}L for a lattice L ⊆ Rd ,

I single site potentials Wj : Rd → R (j ∈ {1, . . . ,N})
(with Wj (q) = O(‖q‖−d−ε) as q →∞), and

I random potential

Vω : R
d → R,

Vω(q) =
∑
z∈L

Wω(z)(q − z).

I L-ergodic probability measure
β on Ω,

I Application: crystals with
impurities/foreign atoms, alloys
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Random potentials: The Poisson case

I prescribe intensities ρj for the single site potentials Wj ,
j = 1, . . . ,N

I marked Poisson process on Rd

Ω̃ :=
{
ω
∣∣ ω Borel measure on Rd × {1, . . . ,N} with

ω(K × {j}) ∈ N0 if K ⊆ Rd is compact
}

,

I with measure

Lebesgue

β
(
{ω ∈ Ω̃ | ω(K×{j}) = m}

)
=

(
ρjλ

d (K )
)m

m! exp
(
ρjλd (K )

) (m ∈ N0).

I Poisson potential

V : Ω̃×Rd −→ R , (ω,q) 7−→
∫
Rd×J

Wj(q − x) dω(x , j).
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Dynamics: results

I Due to ergodic theorem, asymptotic velocities
v±ω (x) = limT→±∞

qω(T ,x)
T exist for β ⊗ λ2n–a.e. (ω, x), and

v+
ω (x) = v−ω (x) =: vω(x).

I Joint distribution νω of energy and asymptotic velocity on
Rd ×R exists and is β–a.s. independent of ω

I mirror symmetry (H, v) 7→ (H,−v)

I d = 1: Dichotomy:

. Either the energy E is higher than the
supremum of Vω, then the motion is
ballistic (positive speed), or

. E is lower than the supremum of Vω,
then the motion is almost surely
bounded.
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Intermezzo: critical values of the Hamiltonian

I Problem: By conservation of energy, one has to
decompose phase space into energy shells in order to do
ergodic theory. These carry decent measures only for
regular energy values.

I critical values of Hω = critical values of Vω
I The closure of the set CValω ⊆ [Vmin,Vmax] of critical values

is β–a.s. ω–independent.
I Example of exponentially decaying (Wj(q) = O(N−2|q|))

single-site potentials with CValω = [Vmin,Vmax] !
I But for faster exponential decay λ1(CValω) = 0.
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Two notions of ergodicity of time evolution

I H : Ω×Rd
p ×Rd

q → R , H(ω,p,q) = 1
2‖p‖

2 + Vω(q)
generates motion which is trivial on Ω

I Thus never ergodicity on H−1(E).

I Lattice L acts on phase space and on Ω, leaving H
invariant.
Thus motion on (Ω×R2d )/L, generated by Hamiltonian Ĥ.

I Motion on compactified energy surface Ĥ−1(E) may be
ergodic.

I Motion on energy surfaces H−1
ω (E) may be ergodic, too.

I If motion on H−1
ω (E) is ergodic for β–almost all ω,

then motion on Ĥ−1(E) is ergodic, too.
I but not vice versa.
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Consequences of ergodicity

If the flow on the regular energy surface Ĥ−1(E) is ergodic,
then:

I the asymptotic velocity satisfies vω(x) = 0 almost surely;
but

I the motion is unbounded for almost every initial condition
on H−1

ω (E) and for β–a.e. ω.
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Dynamics: further (negative) results

I d ≥ 2, smooth bounded potentials:
for no energy E (larger nor smaller the supremum of Vω)
the motion can be uniformly hyperbolic.
G. Paternain and M. Paternain: On Anosov Energy Levels of Convex Hamiltonian Systems,
Mathematische Zeitschrift 217, 367–376 (1994)

So we do not expect the motion to be ergodic in general.
I For the Poisson potentials, complete dynamics exists for all
ω ∈ Ω ⊆ Ω̃ with full measure (β(Ω) = 1).
But: for any energy E , the motion on the energy surface
H−1
ω (E) is β–a.s. not ergodic !
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Dynamics: Coulombic potentials

d = 2, random coulombic potentials (say, with single site potentials
W0(q) = 0 and Yukawa potentials Wj(q) = −Zj

e−µj‖q‖

‖q‖ ):
For lattice-ergodic probability measures β (with β({ω = 0}) = 0)

I the motion is topologically transitive for all E > E◦
(even if it is not uniformly hyperbolic)

I the periodic orbits are dense.
I the compactified motion is then ergodic.
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Motion in a random Coulombic potential

I In his thesis Christoph Schumacher constructed a
geometric Markov partition (in the sense of C. Series, with
Poincaré surfaces projecting to configuration space
trajectories), which is adapted to the lattice action.
www.opus.ub.uni-erlangen.de/opus/volltexte/2010

I We try to show a central limit theorem, that is, diffusion of
the particle in the plane.
Difficulty: Even with uniform hyperbolicity, the correlations
do not decay exponentially, like in random motion in
random environment.
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Slow correlation decay in random media
Herbert Spohn’s example

I random motion on phase space R× {−1,1}
I starting at (x0, v0) := (0,1)
I zig-zag motion x(t) = x([t ]) + (t − [t ])v([t ])
I For times t ∈ N: Probability

I P
(
{v(t + 1) = v(t)}

)
= 1

2 if x(t) 6= 0;
I P

(
{v(t + 1) = v(t)}

)
= 1 if x(t) = 0 (no scatterer at x = 0).

H. van Beijeren, H. Spohn: Transport Properties of the One - Dimensional Stochastic Lorentz Model:
I. Velocity, Autocorrelation. J. Stat. Phys. 31, 231–254 (1983)

Velocity autocorrelation E
(
v(0)v(t)

)
I if scatterer at x = 0, too: E

(
v(0)v(t)

)
= 0 for t ≥ 1

I else: |E
(
v(0)v(t)

)
| ∼ t−3/2.
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Local regularisation

The Hamiltonian flow is incomplete at Coulombic singularities.

Example (Kepler problem: V (q) = − 1
‖q‖ )

I Up to time parametrization geodesics of the
Maupertuis-Jacobi metric(

E − V (q)
)
gEuclid on R

2 \ {0}

are the energy E trajectories of the Kepler problem.
I At the singularity the metric develops a cone with opening

angle π
3 .

I Levi-Civita regularisation: The Riemann surface

{(q,Q) ∈ C2 | q = Q2}

covers C via (q,Q) 7→ q, and the lifted Maupertuis-Jacobi
metric can be smoothly completed.
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Global regularisation

I To regularise all singularities of Vω simultaneously
we use the natural generalisation:

M :=
{

(q,Q) ∈ C2 | f (q) = Q2},

with f : C→ C holomorphic,
f (z) = 0, f ′(z) 6= 0 (z ∈ C position of Coulomb singularity).

I M is an infinite genus surface.

I By direct calculation one sees that
for high enough energies the Maupertuis-Jacobi metric
exhibits negative curvature.
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Problems and Strategy

I Problem 1:
Due to arbitrarily large regions without Coulomb potentials,
the negative curvature is not bounded away from zero.

I Strategy:
But the Riemann surface (M∗ω,g∗ω) is a visibility manifold,
that is, for every ε > 0, seen from p ∈ M∗ω every geodesic
of distance > r(p, ε) encloses an angle < ε.

I Problem 2:
I The energy surface H−1

ω {E} has infinite invariant measure.
I Compactification by lattice action leads to finite measure

but nonhyperbolic system.
I Strategy:

I Set up symbolic dynamics
I via geometric Markov partition, i.e. adapted to the lattice.
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Geometric Poincaré Sections

To encode the winding geodesic we can record
the pieces of the web N of geodesics with piercing points ◦.
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Problem: resulting shift space not Markov!

Andreas Knauf Motion in Random Potentials



Geometric Poincaré Sections
Christoph Schumacher

Theorem (Existence of geometric Markov partition)
There exists a Markov partition for the geodesic flow on M
whose atoms project to the net N.

I The proof is constructive and uses ideas from

Bedford, Keane, Series: Ergodic Theory,
Symbolic Dynamics and Hyperbolic Spaces
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Thank you!
(Hopefully this presentation was not too chaotic!)
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