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The model

I Two fixed centers Q1 = (−χ,0), Q2 = (0,0). m1 = m2 = 1.
I Two small particles Q3 and Q4, m3 = m4 = µ� 1
I Q3 is captured by Q2 and Q4 is a messenger traveling

between Q1 and Q2.



The model

I Two fixed centers Q1 = (−χ,0), Q2 = (0,0). m1 = m2 = 1.
I Two small particles Q3 and Q4, m3 = m4 = µ� 1
I Q3 is captured by Q2 and Q4 is a messenger traveling

between Q1 and Q2.



The model

I Two fixed centers Q1 = (−χ,0), Q2 = (0,0). m1 = m2 = 1.
I Two small particles Q3 and Q4, m3 = m4 = µ� 1
I Q3 is captured by Q2 and Q4 is a messenger traveling

between Q1 and Q2.



I The Hamiltonian

H =
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I

P → µv , H → H/µ.
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Singular solutions

Let ω = {ωj}∞j=1 be a sequence of 3s and 4s.

Definition
We say that (Q3(t),Q4(t)) is a singular solution with
symbolic sequence ω if there exists a positive increasing
sequence {tj}∞j=0 such that

I t∗ = limj→∞ tj <∞.
I |Q̇i(t)| → ∞ as t → t∗.
I |Q3(tj)−Q2| ≤ C, |Q4(tj)−Q2| ≤ C.
I If ωj = 4 then for t ∈ [tj−1, tj ], |Q3(t)−Q2| ≤ C and
{Q4(t)}t∈[tj−1,tj ] winds around Q1 exactly once.
If ωj = 3 then for t ∈ [tj−1, tj ], |Q4(t)−Q2| ≤ C and
{Q3(t)}t∈[tj−1,tj ] winds around Q1 exactly once.
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Main theorem

We denote by Σω the set of initial conditions of singular orbits
with symbolic sequence ω.

Theorem (Dolgopyat, X.)
There exists µ∗ � 1 such that for µ < µ∗ the set Σω 6= ∅.
Moreover there is an open set U in the phase space and a
foliation of U by two-dimensional surfaces such that for any leaf
S of our foliation Σω ∩ S is a Cantor set.
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Conjectures on noncollision singularities

I Conjecture
The set of non-collision singularities has zero measure for all
N > 3.

I Conjecture (Painlevé)
The set of non-collision singularities is non-empty for all N > 3.
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I 1979 Mather, McGehee: collinear 4-body problem.
I Infinite number of binary collisions.
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I 1994 Xia: the spacial 5-body problem
I 1991 Gerver: planar 3N body problem



OPEN : N = 4?
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Poincaré’s second species solution

Second species solution:
periodic orbits converging to collision chains as µ→ 0.



I Restricted three body problem:
Bolotin, MacKay.
Fonts, Nunes, Simo.

I Full three-body problem:
Bolotin

Our work:
I Positive masses,
I infinitely long collision chain,
I new mechanism of producing hyperbolicity.
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Gerver’s model: the setting

I µ = 0, χ =∞.
I Q3 ellipse is always vertical.
I Q4 hyperbola has always horizontal asymptotes.
I Interaction of Q3 and Q4 is elastic collision.



Gerver’s model: the first collision

Figure: Angular momentum transfer collision



Gerver’s model: the second collision

Figure: Energy transfer collision



Gerver’s model: Main conclusion

I After two steps of collisions,

the same eccentricity

smaller semimajor

I For elliptic motion, E = − 1
2a

.
I

E3 ∼ −λn, E4 ∼ λn, λ > 1.

v4 ∼ λn/2, ∆t ∼ λ−n/2.
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Poincaré Sections

Figure: Poincaré sections



Local map

Lemma
If the y coordinates of the incoming and outgoing orbits of Q4
are bounded, then there exist a linear functional l̂i and a vector
ûi such that

dL(x) =
1
µ

u(x)⊗ l(x) + B(x) + o(1). µ→ 0, χ→∞.



Global map

Lemma
Let x and y = G(x) be such that |y(x)| ≤ C, |y((y))| ≤ C and
Q4 passes within distance C̃/χ from Q1. Then there exist linear
functionals l̄(x) and ¯̄l(x) and vectorfields ū(y) and ¯̄u(y) such
that

dG(x) = χ2ū(y)⊗ l̄(x) + χ¯̄u(y)⊗ ¯̄l(x) + O(µ2χ).



Nondegeneracy

Lemma
The following non degeneracy conditions are satisfied.

I

span(u,BY ) t (Ker(̄l) ∩ Ker(̄̄l))

where Y = (lū)¯̄u − (l¯̄u)ū ∈ span(ū, ¯̄u) ∩ Ker l.
I

det
(

l̄(u) l̄BY
¯̄l(u) ¯̄lBY

)
6= 0.
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Cone family, Hyperbolicity

Definition
U(δ) : a δ neighbhourhood of Gerver’s collision point in the
phase space.



Lemma
There are cone families K1 on Tx (T ∗T3), x ∈ U1(δ) and K2 on
Tx (T ∗T3), x ∈ U2(δ), each of which contains a two dimensional
plane, such that

I Invariance: dP(K1) ⊂ K2, d(R ◦ P)(K2) ⊂ K1.
I Expansion: If v ∈ K1, then ||dP(v)|| ≥ cχ||v ||.

If v ∈ K2, then ||d(R ◦ P)(v)|| ≥ cχ||v ||.
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Cones

Definition
We now take K to be the set of vectors which make an angle
less than a small constant η with span(ū, ¯̄u).



Admissible surface and Cantor set construction

I Definition
We call a C1 surface S1 ⊂ U1(δ) (respectively S2 ⊂ U2(δ)
admissible if TS1 ⊂ K1 (respectively TS2 ⊂ K2).

I The Cantor set:
lim

j
(RP2)−jS2j .
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Local map: Poincaré section

The Poincaré section

|Q3 −Q4| = µκ, 1/3 < κ < 1/2.



Local map, the C0 estimate
Close to elastic collision.

I 

v+
3 =

1
2

R(α)(v−3 − v−4 ) +
1
2

(v−3 + v−4 ) + O(µ(1−2κ)/3),

v+
4 = −1

2
R(α)(v−3 − v−4 ) +

1
2

(v−3 + v−4 ) + O(µ(1−2κ)/3),

Q+
3 = Q−3 + O(µκ),

Q+
4 = Q−4 + O(µκ),

where R(α) =

[
cosα − sinα
sinα cosα

]
,

I

α = arctan
d |v−3 − v−4 |

2

µ
.

I

d = (Q−3 −Q−4 )×
v−3 − v−4
|v−3 − v−4 |

: impact parameter.
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I Energy conservation & momentum conservation.
I d = O(µ) if α is bounded away from 0 and π.

I
∂α

∂d
= O(1/µ).

I Lemma
The C1 calculation is the same as taking derivatives of the C0

expression directly.

I
∂+

∂−
=

c
µ

∂+

∂α
⊗ ∂d
∂−

+( derivative involving no d)+ o(1).
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Coordinates: Delaunay coordinates

dP ∧ dQ = dL ∧ d`+ dG ∧ dg.

The Hamiltonian

H =
|P|2

2
− 1
|Q|

,

→ H = − 1
2L2 , elliptic motion,

→ H =
1

2L2 , hyperbolic motion.



The Hamiltonian in Delaunay coordinates

I The LEFT

HL = − 1
2L2

3
+

1
2L2

4
− 1
|Q4|

− 1
|Q3 − (−χ,0)|

− µ

|Q3 −Q4|
.

I The RIGHT

HR = − 1
2L2

3
+

(1 + µ)2

2L2
4
− 1
|Q3 + (χ,0)|

− 1
|Q4 + (χ,0)|

−µQ4 ·Q3

|Q4|3
+ O

(
µ

|Q4|3

)
.



Coordinates for the Poincaré map

I Eliminate L4 by fixing an energy level.
I Treat `4 as the new time.
I Coordinates for the Poincaré map:

(L3, `3,G3,g3,G4,g4).
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The first expanding direction of the Global map:
hyperbolicity from parabolicity

The Hamiltonian for elliptic motion

H3 = − 1
2L2

3
.

The Hamiltonian equations

L̇3 = 0,

˙̀3 =
1
L3

3
,

Ġ3 = 0,
ġ3 = 0.

=⇒



L3(T ) = L3(0),

`3(T ) = `3(0) +
T

L3
3(0)

,

G3(T ) = G3(0),

g3(T ) = g3(0).



The derivative matrix

∂(L, `,G,g)3(T )

∂(L, `,G,g)3(0)
=


1 0 0 0

− 3T
L4

3(0)
1 0 0

0 0 1 0
0 0 0 1



= − 3T
L4

3(0)


0
1
0
0

⊗ [1,0,0,0] + O(1).

We have estimate
− 3T

L4
3(0)

= O(χ).



Hyperbolicity created from parabolicity

I Parabolic matrix[
1 0
χ 1

] [
1 1
0 1

]
=

[
1 1
χ χ+ 1

]
I Two eigenvalues, O(χ) and O(1/χ).



The second expanding direction of the Global map:
hyperbolicity near collision

I Define the angle of asymptotes

f = g ± arctan
G
L

= O(1/χ), v4 ' (1, f ).

I Coordinates changes from the Right to the Left

(G,g)R
(i)−→ (G, f )R

(ii)−→ (G, f )L
(iii)−→ (G,g)L.

I The maps (i), (ii), (iii):

(i) : GR = GR, fR = gR − arctan
GR

LR
.

(ii) : GL = GR + χfR, fL = fR.

(iii) : GL = GL, gL = fL − arctan
GL

LL
.
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I The derivatives for (II) = (iii)(ii)(i)

D[(iii)(ii)(i)] =

[
1 0
] 1

] [
1 χ
0 1

] [
1 0
] 1

]
.

I For matrix (IV ) going from the Left to the Right, we get

D[(iii ′)(ii ′)(i ′)] =

[
1 0
] 1

] [
1 −χ
0 1

] [
1 0
] 1

]
.



[
1 0
] 1

] [
1 −χ
0 1

] [
1 0
] 1

]
·
[

1 0
] 1

] [
1 χ
0 1

] [
1 0
] 1

]

=

[
1 0
] 1

] [
1 + ]χ −]χ2

] −]χ+ 1

] [
1 0
] 1

]
[

1 + ]χ −]χ2

] −]χ+ 1

]
= ]χ2

[
1

1/χ

]
⊗ [1/χ,1] + O(1).



Remaining issues

I Exclude collisions.
I Control the shape: Two phases ψ1, ψ2. We need

det
(
∂(g3,e3)

∂(ψ1, ψ2)

)
6= 0.

I Check nondegeneracy: Essentially

det
(

l̄(u) l̄BY
¯̄l(u) ¯̄lBY

)
6= 0⇔

∂L+
3

∂ψ
6= 0.
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Planar four-body problem, in progress.

Planar 4 body problem,

I 8 degrees of freedom = 16 dimensional phase space.
I Remove the translation invariance 16− 4 = 12.
I Remove the rotation invariance 12− 2 = 10.
I Pick an energy level and take a Poincaré section,

10− 2 = 8 dimensional Poincaré map.
I We expect that similarly to the problem at hand the

Poincaré map have only two strongly expanding directions
dominating all other directions.
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