Noncollision singularities in a simplified planar four-body problem

Jinxin Xue

Universities of Maryland joint with D.Dolgopyat

New Perspectives in N-body problem, Banff

Outline

Main Result

The model
Main theorem

Motivations
Motivation 1, Noncollision singularities in N-body problem Motivation 2, Poincaré's second species solution.

The proof
Gerver's model
Local and Global map

Outline

Main Result
The model

Main theorem

Motivations

Motivation 1, Noncollision singularities in N-body problem
Motivation 2, Poincaré's second species solution.

The proof
Gerver's model
Local and Global map

The model

- Two fixed centers $Q_{1}=(-\chi, 0), Q_{2}=(0,0) . m_{1}=m_{2}=1$.
- Two small particles Q_{3} and $Q_{4}, \quad m_{3}=m_{4}=\mu \ll 1$
- Q_{3} is captured by Q_{2} and Q_{4} is a messenger traveling between Q_{1} and Q_{2}.

The model

- Two fixed centers $Q_{1}=(-\chi, 0), Q_{2}=(0,0) . m_{1}=m_{2}=1$.
- Two small particles Q_{3} and $Q_{4}, \quad m_{3}=m_{4}=\mu \ll 1$
- Q_{3} is captured by Q_{2} and Q_{4} is a messenger traveling between Q_{1} and Q_{2}.

The model

- Two fixed centers $Q_{1}=(-\chi, 0), Q_{2}=(0,0) . m_{1}=m_{2}=1$.
- Two small particles Q_{3} and $Q_{4}, \quad m_{3}=m_{4}=\mu \ll 1$
- Q_{3} is captured by Q_{2} and Q_{4} is a messenger traveling between Q_{1} and Q_{2}.
- The Hamiltonian

$$
\begin{aligned}
& H=\frac{\left|P_{3}\right|^{2}}{2 \mu}+\frac{\left|P_{4}\right|^{2}}{2 \mu}-\frac{\mu}{\left|Q_{3}\right|}-\frac{\mu}{\left|Q_{3}-(-\chi, 0)\right|} \\
& -\frac{\mu}{\left|Q_{4}\right|}-\frac{\mu}{\left|Q_{4}-(-\chi, 0)\right|}-\frac{\mu^{2}}{\left|Q_{3}-Q_{4}\right|} .
\end{aligned}
$$

- The Hamiltonian

$$
\begin{aligned}
& H=\frac{\left|P_{3}\right|^{2}}{2 \mu}+\frac{\left|P_{4}\right|^{2}}{2 \mu}-\frac{\mu}{\left|Q_{3}\right|}-\frac{\mu}{\left|Q_{3}-(-\chi, 0)\right|} \\
& -\frac{\mu}{\left|Q_{4}\right|}-\frac{\mu}{\left|Q_{4}-(-\chi, 0)\right|}-\frac{\mu^{2}}{\left|Q_{3}-Q_{4}\right|} .
\end{aligned}
$$

$$
P \rightarrow \mu v, \quad H \rightarrow H / \mu .
$$

Singular solutions

Let $\boldsymbol{\omega}=\left\{\omega_{j}\right\}_{j=1}^{\infty}$ be a sequence of 3 s and 4 s .
Definition
We say that $\left(Q_{3}(t), Q_{4}(t)\right)$ is a singular solution with symbolic sequence ω if there exists a positive increasing sequence $\left\{t_{j}\right\}_{j=0}^{\infty}$ such that

- $t^{*}=\lim _{j \rightarrow \infty} t_{j}<\infty$.
- $\left|\dot{Q}_{i}(t)\right| \rightarrow \infty$ as $t \rightarrow t^{*}$.

Singular solutions

Let $\boldsymbol{\omega}=\left\{\omega_{j}\right\}_{j=1}^{\infty}$ be a sequence of 3 s and 4 s .
Definition
We say that $\left(Q_{3}(t), Q_{4}(t)\right)$ is a singular solution with symbolic sequence ω if there exists a positive increasing sequence $\left\{t_{j}\right\}_{j=0}^{\infty}$ such that

- $t^{*}=\lim _{j \rightarrow \infty} t_{j}<\infty$.
- $\left|\dot{Q}_{i}(t)\right| \rightarrow \infty$ as $t \rightarrow t^{*}$.
- $\left|Q_{3}\left(t_{j}\right)-Q_{2}\right| \leq C,\left|Q_{4}\left(t_{j}\right)-Q_{2}\right| \leq C$.

Singular solutions

Let $\boldsymbol{\omega}=\left\{\boldsymbol{\omega}_{j}\right\}_{j=1}^{\infty}$ be a sequence of 3 s and 4 s .
Definition
We say that $\left(Q_{3}(t), Q_{4}(t)\right)$ is a singular solution with symbolic sequence ω if there exists a positive increasing sequence $\left\{t_{j}\right\}_{j=0}^{\infty}$ such that

- $t^{*}=\lim _{j \rightarrow \infty} t_{j}<\infty$.
- $\left|\dot{Q}_{i}(t)\right| \rightarrow \infty$ as $t \rightarrow t^{*}$.
- $\left|Q_{3}\left(t_{j}\right)-Q_{2}\right| \leq C,\left|Q_{4}\left(t_{j}\right)-Q_{2}\right| \leq C$.
- If $\omega_{j}=4$ then for $t \in\left[t_{j-1}, t_{j}\right],\left|Q_{3}(t)-Q_{2}\right| \leq C$ and $\left\{Q_{4}(t)\right\}_{t \in\left[j_{j-1}, t_{j}\right]}$ winds around Q_{1} exactly once. If $\omega_{j}=3$ then for $t \in\left[t_{j-1}, t_{j}\right],\left|Q_{4}(t)-Q_{2}\right| \leq C$ and $\left\{Q_{3}(t)\right\}_{t \in\left[t_{j-1}, t_{j}\right]}$ winds around Q_{1} exactly once.

Outline

Main Result
The model
Main theorem

Motivations

Motivation 1, Noncollision singularities in N-body problem
Motivation 2, Poincaré's second species solution.

```
The proof
Gerver's model
Local and Global map
```


Main theorem

We denote by Σ_{ω} the set of initial conditions of singular orbits with symbolic sequence ω.
Theorem (Dolgopyat, X.)
There exists $\mu_{*} \ll 1$ such that for $\mu<\mu_{*}$ the set $\Sigma_{\omega} \neq \emptyset$. Moreover there is an open set U in the phase space and a foliation of U by two-dimensional surfaces such that for any leaf S of our foliation $\Sigma_{\omega} \cap S$ is a Cantor set.

Outline

Main Result
 The model
 Main theorem

Motivations
Motivation 1, Noncollision singularities in N -body problem
Motivation 2, Poincaré's second species solution.

The proof
Gerver's model
Local and Global map

Conjectures on noncollision singularities

- Conjecture

The set of non-collision singularities has zero measure for all $N>3$.

Conjecture (Painlevé)
The set of non-collision singularities is non-empty for all $N>3$.

Conjectures on noncollision singularities

- Conjecture

The set of non-collision singularities has zero measure for all $N>3$.

- Conjecture (Painlevé)

The set of non-collision singularities is non-empty for all $N>3$.

Previous works

- 1979 Mather, McGehee: collinear 4-body problem.
- Infinite number of binary collisions.

Previous works

- 1979 Mather, McGehee: collinear 4-body problem.
- Infinite number of binary collisions.
- 1994 Xia: the spacial 5-body problem
- 1991 Gerver: planar 3N body problem

OPEN : $\quad N=4 ?$

Outline

Main Result
The model
Main theorem

Motivations
Motivation 1, Noncollision singularities in N-body problem
Motivation 2, Poincaré's second species solution.

The proof
Gerver's model
Local and Global map

Poincaré's second species solution

Second species solution: periodic orbits converging to collision chains as $\mu \rightarrow 0$.

- Restricted three body problem: Bolotin, MacKay. Fonts, Nunes, Simo.
- Full three-body problem: Bolotin

Our work:

- Positive masses,
- infinitely long collicion chain,
- new mechanism of producing hyperbolicity.
- Restricted three body problem: Bolotin, MacKay. Fonts, Nunes, Simo.
- Full three-body problem: Bolotin

Our work:

- Positive masses,
- infinitely long collision chain,
- new mechanism of producing hyperbolicity.

Outline

Main Result
The model
Main theorem

Motivations

Motivation 1, Noncollision singularities in N-body problem Motivation 2, Poincaré's second species solution.

The proof
Gerver's model
Local and Global map

Gerver's model: the setting

- $\mu=0, \chi=\infty$.
- Q_{3} ellipse is always vertical.
- Q_{4} hyperbola has always horizontal asymptotes.
- Interaction of Q_{3} and Q_{4} is elastic collision.

Gerver's model: the first collision

Figure: Angular momentum transfer collision

Gerver's model: the second collision

Figure: Energy transfer collision

Gerver's model: Main conclusion

- After two steps of collisions,
the same eccentricity
smaller semimajor
- For elliptic motion, $E=-\frac{1}{2 a}$.

Gerver's model: Main conclusion

- After two steps of collisions,
the same eccentricity
smaller semimajor
- For elliptic motion, $E=-\frac{1}{2 a}$.

Gerver's model: Main conclusion

- After two steps of collisions, the same eccentricity

smaller semimajor

- For elliptic motion, $E=-\frac{1}{2 a}$.

$$
\begin{gathered}
E_{3} \sim-\lambda^{n}, \quad E_{4} \sim \lambda^{n}, \quad \lambda>1 . \\
v_{4} \sim \lambda^{n / 2}, \quad \Delta t \sim \lambda^{-n / 2}
\end{gathered}
$$

Outline

Main Result
The model
Main theorem

Motivations
Motivation 1, Noncollision singularities in N-body problem Motivation 2, Poincaré's second species solution.

The proof
Gerver's model
Local and Global map

Poincaré Sections

Figure: Poincaré sections

Local map

Lemma
If the y coordinates of the incoming and outgoing orbits of Q_{4} are bounded, then there exist a linear functional \hat{l}_{i} and a vector \hat{u}_{i} such that

$$
d \mathbb{L}(\boldsymbol{x})=\frac{1}{\mu} u(\boldsymbol{x}) \otimes \mathbf{I}(\boldsymbol{x})+B(\boldsymbol{x})+o(1) . \quad \mu \rightarrow 0, \chi \rightarrow \infty .
$$

Global map

Lemma
Let \boldsymbol{x} and $\boldsymbol{y}=\mathbb{G}(\boldsymbol{x})$ be such that $|y(\boldsymbol{x})| \leq C,|y((\boldsymbol{y}))| \leq C$ and Q_{4} passes within distance \tilde{C} / χ from Q_{1}. Then there exist linear functionals $\overline{\mathrm{I}}(\boldsymbol{x})$ and $\overline{\overline{\mathrm{I}}}(\boldsymbol{x})$ and vectorfields $\bar{u}(\boldsymbol{y})$ and $\overline{\bar{u}}(\boldsymbol{y})$ such that

$$
d \mathbb{G}(\boldsymbol{x})=\chi^{2} \bar{u}(\boldsymbol{y}) \otimes \overline{\mathbf{I}}(\boldsymbol{x})+\chi \overline{\bar{u}}(\boldsymbol{y}) \otimes \overline{\overline{\mathbf{I}}}(\boldsymbol{x})+O\left(\mu^{2} \chi\right) .
$$

Nondegeneracy

Lemma

The following non degeneracy conditions are satisfied.

$$
\begin{array}{r}
\operatorname{span}(u, B Y) \pitchfork(\operatorname{Ker}(\overline{\mathbf{I}}) \cap \operatorname{Ker}(\overline{\bar{I}})) \\
\text { where } Y=(\overline{\mathrm{I}} \overline{\bar{u}}) \overline{\bar{u}}-(\mathbf{I} \overline{\bar{u}}) \bar{u} \in \operatorname{span}(\bar{u}, \overline{\bar{u}}) \cap \operatorname{KerI.} .
\end{array}
$$

Nondegeneracy

Lemma

The following non degeneracy conditions are satisfied.

$$
\begin{array}{r}
\operatorname{span}(u, B Y) \pitchfork(\operatorname{Ker}(\overline{\mathbf{I}}) \cap \operatorname{Ker}(\overline{\bar{I}})) \\
\text { where } Y=(\overline{\bar{u}}) \overline{\bar{u}}-(\mathbf{I} \overline{\bar{u}}) \bar{u} \in \operatorname{span}(\bar{u}, \overline{\bar{u}}) \cap \operatorname{KerI.} .
\end{array}
$$

$$
\operatorname{det}\left(\begin{array}{ll}
\overline{\mathrm{I}}(u) & \overline{\bar{I}} B Y \\
\overline{\overline{\mathrm{I}}}(u) & \overline{\bar{I}} B Y
\end{array}\right) \neq 0 .
$$

Cone family, Hyperbolicity

Definition
$U(\delta)$: a δ neighbhourhood of Gerver's collision point in the phase space.

Lemma
There are cone families \mathcal{K}_{1} on $T_{x}\left(T^{*} \mathbb{T}^{3}\right), x \in U_{1}(\delta)$ and \mathcal{K}_{2} on $T_{x}\left(T^{*} \mathbb{T}^{3}\right), x \in U_{2}(\delta)$, each of which contains a two dimensional plane, such that

- Invariance: $d \mathcal{P}\left(\mathcal{K}_{1}\right) \subset \mathcal{K}_{2}, d(\mathcal{R} \circ \mathcal{P})\left(\mathcal{K}_{2}\right) \subset \mathcal{K}_{1}$.

Lemma
There are cone families \mathcal{K}_{1} on $T_{x}\left(T^{*} \mathbb{T}^{3}\right), x \in U_{1}(\delta)$ and \mathcal{K}_{2} on $T_{x}\left(T^{*} \mathbb{T}^{3}\right), x \in U_{2}(\delta)$, each of which contains a two dimensional plane, such that

- Invariance: $d \mathcal{P}\left(\mathcal{K}_{1}\right) \subset \mathcal{K}_{2}, d(\mathcal{R} \circ \mathcal{P})\left(\mathcal{K}_{2}\right) \subset \mathcal{K}_{1}$.
- Expansion: If $v \in \mathcal{K}_{1}$, then $\|d \mathcal{P}(v)\| \geq c \chi\|v\|$. If $v \in \mathcal{K}_{2}$, then $\|d(\mathcal{R} \circ \mathcal{P})(v)\| \geq c \chi\|v\|$.

Cones

Definition
We now take \mathcal{K} to be the set of vectors which make an angle less than a small constant η with $\operatorname{span}(\bar{u}, \overline{\bar{u}})$.

Admissible surface and Cantor set construction

- Definition

We call a C^{1} surface $S_{1} \subset U_{1}(\delta)$ (respectively $S_{2} \subset U_{2}(\delta)$ admissible if $T S_{1} \subset \mathcal{K}_{1}$ (respectively $T S_{2} \subset \mathcal{K}_{2}$).

The Cantor set:

$$
\lim _{j}\left(\mathcal{R} \mathcal{P}^{2}\right)^{-j} S_{2 j}
$$

Admissible surface and Cantor set construction

- Definition

We call a C^{1} surface $S_{1} \subset U_{1}(\delta)$ (respectively $S_{2} \subset U_{2}(\delta)$ admissible if $T S_{1} \subset \mathcal{K}_{1}$ (respectively $T S_{2} \subset \mathcal{K}_{2}$).

- The Cantor set:

$$
\lim _{j}\left(\mathcal{R} \mathcal{P}^{2}\right)^{-j} S_{2 j}
$$

Local map: Poincaré section

The Poincaré section

$$
\left|Q_{3}-Q_{4}\right|=\mu^{\kappa}, \quad 1 / 3<\kappa<1 / 2
$$

Local map, the C^{0} estimate

Close to elastic collision.

$$
\begin{aligned}
& \left\{\begin{aligned}
v_{3}^{+} & =\frac{1}{2} R(\alpha)\left(v_{3}^{-}-v_{4}^{-}\right)+\frac{1}{2}\left(v_{3}^{-}+v_{4}^{-}\right)+O\left(\mu^{(1-2 \kappa) / 3}\right) \\
v_{4}^{+} & =-\frac{1}{2} R(\alpha)\left(v_{3}^{-}-v_{4}^{-}\right)+\frac{1}{2}\left(v_{3}^{-}+v_{4}^{-}\right)+O\left(\mu^{(1-2 \kappa) / 3}\right), \\
Q_{3}^{+} & =Q_{3}^{-}+O\left(\mu^{\kappa}\right), \\
Q_{4}^{+} & =Q_{4}^{-}+O\left(\mu^{\kappa}\right),
\end{aligned}\right. \\
& \text { where } R(\alpha)=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right],
\end{aligned}
$$

Local map, the C^{0} estimate

Close to elastic collision.

$$
\begin{aligned}
& \left\{\begin{array}{l}
v_{3}^{+}=\frac{1}{2} R(\alpha)\left(v_{3}^{-}-v_{4}^{-}\right)+\frac{1}{2}\left(v_{3}^{-}+v_{4}^{-}\right)+O\left(\mu^{(1-2 \kappa) / 3}\right) \\
v_{4}^{+}=-\frac{1}{2} R(\alpha)\left(v_{3}^{-}-v_{4}^{-}\right)+\frac{1}{2}\left(v_{3}^{-}+v_{4}^{-}\right)+O\left(\mu^{(1-2 \kappa) / 3}\right) \\
Q_{3}^{+}=Q_{3}^{-}+O\left(\mu^{\kappa}\right) \\
Q_{4}^{+}=Q_{4}^{-}+O\left(\mu^{\kappa}\right),
\end{array}\right. \\
& \text { where } R(\alpha)=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \\
& \alpha=\arctan \frac{d\left|v_{3}^{-}-v_{4}^{-}\right|^{2}}{\mu}
\end{aligned}
$$

Local map, the C^{0} estimate

Close to elastic collision.

$$
\begin{aligned}
& \left\{\begin{array}{l}
v_{3}^{+}=\frac{1}{2} R(\alpha)\left(v_{3}^{-}-v_{4}^{-}\right)+\frac{1}{2}\left(v_{3}^{-}+v_{4}^{-}\right)+O\left(\mu^{(1-2 \kappa) / 3}\right) \\
v_{4}^{+}=-\frac{1}{2} R(\alpha)\left(v_{3}^{-}-v_{4}^{-}\right)+\frac{1}{2}\left(v_{3}^{-}+v_{4}^{-}\right)+O\left(\mu^{(1-2 \kappa) / 3}\right), \\
Q_{3}^{+}=Q_{3}^{-}+O\left(\mu^{\kappa}\right), \\
Q_{4}^{+}=Q_{4}^{-}+O\left(\mu^{\kappa}\right),
\end{array}\right. \\
& \text { where } R(\alpha)=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \\
& \alpha=\arctan \frac{d\left|v_{3}^{-}-v_{4}^{-}\right|^{2}}{\mu}
\end{aligned}
$$

$$
d=\left(Q_{3}^{-}-Q_{4}^{-}\right) \times \frac{v_{3}^{-}-v_{4}^{-}}{\left|v_{3}^{-}-v_{4}^{-}\right|}: \quad \text { impact parameter } .
$$

- Energy conservation \& momentum conservation.
- $d=O(\mu)$ if α is bounded away from 0 and π.
- $\frac{\partial \alpha}{\partial d}=O(1 / \mu)$.
- Lemma

The C^{1} calculation is the same as taking derivatives of the C^{0} expression directly.
$=\frac{\partial+}{\partial-}=\frac{c}{\mu} \frac{\partial+}{\partial \alpha} \otimes \frac{\partial d}{\partial-}+($ derivative involving no $d)+o(1)$.

- Energy conservation \& momentum conservation.
- $d=O(\mu)$ if α is bounded away from 0 and π.
- Lemma

The C^{1} calculation is the same as taking derivatives of the C^{0} expression directly.

- Energy conservation \& momentum conservation.
- $d=O(\mu)$ if α is bounded away from 0 and π.
- $\frac{\partial \alpha}{\partial d}=O(1 / \mu)$.
- Lemma

The C^{1} calculation is the same as taking derivatives of the C^{0} expression directly.

- Energy conservation \& momentum conservation.
- $d=O(\mu)$ if α is bounded away from 0 and π.
- $\frac{\partial \alpha}{\partial d}=O(1 / \mu)$.
- Lemma

The C^{1} calculation is the same as taking derivatives of the C^{0} expression directly.

- Energy conservation \& momentum conservation.
- $d=O(\mu)$ if α is bounded away from 0 and π.
- $\frac{\partial \alpha}{\partial d}=O(1 / \mu)$.
- Lemma

The C^{1} calculation is the same as taking derivatives of the C^{0} expression directly.

- $\frac{\partial+}{\partial-}=\frac{c}{\mu} \frac{\partial+}{\partial \alpha} \otimes \frac{\partial d}{\partial-}+($ derivative involving no $d)+o(1)$.

Coordinates: Delaunay coordinates

$$
d P \wedge d Q=d L \wedge d \ell+d G \wedge d g
$$

The Hamiltonian

$$
\begin{gathered}
H=\frac{|P|^{2}}{2}-\frac{1}{|Q|}, \\
\rightarrow H=-\frac{1}{2 L^{2}}, \quad \text { elliptic motion, } \\
\rightarrow H=\frac{1}{2 L^{2}}, \quad \text { hyperbolic motion. }
\end{gathered}
$$

The Hamiltonian in Delaunay coordinates

- The LEFT

$$
H_{L}=-\frac{1}{2 L_{3}^{2}}+\frac{1}{2 L_{4}^{2}}-\frac{1}{\left|Q_{4}\right|}-\frac{1}{\left|Q_{3}-(-\chi, 0)\right|}-\frac{\mu}{\left|Q_{3}-Q_{4}\right|} .
$$

- The RIGHT

$$
\begin{aligned}
H_{R}=-\frac{1}{2 L_{3}^{2}} & +\frac{(1+\mu)^{2}}{2 L_{4}^{2}}-\frac{1}{\left|Q_{3}+(\chi, 0)\right|}-\frac{1}{\left|Q_{4}+(\chi, 0)\right|} \\
& -\frac{\mu Q_{4} \cdot Q_{3}}{\left|Q_{4}\right|^{3}}+O\left(\frac{\mu}{\left|Q_{4}\right|^{3}}\right) .
\end{aligned}
$$

Coordinates for the Poincaré map

- Eliminate L_{4} by fixing an energy level.
- Treat ℓ_{4} as the new time.
- Coordinates for the Poincaré map:

$$
\left(L_{3}, \ell_{3}, G_{3}, g_{3}, G_{4}, g_{4}\right)
$$

Coordinates for the Poincaré map

- Eliminate L_{4} by fixing an energy level.
- Treat ℓ_{4} as the new time.
- Coordinates for the Poincaré map:

$$
\left(L_{3}, \ell_{3}, G_{3}, g_{3}, G_{4}, g_{4}\right)
$$

The first expanding direction of the Global map: hyperbolicity from parabolicity

The Hamiltonian for elliptic motion

$$
H_{3}=-\frac{1}{2 L_{3}^{2}} .
$$

The Hamiltonian equations

$$
\left\{\begin{array} { l }
{ \dot { L } _ { 3 } = 0 , } \\
{ \dot { \ell } _ { 3 } = \frac { 1 } { L _ { 3 } ^ { 3 } } , } \\
{ \dot { G } _ { 3 } = 0 , } \\
{ \dot { g } _ { 3 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
L_{3}(T)=L_{3}(0), \\
\ell_{3}(T)=\ell_{3}(0)+\frac{T}{L_{3}^{3}(0)} \\
G_{3}(T)=G_{3}(0) \\
g_{3}(T)=g_{3}(0)
\end{array}\right.\right.
$$

The derivative matrix

$$
\begin{aligned}
& \frac{\partial(L, \ell, G, g)_{3}(T)}{\partial(L, \ell, G, g)_{3}(0)}=\left[\begin{array}{cccc}
\frac{1}{3} & 0 & 0 & 0 \\
-\frac{3 T}{L_{3}^{4}(0)} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =-\frac{3 T}{L_{3}^{4}(0)}\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \otimes[1,0,0,0]+O(1) .
\end{aligned}
$$

We have estimate

$$
-\frac{3 T}{L_{3}^{4}(0)}=O(\chi) .
$$

Hyperbolicity created from parabolicity

- Parabolic matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
\chi & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
\chi & \chi+1
\end{array}\right]
$$

- Two eigenvalues, $O(\chi)$ and $O(1 / \chi)$.

The second expanding direction of the Global map: hyperbolicity near collision

- Define the angle of asymptotes

$$
f=g \pm \arctan \frac{G}{L}=O(1 / \chi), \quad v_{4} \simeq(1, f)
$$

- Coordinates changes from the Right to the Left

$$
(G, g)_{R} \xrightarrow{(i)}(G, f)_{R} \xrightarrow{(i i)}(G, f)_{L} \xrightarrow{(i i i)}(G, g)_{L} .
$$

- The maps (i), (ii), (iii):

$$
\text { (i) : } G_{R}=G_{R}, \quad f_{R}=g_{R}-\arctan \frac{G_{R}}{L_{R}}
$$

$$
\text { (ii) : } G_{L}=G_{R}+\chi f_{R}, \quad f_{L}=f_{R} .
$$

$$
\text { (iii) : } G_{L}=G_{L},
$$

The second expanding direction of the Global map: hyperbolicity near collision

- Define the angle of asymptotes

$$
f=g \pm \arctan \frac{G}{L}=O(1 / \chi), \quad v_{4} \simeq(1, f)
$$

- Coordinates changes from the Right to the Left

$$
(G, g)_{R} \xrightarrow{(i)}(G, f)_{R} \xrightarrow{(i i)}(G, f)_{L} \xrightarrow{(i i i)}(G, g)_{L} .
$$

- The maps (i), (ii), (iii):

$$
(i): G_{R}=G_{R}, \quad f_{R}=g_{R}-\arctan \frac{G_{R}}{L_{R}} .
$$

$$
\text { (ii) : } G_{L}=G_{R}+\chi f_{R}, \quad f_{L}=f_{R}
$$

$$
\text { (iii) : } G_{L}=G_{L},
$$

The second expanding direction of the Global map: hyperbolicity near collision

- Define the angle of asymptotes

$$
f=g \pm \arctan \frac{G}{L}=O(1 / \chi), \quad v_{4} \simeq(1, f)
$$

- Coordinates changes from the Right to the Left

$$
(G, g)_{R} \xrightarrow{(i)}(G, f)_{R} \xrightarrow{(i i)}(G, f)_{L} \xrightarrow{(i i i)}(G, g)_{L} .
$$

- The maps (i), (ii), (iii):

$$
\begin{aligned}
& \text { (i) : } G_{R}=G_{R}, \quad f_{R}=g_{R}-\arctan \frac{G_{R}}{L_{R}} \\
& \text { (ii) : } G_{L}=G_{R}+\chi f_{R}, \quad f_{L}=f_{R} . \\
& \text { (iii) : } G_{L}=G_{L}, \quad g_{L}=f_{L}-\arctan \frac{G_{L}}{L_{L}} .
\end{aligned}
$$

- The derivatives for $(I I)=(i i i)(i i)(i)$

$$
D[(i i i)(i i)(i)]=\left[\begin{array}{ll}
1 & 0 \\
\sharp & 1
\end{array}\right]\left[\begin{array}{ll}
1 & \chi \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
\# & 1
\end{array}\right] .
$$

- For matrix (IV) going from the Left to the Right, we get

$$
D\left[\left(i i^{\prime}\right)\left(i^{\prime}\right)\left(i^{\prime}\right)\right]=\left[\begin{array}{ll}
1 & 0 \\
\sharp & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -\chi \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
\sharp & 1
\end{array}\right] .
$$

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 0 \\
\# & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -\chi \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
\# & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 0 \\
\sharp & 1
\end{array}\right]\left[\begin{array}{ll}
1 & \chi \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
\# & 1
\end{array}\right]} \\
=\left[\begin{array}{cc}
1 & 0 \\
\# & 1
\end{array}\right]\left[\begin{array}{cc}
1+\sharp \chi & -\sharp \chi^{2} \\
\# & -\sharp \chi+1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
\# & 1
\end{array}\right] \\
{\left[\begin{array}{cc}
1+\sharp \chi & -\sharp \chi^{2} \\
\# & -\sharp \chi+1
\end{array}\right]=\sharp \chi^{2}\left[\begin{array}{c}
1 \\
1 / \chi
\end{array}\right] \otimes[1 / \chi, 1]+O(1) .}
\end{gathered}
$$

Remaining issues

- Exclude collisions.
- Control the shape: Two phases ψ_{1}, ψ_{2}. We need

- Check nondegeneracy: Essentially

$$
\operatorname{det}\left(\begin{array}{cc}
\overline{\mathrm{T}}(u) & \overline{\mathrm{T}} B Y \\
\overline{\overline{\mathrm{I}}}(u) & \overline{\overline{\mathrm{I}}} B Y
\end{array}\right) \neq 0 \Leftrightarrow \frac{\partial L_{3}^{+}}{\partial \psi} \neq 0 .
$$

Remaining issues

- Exclude collisions.
- Control the shape: Two phases ψ_{1}, ψ_{2}. We need

$$
\operatorname{det}\left(\frac{\partial\left(g_{3}, e_{3}\right)}{\partial\left(\psi_{1}, \psi_{2}\right)}\right) \neq 0
$$

- Check nondegeneracy: Essentially

Remaining issues

- Exclude collisions.
- Control the shape: Two phases ψ_{1}, ψ_{2}. We need

$$
\operatorname{det}\left(\frac{\partial\left(g_{3}, e_{3}\right)}{\partial\left(\psi_{1}, \psi_{2}\right)}\right) \neq 0
$$

- Check nondegeneracy: Essentially

$$
\operatorname{det}\left(\begin{array}{cc}
\overline{\mathbf{I}}(u) & \overline{\mathrm{I}} B Y \\
\overline{\overline{\mathbf{I}}}(u) & \overline{\overline{\mathrm{I}}} B Y
\end{array}\right) \neq 0 \Leftrightarrow \frac{\partial L_{3}^{+}}{\partial \psi} \neq 0 .
$$

Planar four-body problem, in progress.

Planar 4 body problem,

- 8 degrees of freedom $=16$ dimensional phase space.
- Remove the translation invariance $16-4=12$.
- Remove the rotation invariance $12-2=10$.
- Pick an energy level and take a Poincaré section, $10-2=8$ dimensional Poincaré map.
- We expect that similarly to the problem at hand the Poincaré map have only two strongly expanding directions dominating all other directions.

Planar four-body problem, in progress.

Planar 4 body problem,

- 8 degrees of freedom $=16$ dimensional phase space.
- Remove the translation invariance $16-4=12$.
- Remove the rotation invariance $12-2=10$.
- Pick an energy level and take a Poincaré section, $10-2=8$ dimensional Poincaré map.
- We expect that similarly to the problem at hand the Poincaré map have only two strongly expanding directions dominating all other directions.

Planar four-body problem, in progress.

Planar 4 body problem,

- 8 degrees of freedom $=16$ dimensional phase space.
- Remove the translation invariance $16-4=12$.
- Remove the rotation invariance $12-2=10$.
- Pick an energy level and take a Poincaré section, $10-2=8$ dimensional Poincaré map.
- We expect that similarly to the problem at hand the Poincaré map have only two strongly expanding directions dominating all other directions.

Planar four-body problem, in progress.

Planar 4 body problem,

- 8 degrees of freedom $=16$ dimensional phase space.
- Remove the translation invariance $16-4=12$.
- Remove the rotation invariance $12-2=10$.
- Pick an energy level and take a Poincaré section, $10-2=8$ dimensional Poincaré map.
- We expect that similarly to the problem at hand the Poincaré map have only two strongly expanding directions dominating all other directions.

Planar four-body problem, in progress.

Planar 4 body problem,

- 8 degrees of freedom $=16$ dimensional phase space.
- Remove the translation invariance $16-4=12$.
- Remove the rotation invariance $12-2=10$.
- Pick an energy level and take a Poincaré section, $10-2=8$ dimensional Poincaré map.
- We expect that similarly to the problem at hand the Poincaré map have only two strongly expanding directions dominating all other directions.

THANK YOU!

