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OUTLINE

(1) Survey of stability results for the planetary
- the Kolmogorov Set;

- Exponentially long--time stability of semi
full phase space.

- Polynomially long--time stability of eccen
inclinations excluding mean—--motion reson
(2) A description of the effect on mean--motion r

planetary 3BP

- Relation between resonances and symmetries

(3) Two planets revolving quite closely, in oppos
- bifurcation to hyperbolic regime;
- Graff-—-normal form;

- Possible future directions.




THE KOLMOGOROV SET FOR NBP
Theorem [V. I. Arnold, 1963]

“‘In the many-body problem there exists a set

conditions having a positive Lebesgue measure
if the initial positions and velocities belon
the distances of the bodies from each other w
perpetually bounded, provided the masses of t

sufficiently small.’’

proof

- Arnold 1963 (planar 3BP)
- Robutel 1995 (spatial 3BP)
- Fejoz 2004 (general NBP, checking Arnold--Pi

— Chierchia-P. 2011(general NBP, checking Kolmo
with measure of the Kolmogorov set and reduct

degeneracies)



LONG—--TIME STABILITY OF ACTI
Theorem [N. N. Nekhorossev, 1977]

(I) Let
H=h(I)+ puf(I,¢) (I,p) €A xT" T:

If

(i) H is real--analytic
(ii) p is small

¢ ¢

(iii) h is ‘‘steep’’

then
T:(t) — I;(0)| <Ry :=Rou®  for 1t] <

(II) The same result holds if the problem if € ‘de
f =1£(I,p;u,v) provided (u(t),v(t)) remains in i
1t] < T,.

-Planetary prob.: I= semi--axes, (u,v)= eccentr




IMPROVEMENTS

- [Poschel 93] For the h quasi--convex, f non--

the stability indices may be taken to be
1

a—=—"b=— .
2n

- [Niederman 96], using P. Lochak approach ¢ ‘wi
denominators’’, generalizes the values of a,

[Poschel 93] to the h convex, f degenerate c

— The variation of the semi-—-major axes can Now

with the improved indices a, bDb.



What about the degenerate acti

- The planetary Hamiltonian Hygp = hyep(I) + pfusp(
I=(I3,---,I,), o =(p1,°+ ,n) is not almost--

. u?+v?
w.r.t. the degenerate actions J; = —5— (rel

eccentricities and inclinations).
- However [Chierchia-P. 2011], in a set of phas
well-—-spaced semi-—-axes, the average fipp = p

be conjugated to
Ps(J;I) 4+ 0(J%H 1) ()

where P; is a polynomial of arbitrary large d
2 2
Jizzgi—_;’—i (Birkhoff normal form). This norma
Kolmogorov non--degenerate.
- The proof of (*) requires to reduce the rotat

degeneracy.



STEEPNESS (N. N. NEKHOROSSEV,

- (*) implies stability of eccentricities and inclin
polynomially long times, in a subset of phase spac
mean--motion resonances. Improving this time to b
would be related to investigate steepness of the i

truncation hgep + uPs underneath.

- Nekhorossev proposes to check steepness around a g
algebraic conditions on the Taylor coefficients of
f at Io. However, these conditions become more an

as n increases.

- Niederman gives a synthetic equivalent definition

does not seem easier.

®h has no critical points and its restriction to any affi

isolated critical points



3BP. THE HELIOCENTRIC REDuUcTION (9

|y(1) |2 miMi y(l) 4 y(2)
Hszpp = |X(i)|) —l-,u( ol — |
h:{;p fap
(integrable) (per S

()

vy eRpd, x® 2o, x® £x@

Moy
e,

Mizmo—l—,umi IYli:

mp : star um;: planets i=1,2 u<K




STARTING POINT: AN ACTION--ANGLE SET
COORDINATES FOR 3BP

2
Q=) dA; AdI; +dl; Adg; +dGAdg+d

i=1

c) = x(3) x y(i) angular momentum of

c=ct 4 ¢ total angular moment

E; : ellipse through (X(i),y(i))




ACTION--ANGLE COORDINATES FOR
[DEPRIT 1983]; [P. 2008]

Cs3 3*4 component of C
G Euclidean length |C| of C
\{ Z longitude of C
g angle describing the rotation

of the triangle ¢ +¢c® =¢

I’y Euclidean length |C()| of C(¥)
gl perihelion of E; w.r.t.n = C

| Ay =miy/Miay (a; = semi--major
1; mean anomaly of (1) on E;

A generalization to arbitrary n is available




REDUCTION OF THE ROTATIONAL DEGE
(b—5 D.0.F.)

We need to regularize e; =0 or e; =0 or i=pi (e;

er,=eccentricities; i= mutual inclination)

We introduce a new set of symplectic variables

(A, 1,v,v",w,w") € R* x T x R* x R*

with

2 2 2
Q=) dhAdly+ Y dvi Advi+ ) dws

7

~

planar spat




SYMPLECTIC VARIABLES FOR REVERSED PL

(5 D.0.F.)
r Ay = Ny Vi =M —
Ay = A5 Vo = /Ay —
\

;=11 +g1+g+z= vy =

| lo=1+g—g—z vV, 3
W1 = /G — ) T Toe REa w; = —1i4/G
wy = /G — Cze'? wy = —i4/G
! !
cyclic cycli

- These coordinates are available for any n [P. 2009, Ph



SYMMETRIES

- Hzpp is independent of (wy,w)):

Hagp = hyep(A) + pfapp(A, 1,u,u”)

*

where u = (vy,vo,wy), u* = (v}, vs,w})

- G=|C| is an integral of motion and its expres
3
G:Al —AQ _izuiu;{f
=i

- Hzpp 1s invariant by
- Reflections w.r.t. {x® =0}
- Reflections w.r.t. {x(¥)=x®}

- Rotations w.r.t. the C-—-axis




THE SECULAR PERTURBATION

The secular perturbation

fapp =

1
(2pi)? / fagpdlidls
T2

- is even in (u,u”)

- has the form fapp = fo(A) + iv - Qu(A)v* + iwyQy(A)

where

- Qn is a real, non symmetric, 2 X 2, and has
S1, So for all A;

- Qy =(s3) is 1 x 1, real, for all A;

- (u,u*) =0 is an elliptic fixed point for f

- The eigenvalues s;, sy, s3 verify identical

Resonance
S1+8,+s3=0




DYNAMICS AWAY FROM RESONANC

Theorem

There exists a positive measure set of quasi-

(Kolmogorov tori) with 5 frequencies.

(The proof is analogue to our proof of Arnold’s

Theorem)




MEAN--MOTION RESONANCES

- By Normal Form Theory [Nekhorossev, Poschel..

the form

nlw(l) — n2W(2) =0 with wi) = q

with n;, np, positive and co--prime, transform

perturbing function fygp into the projection

=i ) e (A)etlh iyt
kel

(a,a*)en3

over the resonant module

L={k=(ki,ko) = j(n1,m) , j€E




THE INVARIANCE BY ROTATIONS ARO

- Invariance by rotations around C imposes that
coefficients of the Taylor--Fourier expansion

= Y tpu (R

kez2
(a,a*)eNs

verify
fraa(B) 20 o kiks a2

where

. T for the reversed pro
sign =
l for the parallel pro

- This follows writing the Hamiltonian flow of

3
G:A1:FA2—IZUJ11§ .
j=1



Consequencies

- Fixed p € N and a resonant lattice L = {(ni,n,)

degree p
Z fk’a,a* (A)ei(k111_k212)uau*a

kez2
la]+]a* |=p

contains at most p+l1 wave vectors belonging t

all those such that

jog £ mp) =[a*| = [al € {-p,—p+2,---,p} £

- This is except for (mj,ny) = (1,1) in the paral

the following discussion, we shall always exc




— In particular, the only wave vectors proporti

resonances appearing into quadratic terms are

(1,1) (reversed pro

(h+2,h) , heN (parallel pro

- The resonance (1,1) causes hyperbolic effects

part of the reversed problem.

- Féjoz, Guardia, Kaloshin and Roldan consider
(7,1) in the ER3BP and detect a displacement

eccentricity.




PROJECTION ON THE RESONANCE (
(REVERSED PROBLEM)

The projection fzpp on the resonance (1,1) depend

(14,15) only via the combinations

e——i(ll—JQ)/2 o~k i(1,—1,)/2

i=u 4" = u'e

It is even in (§,4*) and has the form

f(1,1) (A7ﬁ7 ﬁ*) — fO(A) +gh(A) ; (\7, V*)z + QV(A) ' (ﬁlaﬁ
partiallyﬂﬂyperbolic

where

- Qu(A) is 4 x 4 and J4Q,(A) has a couple of real

eigenvalues and one of purely imaginary ones.

- Q,(A) is 2 x 2 and J,Q,(A) has a couple of real

eigenvalues;




REDUCTION TO 4 D.O.F.

This suggests to switch to the following symplec

. 3 .
G:= Al—Ag—lzjziuj -u}‘ — in

]: = A]_ —I—AQ

)

< g:=3(1; —1,) — cyclic and sl
:T_ = %(11 —|—12)

ﬁJ e § e_i(ll_lQ)/2
j=1, 2, 3

J




- Neglecting g, this reduction reduces to put 1

Hamiltonian
M=iE+6+1Y5, 6;a)) 1, =1
Ny =1L -G-1)_, 6;a)) P |

- This is general: for any given resonance (nj,

reduction
Al — 1'11:::.:1'12 (I:—|—I11(G—|— iZ?:l ﬁJﬁ§) 11 =1
fo= i E-m@+iyl 58] | la=n

reduces completely rotations preserving the H

structure of motion equations.

— This 1s because, by linear algebra, one can
set of variables having G as a generalized mo

g=mn;1; —ny,l, as its conjugated variable (cyc



ADVANTAGES OF THIS REDUCTIO

- It is regular, in contrast to Poincaré variab

reduction, that are singular for zero inclin

- It is adapted to the study of dynamics around

Expanding in powers of (G,d")

3
h(As, Ay) = ho(£;G) + i(nw™ —n2w<2>)z

\

small J=1

- It is available for any number of planets.



Back TO THE RESONANCE (1,1) FOR REV

In the reduced coordinates coordinates Hsgp takes the

Heep = h(L;G) + freo(L, 8,87 G) + pfren(L, 1,8,87;
3
— h(;6) + @Y —u®) E igya) +

-~

elliptic term
+ p(n(C0) - (7,9 + Qn(E:6) - (31,80 +
partially hyperbolic term
+ yfRED(f.,i,ﬁ,ﬁ*;G)

J

-~

/fREDd:T. =0
T

h(L; G) := (hxep + pufo)(A)
where { w® .— Oh, (hKep + Mfo)(A)
L Qon(L36) = Qu(8)  Qou(L56) =Qu(8) |y L gy




Two NATURAL (QUESTIONS

We would like to know if

- Equation w!) —w(® =0 has a solution L = R(G)

If so, on a suitable small neighborhood of R

part would be partially hyperbolic (with 2 un

directions)

- a domain D for the variables (L,1,4,4*) exists
including R such, that, on D, Hggp can be conj
Hamiltonian (normal form) having the aspect

a much smaller remainder.



THE RESONANT SET

Lemma

Let
d d

h f
d.A]_,dAQ)( kep"'";u 0

There exists a one—--dimensional set R of semi
such that

w=(w w®) .= (

wlt) — w(2)|R =0 .
This set may be described by

R = {al > ap : L const,/u(1 + 0(1))} con
ai

Note:
There is a displacement of R with respect to
would have (= const; ) without including the

term pufo into w. This is due to the singular

a4 — adg.




Remark:

The existence of normal form is not obvious. In P
form theorem (optimal) the smallness condition whi

achieve it 1is

f
const2| e | <1 (x%) .
po
In our case, if
inf(1— 22)
r .= in — —
ai
we have
£ %
NBP Y — . P~ , O~~I .
r

So, condition (**) would be satisfied for

constg———zzconstgl% <1
po r

which means r > const4,u1/3, while we need r = const

included.




A NorMAL FORM THEOREM

Theorem

There exist a number b and a domain D= A; X T x B°®
(i) R€ A,

(ii) Hpgp is real--analytic on D

and a real--analytic transformation having D as im
that, on D, such that Hzgpp is analytically and sym

conjugated to
Hye = h(L;G) + £ (L, 9,975 G) + puf. (L, 1,9,
where f, is exponentially small
£, < conste /%

and fyr is close to fgpgpp. Here, O denotes

§i=|—= —1] .
ma



Idea of proof.

15* step. The one--dimensional set of (A4,A,)

( =2 72
a Mm% A
2 - 1_; g <1_r7

Ay — A, = const

\

becomes unbounded ad d:= >+ —1 — 0. This s
interval for the variable L such that, if L €
coefficients of the Taylor expansion of Zfggp

are real--analytic. It can be proved that A,

whose extremes are of order 6 ! and such that

r
the complex domain (A1), X Ty, where p=3 th

remain analytic. The whole perturbation in
complex domain (A;), X Ty X BS, with 8::-5%, wh
will be identified with D.



2"d step. Consider the Hamiltonian

hpep(L; G) + pfo(L,1;G) where £4(L,1;G) :=£

and aim to integrate it (it has one degree of
is done via a quantitative version of Arnold-

Theorem whose smallness condition goes as

f f
constm<1 const|—o|§1--

p po

where fo:= [ fo. Due to the rescaling rules
analyticity radii p, o and to the smallness
allow to ‘‘gain one power in r’’. That is, n
average over the set with r > constsr/?, but

even not enough to include R = constr'/?. Re
equal masses finally gives the result, becaus

previous discussion, consts goes to O with 0.



3" step. The rest of the perturbation
f1 = frep — fo

(starting with linear terms in (@,G*)) is fin

out. This is done via many steps (as many as

g) of Averaging Theory [Arnold]. A suitable
this theory is built up, in order to fit with
involved. In particular, it is essential th
involves one angle only, so as to obtain a su

condition allowing to apply. q.e.d.



CHALLENGING GOALS

— Does this normal form allow to prove existenc
quasi-—-periodic motions evolving on hyperboli
co--dimension 1 for the planar problem, 2 for

one?’

- If so, does this setting allow to prove exist
instability for semi--axes? (Numerically, it

detected: [Quillen, preprint 2011] and refer

(Thanks!)
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