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The model

» Two fixed centers Q; = (—x,0), Q> =(0,0). my = mo = 1.
» Two small particles Qs and Q;, M3 =my = p < 1

» Qs is captured by Q. and Q4 is a messenger traveling
between Q; and Qo.



» The Hamiltonian

b Pl P y

21 2u B |03’ B |QS —(—X,O)‘

1 & L

CQal [Qi—(—x,0) Qs — Qul’




» The Hamiltonian

b Pl P y

21 2u B |03’ B |QS —(—X,O)‘

1 & L

CQal [Qi—(—x,0) Qs — Qul’

P—uv, H— H/pu.



Singular solutions

Let w = {w;}7°; be a sequence of 3s and 4s.

Definition
We say that (Qs(t), Q4(t)) is a singular solution with
symbolic sequence w if there exists a positive increasing
sequence {;}7<, such that
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Singular solutions

Let w = {w;}7°; be a sequence of 3s and 4s.
Definition
We say that (Qs(t), Q4(t)) is a singular solution with
symbolic sequence w if there exists a positive increasing
sequence {;}7<, such that
> 1 =limj o § < oo.
» |Qi(t)| — oo as t — .
> |Qs(t) — Qu| < C, |Qu(t) — Q2| < C.
» Ifwj=4thenfort e [ti_4, 8], [Qs(t) — Qx| < C and
{Qa(t)}tefs_, ¢y Winds around Q exactly once.
If w; =3 thenfortc [ti_4, 1], |Qa(t) — Qo| < Cand
{Qs(t)}teqy_, .17 Winds around Qq exactly once.
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Main theorem

We denote by ¥, the set of initial conditions of singular orbits
with symbolic sequence w.

Theorem (Dolgopyat, X.)

There exists p. < 1 such that for i < . the setx,, # (.
Moreover there is an open set U in the phase space and a
foliation of U by two-dimensional surfaces such that for any leaf
S of our foliation ¥, N S is a Cantor set.
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Conjectures on noncollision singularities

» Conjecture
The set of non-collision singularities has zero measure for all
N > 3.

» Conjecture (Painlevé)
The set of non-collision singularities is non-empty for all N > 3.
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Previous works

» 1979 Mather, McGehee: collinear 4-body problem.
» Infinite number of binary collisions.



» 1994 Xia: the spacial 5-body problem
» 1991 Gerver: planar 3N body problem



OPEN: N =47
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Poincaré’s second species solution

Second species solution:
periodic orbits converging to collision chains as 1 — 0.



» Restricted three body problem:
Bolotin, MacKay.
Fonts, Nunes, Simo.
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» Restricted three body problem:
Bolotin, MacKay.
Fonts, Nunes, Simo.

» Full three-body problem:
Bolotin
Our work:
» Positive masses,
» infinitely long collision chain,
» new mechanism of producing hyperbolicity.
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Gerver’s model: the setting

v

p=0,x = oo.

v

Qs ellipse is always vertical.
Q4 hyperbola has always horizontal asymptotes.
Interaction of Q5 and Q4 is elastic collision.

v

v



Gerver’'s model: the first collision
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Figure: Angular momentum transfer collision




Gerver’'s model: the second collision
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Figure: Energy transfer collision




Gerver’'s model: Main conclusion

» After two steps of collisions,
the same eccentricity
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» After two steps of collisions,
the same eccentricity

smaller semimajor

1
For elliptic motion, E = ——.
» For elliptic motion, 53
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Poincaré Sections

(II (1)
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Figure: Poincaré sections

i=—2



Local map

Lemma

If the y coordinates of the incoming and outgoing orbits of Qq
are bounded, then there exist a linear functional i,- and a vector
U; such that

dMﬂzLWﬂ@Kﬂ+mﬂ+dU.u%Qxﬁm.



Global map

Lemma

Let x and y = G(x) be such that |y(x)| < C, |y((y))| < C and
Q4 passes within distance C /x from Qq. Then there exist linear
functionals 1(x) and 1(x) and vectorfields t(y) and u(y) such
that



Nondegeneracy

Lemma
The following non degeneracy conditions are satisfied.
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Nondegeneracy

Lemma
The following non degeneracy conditions are satisfied.

>

span(u, BY) i (Ker(T) N Ker(l))

where Y = (Iu)u — (Iu)a € span(u, o) N Kerl.



Cone family, Hyperbolicity

Definition
U(9) : a § neighbhourhood of Gerver’s collision point in the
phase space.



Lemma

There are cone families ICy on T(T*T®), x € Uy(8) and K> on

Tx(T*T3), x € Ux(5), each of which contains a two dimensional
plane, such that

» Invariance: dP(K1) C Kz, d(R o P)(K2) C K4.



Lemma

There are cone families ICy on T(T*T®), x € Uy(8) and K> on
Tx(T*T3), x € Ux(5), each of which contains a two dimensional

plane, such that
» Invariance: dP(K1) C Kz, d(R o P)(K2) C K4.

» Expansion: If v € Ky, then ||dP(v)|| > cx||V||.
If v e Ko, then ||d(R o P)(V)|| > cx||V||.



Cones

Definition
We now take K to be the set of vectors which make an angle
less than a small constant n with span(u, u).



Admissible surface and Cantor set construction

» Definition
We call a C' surface S; C U; () (respectively S, € Us(9)
admissible if TSy C Iy (respectively TS, C K»).
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» Definition
We call a C' surface S; C U; () (respectively S, € Us(9)
admissible if TSy C Iy (respectively TS, C K»).

» The Cantor set: _
|im('R'Pz)7ngj.
J



Local map: Poincaré section

The Poincaré section

Qs — Q| =p™, 1/3<k<1/2



Local map, the C° estimate
Close to elastic collision.
>
1 _
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Q = Q + O(u"),
Qf = Q; + O(ur),
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Local map, the C° estimate
Close to elastic collision.
| 2

1
=5 R)(vg —v) + 3 (V3 + vy )+ O(ul1729)73),
1 1
vy :_*R( (v — )+§(V3 + v, ) + O(pl1729)/3),
Q = Q + O(u"),
Q = Q, + O(u),
cosa —sSina
where fi(a) = sina cosa |’
>
dlvy — v, \2
a = arctan ————
| 4
L vi—vy
d=(Q; - Q) impact parameter.

v — vy



» Energy conservation & momentum conservation.



» Energy conservation & momentum conservation.
» d = O(n) if a is bounded away from 0 and .



» Energy conservation & momentum conservation.

» d = O(n) if a is bounded away from 0 and .

Oa
> ad = O0(1/p).



» Energy conservation & momentum conservation.

» d = O(n) if a is bounded away from 0 and .
foJe}

> ad = O0(1/p).
» Lemma

The C' calculation is the same as taking derivatives of the C°
expression directly.



» Energy conservation & momentum conservation.

» d = O(n) if a is bounded away from 0 and .

Oa
> ad = O0(1/p).

» Lemma

The C' calculation is the same as taking derivatives of the C°
expression directly.
, O+ _co+

= ; 5o ® 8—_+( derivative involving no d)+ o(1).



Coordinates: Delaunay coordinates

dPAdQ =dLAdl+dG A dg.

The Hamiltonian

_ PP
2 ar
1 - .
— H= TR elliptic motion,
1 . .
- H= 572 hyperbolic motion.



The Hamiltonian in Delaunay coordinates

» The LEFT
1 1 1 1 W

Ho=——%+ =5 — - - :
FTo23 T2y Qi 1@ —(—x.0)  [Q5 - Q
» The RIGHT

1 (1+p)? 1 1
2zt 22 (%00 [QiT(n0)

1Qq - Qs ( p >
- Yo .
| Q43 | Q43




Coordinates for the Poincaré map

» Eliminate L4 by fixing an energy level.
» Treat ¢4 as the new time.



Coordinates for the Poincaré map

» Eliminate L4 by fixing an energy level.
» Treat ¢4 as the new time.
» Coordinates for the Poincaré map:

(Ls, 43, G3, 93, G4, 94)-



The first expanding direction of the Global map:
hyperbolicity from parabolicity

The Hamiltonian for elliptic motion

Hs = 1

212"
The Hamiltonian equations
[5=0, Ls(T) = L5(0), .
: 1
3 Lga . 3( ) 3( )+ Lg(o)
Gs =0, Gs(T) = G3(0),

93 =0. 93(T) = g3(0).



The derivative matrix

1 0 00O
T
0 0 0 1
0
3T 1
=_ 1,0,0,0] + O(1).
0
We have estimate
3T

—% = O(x)



Hyperbolicity created from parabolicity

» Parabolic matrix

RENIERI e

» Two eigenvalues, O(x) and O(1/x).



The second expanding direction of the Global map:
hyperbolicity near collision
» Define the angle of asymptotes

f=g=+ arctan% =0(1/x), wva=~(1,f).
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The second expanding direction of the Global map:
hyperbolicity near collision
» Define the angle of asymptotes

f=g=+ arctan% =0(1/x), wva=~(1,f).

» Coordinates changes from the Right to the Left

— (G, 9)L-

i)

(G, a)r 5 (G, Nr D (G, 1),

» The maps (i), (ii), (iii):
(i): Gg = Gp, fr=ggr— arctan %.
Lr
(i) : GL=Gr+ xfp, fL="1g.
GL

(iii)y - G = Gi, gL = f,—arctan I
L



» The derivatives for (/) = (iii)(ii)(i)

owinam=| 3 S11e Y11 7]

» For matrix (/V) going from the Left to the Right, we get

oo =3 7] ][0 7]
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Remaining issues

» Exclude collisions.
» Control the shape: Two phases 1, 1». We need

0(gs, €3)
oet (a(ww)> 70

» Check nondegeneracy: Essentially

(v) T8y oL
det(i(u) igy > 7é0<:>w760.
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Planar four-body problem, in progress.

Planar 4 body problem,

v

8 degrees of freedom = 16 dimensional phase space.
Remove the translation invariance 16 — 4 = 12.

v

Remove the rotation invariance 12 — 2 = 10.
Pick an energy level and take a Poincaré section,
10 — 2 = 8 dimensional Poincaré map.

We expect that similarly to the problem at hand the
Poincaré map have only two strongly expanding directions
dominating all other directions.

v

v

v



THANK YOU!



	Main Result
	The model
	Main theorem

	Motivations
	Motivation 1, Noncollision singularities in N-body problem
	Motivation 2, Poincaré's second species solution.

	The proof
	Gerver's model
	Local and Global map


