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Introduction




INTRODUCTION

We will try to study n-body problems which are symmetric with
respect to the action of suitable extensions of finite rotation groups®.
The space of symmetric configurations is the complement of an
arrangement of linear subspaces in a Euclidean space, and blow-
up, McGehee coordinates and variational methods can —in some
cases— be used to understand local dynamics (around the space

of collisions) and some properties of periodic orbits.

Masses: mqy, my, ..., m,; >0
Positions: q,,4,,...,4, € RY
Homogeneity: —a <0

ial: ]
Potentlal. Z W
i<j 19— 4]

(WDavide L. Ferrario/ Alessandro Portaluri: On the dihedral n-body problem. In: Nonlinearity 21.6 (2008),
pp. 1307-1321; idem: Dynamics of the the dihedral four-body problem. In: Discrete and Continuous Dynamical
Systems - Series S (DCDS-S) 6.4 (2012), pp. 925 -974.
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SYMMETRIES

Two basic types of symmetries:
= Involving time
>t b+ 8 x(t+8) = gx(t); [>]
>t —t x(—t) = gx(t);
- Not involving time Vt, x(t) € X°.
Examples:
- Antipodal symmetry x(t +6) = —x(#).
- Devaney isosceles®.
-> Sitnikov.
-> Chenciner Montgomery figure-eight and choreographies.

-> Delgado, Vidal, Venturelli, Ferrario, Terracini, Simo,
Martinez, Chen, Salomone, Xia, Gronchi, Negrini, Fusco,

()Robert L. Devaney: Triple collision in the planar isosceles three-body problem. In: Invent. Math. 60.3 (1980),
pp. 249-267.
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Two symmetric 3-choregraphies
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POINT SYMMETRIES

Consider now finite subgroups of O(2) (planar case) and SO(3)
(spatial case). Recall the classification of such groups (point groups):

-> Plane:

» Cyclic groups C,, C SO(2) (of order n);
» Dihedral groups D, C O(2) (of order 2n).

-> Space:
» Cyclic Cy, (of order n);
» Dihedral D, (of order 2n);
» Tetrahedral T = A4 (of order 12);
» Octahedral O = S, (of order 24);
» Icosahedral Y = As (of order 60).

For subgroups of O(3), one obtains full groups adding to the
above the inversion a: x — —x, (which is in the center of SO(3))
and yields full groups I x Cy,, I x Dy, with [ = {1,a} ...or the
groups of mixed type (those without the inversion a).
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CONFIGURATION SPACES

Now consider a rotation group K C SO(3) of order n, and n
bodies with equal masses “naturally” symmetric with respect
to K. Here “naturally” means that the permutation action on
{1,...,n}isthe (natural) Cayley leftactionof KonK ~ {1,...,n} ~
Kby assigning indices to the elements of K. For each g, there ex-
ists a corresponding permutation ¢ € S, defined by g¢;, = ¢ ;.
In other words, if K = {g,...,g,}, we consider configurations
of n points (with equal masses) q,,...,q, € R%. If X is the 3n-
dimensional configuration space, then the induced symmetry
g: X — Xis defined by

& (- a,) = 89511):895-12)r -+ 81 (n)) -
The space of symmetric configurations hence is
XK= {xeX:Kx=x}
={x=(qy--4,) 4, =88 9} Z{a} = R°
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INTERACTION POTENTIAL

Consider the binary collision subspace A;; = {g; = ‘1]»} C X. The
projection 7t;; onto Aj; given by

7Ti]'(x> = 7'[,']'(6]1,. s i ,q]-, .. 'qn>
miq; + m;q; miq; + mjq;

=(qy..., seeiqy)

m; + m; Y m; + m;
is well-defined, and orthogonal with respect to the mass-metric
on X. Now, observe that if ||x||5 denotes the mass-metric on X

AT 2 g - e 2
m; + my J m; + my
m,m]

== g

lx = 72 (x) |3 = millq; —

q;l?
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INTERACTION POTENTIAL (CONT.)

The potential

Z mim;

= g —a;1"

can be therefore written as

y (m; -+ mj) =% (mm;) 1 Ho/2

i< 1% = 72 (x) [}

It is a weighted sum of powers of distances from x to binary col-
lision subspaces A;;.

Its restriction to symmetric configurations XX C X (all equal
masses at the moment, but it can be easily generalized, e.g. isosce-
les or Sitnikov or multiple choreographies or ...)? If x € XX, in
general it is not true that 77;;(x) € XX, but it happens that again
it is a weighted sum of powers of distances from subspaces.
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POTENTIAL ON SYMMETRIC CONFIGURATIONS

CH

u=y ——°
rick 19 — ()|

The subgroup H C K |
ranges over all the

isotropy subgroups of K. I
The orthogonal |
projection 7ty : E — EH

project the configuration ]
space E onto the -
subspace EF fixed by H, S - . @
and Cyisa v

corresponding positive o

coefficient.

D.L. Ferrario (University of Milano-Bicocca): Dynamics of some symmetric n-body problems



Blow-up and regularizations




McGEHEE COORDINATES

Let g, p be the canonical coordinates, (g, p) € phase space. Since
U is —a-homogeneous, in McGehee coordinates (with mass-metric
Il = [Mlm) o = llgll,s = 14,z = p*/?p after rescaling time
and defining

v=(z,8),w=1z—(a,s)s

(where w is tangent to the sphere) Newton equations become :

p'=po

o = y|wuz+%vz — al(s)

s =w

w' = —|lw|s + (5 — Vow + V.U(s),

where VU is the componente of the gradient of U tangent to the
inertia ellipsoid S = {||q|| = 1}.
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MCcGEHEE COORDINATES (CONT.)

The coordinates p, v, s, w yield a map (homeomorphism outside
{p = 0}) defined on the phase space

(q,p) — (p,0,5,w) € [0,4+00) x R x TS,

where TS is the tangent bundle of S. The energy H can be written
as

20°H = v* + ||w|* — 2U(s) .
All trajectories going to a total collisions touch a submanifold of
the boundary {p = 0}, termed the MgGehee total collision mani-
fold My, defined by the equation

v+ ||wH2 =2U(s) .

This equation defines also the projection of all parabolic trajecto-
ries as a subset of R x TS, where one eliminates p. (Hence, given
a solution in My, one can integrate p and obtain the full parabolic
motion)
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THE FLOW ON TOTAL COLLISION MANIFOLD

Partial collisions are a cone of a subset A C S.

My is a sphere bundle on S \ A, with fibers ~ S. The flow on M
is gradient-like (due to v), and stops at singular points in A C S,
or at equilibrium points, i.e., points satisfying the equations

v = U(s), VsU(s) =0, w=0,

which correpond to central configurations: stationary points for
the restricted potential U (s € S : VsU(s)). Other equilibrium
points in the phase space do not exist.

Equilibrium points must be found, singular points must be regu-
larized...
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C.C. FOR DIHEDRAL CONFIGURATIONS

00 (two l-adic collisions)

. prism
prism.

50 (1 binary collisions)
oo (I binary collisions) Fagon

Central configurations for Dj-symmetric configurations of 21 bodies
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C.C. FOR DIHEDRAL CONFIGURATIONS (CONT.)

(1) If G = D; is the dihedral group with 21 elements, then central
configurations for Dj-symmetric configurations are only those of the
previous slide (2I-agon, I-prism and l-antiprism).

(2) Moreover, all the corresponding equilibrium points in the My flow
are hyperbolic®.

(3) For the 4-body Klein group, and any o € (0, 2), there are 12 square
central configurations (4 for each coordinate plane), and 8 tetrahedra,
which are minima for U.

Dimensions of the stable and unstable manifolds in My: 2 and 2 for the
tetrahedral CC’s, 3and 1 (v > 0) or 1and 3 (v < 0) for the squares.

(4) For thel-dihedral 21-body problem and . € (0, 2), the three families
of central configruations have dimensions of the stable and unstable
manifolds in My equal to: prism and planar the same as square CC for
the 4-body, all antiprisms the same as tetrahedral CC.

()Ferrario/Portaluri: On the dihedral n-body problem (see n. (1)).
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OTHER GROUPS?




REGULARIZED FLOW

Recall that for a rotation group, S ~ S? and My is a four-dimensional
S?-bundle over S \ A.

For each rotation in the symmetry group G, there is a collision
axis, and two antipodal collision points in S. Coxeter planes con-
tain pairs of rotation axes, and are invariant in the flow.

That is, each of the symmetry planes gives rise to an invariant
surface in My containing /-agon collisions, with a rectangular
flow analogous to the square flow.

- = —|-»
- ==




(REGULARIZED FLOW)

(5) For any &, a bouncing regularization is possible, but only locally
within the plane, by setting for the horizontal plane

sin”*(20) ”
W(6)

with W(0) = sin*(20)U(0) and changing time accordingly. Here
0 ~ sand w ~ w. Similar formulas hold for the prism and tetrahedral
case.

For « = 1 a Levi-Civita double covering map can be defined,
which gives the “bouncing” regularization on invariant planes.
But, as far as we know, not explicitely for any symmetry group
(cfr. Lemaitre-Moeckel-Montgomery).
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COVERING OF THE PRISM SECTION

\
A
\
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COVERING OF THE TETRAHEDRAL SECTION
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Collisionless minimizers




COLLISIONLESS PERIODIC MINIMIZERS

In the negative energy region, one can expect to find (many?)
periodic collisionless orbits.

A few can be proven to exist by applying previous reults®®,
minimizing the Lagrangean action on the Sobolev space of G-
equivariant loops, for suitable G. Let ¢, T and p be the permuta-
tion, time and space representation of G, and X the configuration
space.

(6) Let K = kert. If p(K) C SO(3) is a finite group of rotations
acting transitively on the index set {1,...,n}, and if X¢ = {0}, then
there exists a G-equivariant collisionless minimizer.

How to define group actions satisfying this condition?
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COLLISIONLESS PERIODIC MINIMIZERS (CONT.)

(7) Corollary. Given K C SO(3) a subgroup of order n, with permu-
tation regular representation 0: K — Xy, if ¢ € No(3)K is such that
(R3)$ = 0,and s € %, is the permutation on K defined by conjugation
with g, then the subgroup G of SO(3) x X, generated by the graph of &
and the element (g, s) satisfies the hypotheses of (6), with p, o natural
projections and T defined as T(K) =0, 7((g,0)) =1L

(8) Corollary. Let K C SO(3) be a subgroup of order n as above.
Then the antipodal map ¢ = —I € O(3) normalizes K and induces the
trivial conjugation permutation s.

(#)Davide L. Ferrario /Susanna Terracini: On the Existence of Collisionless Equivariant Minimizers for the
Classical n-body Problem. In: Invent. Math. 155.2 (2004), pp. 305-362.

G)Davide L. Ferrario: Transitive decomposition of symmetry groups for the n-body problem. In: Adv. Math. 213.2
(2007), pp. 763784, URL: http://dx.doi.org/10.1016/j.aim.2007.01.009.
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ExamMPLES

|
~L

Klein group, g = —I (but the
minimizer is also
Z3-symmetric): [>]
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ExamPLES: TETRAHEDRAL GROUP OF ORDER 12

) o |
. , e 5
o o o Y
| L]
° » 0o
) o e
°
Q o
o ©
K = tetrahedral group, g = K = tetrahedral group, g =
Hip-Hop 4-rotation: [>] Hip-Hop 3-rotation: [>]
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REMARKS

-> It is possible to consider multiple copies of the same
symmetric minimizing orbit, and a minimizer will exist
(eight 3-choreographies + 21 singletons: [>], a
3-choreography + a 5-choreography + a 7-choreography +
a 9-choreography and 3 singletons - |G| = 630 [>]).
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REMARKS

-> It is possible to consider multiple copies of the same
symmetric minimizing orbit, and a minimizer will exist
(eight 3-choreographies + 21 singletons: [>], a
3-choreography + a 5-choreography + a 7-choreography +
a 9-choreography and 3 singletons - |G| = 630 [>]).

= Suitable symmetry groups occur in the problem of
constellations of satellites (Walker delta pattern, [>]...).
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REMARKS

-> It is possible to consider multiple copies of the same
symmetric minimizing orbit, and a minimizer will exist
(eight 3-choreographies + 21 singletons: [>], a
3-choreography + a 5-choreography + a 7-choreography +
a 9-choreography and 3 singletons - |G| = 630 [>]).

= Suitable symmetry groups occur in the problem of
constellations of satellites (Walker delta pattern, [>]...).

-> Simultaneus regolarization of binary collisions in the
symmetric G C SO(3) n-body problem is possible, and
geometrically similar to Moeckel-Montgomery
regularization for the reduced 3BP.
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REMARKS

-> It is possible to consider multiple copies of the same
symmetric minimizing orbit, and a minimizer will exist
(eight 3-choreographies + 21 singletons: [>], a
3-choreography + a 5-choreography + a 7-choreography +
a 9-choreography and 3 singletons - |G| = 630 [>]).

= Suitable symmetry groups occur in the problem of
constellations of satellites (Walker delta pattern, [>]...).

-> Simultaneus regolarization of binary collisions in the
symmetric G C SO(3) n-body problem is possible, and
geometrically similar to Moeckel-Montgomery
regularization for the reduced 3BP.

-> Take two subspaces, fixed by involutions, with a single
intersection. Minimize in the space of all paths going from
one component of a subspace to a component of the other
= there exists a collisionless minimizer, yielding a
symmetric minimizer (periodic or quasi-periodic ...).

D.L. Ferrario (University of Milano-Bicocca): Dynamics of some symmetric n-body problems


http://youtu.be/TgF7KMigZFw
http://youtu.be/_z6HwhIqJfc

REFERENCES

Devaney, Robert L.: Triple collision in the planar isosceles three-
body problem. In: Invent. Math. 60.3 (1980), pp. 249-267.

[4 Ferrario, Davide L.: Transitive decomposition of symmetry groups
for the n-body problem. In: Adv. Math. 213.2 (2007), pp. 763—
784.

[4 Ferrario, Davide L. and Alessandro Portaluri: Dynamics of the
the dihedral four-body problem. In: Discrete and Continuous
Dynamical Systems - Series S (DCDS-S) 6.4 (2012), pp. 925 -974.

[4 Idem: On the dihedral n-body problem. In: Nonlinearity 21.6
(2008), pp- 1307-1321.

[4 Ferrario, Davide L. and Susanna Terracini: On the Existence of
Collisionless Equivariant Minimizers for the Classical n-body Prob-
lem. In: Invent. Math. 155.2 (2004), pp. 305-362.

D.L. Ferrario (University of Milano-Bicocca): Dynamics of some symmetric n-body problems



e

blems




	Introduction
	Introduction
	Configuration spaces
	Potential on symmetric configurations

	Blow-up and regularizations
	The flow on total collision manifold

	Central configurations
	Other groups?
	Regularized flow
	Covering of the prism section
	Covering of the tetrahedral section

	Collisionless minimizers
	Remarks
	Remarks


