Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up theory of singularities

Mitsuru SHIBAYAMA (Osaka University, JAPAN)

E-mail: shibayama@sigmath.es.osaka-u.ac.jp URL: http://www.sigmath.es.osaka-u.ac.jp/~shibayama

Contents

I Background and Main theorem

II McGehee's blowing-up technique

III Proof

IV Example

V Comparison with Morales-Ramis theory

Contents

I Background and Main theorem

II McGehee's blowing-up technique

III Proof

IV Example

V Comparison with Morales-Ramis theory

Hamiltonian system and its integrability

• Hamiltonian system :

$$\frac{dq_j}{dt} = \frac{\partial H}{\partial p_j}(p,q), \quad \frac{dp_j}{dt} = -\frac{\partial H}{\partial q_j}(p,q) \qquad (j=1,\ldots,k) \quad (1)$$

where $p = (p_1, ..., p_k), q = (q_1, ..., q_k), H : \mathbb{R}^{2k} \to \mathbb{R}$.

- Hamiltonian system (1) is integrable ⇒ there are k first integrals
 F₁(= H), F₂,..., F_k such that dF₁,..., dF_k are linearly independent a.e. and that {F_i, F_j} = 0 for any i, j = 1,..., k.
- The dynamics of the integrable Hamiltonian systems are well understood because of the Liouville-Arnold theorem.
- The dynamics of the non-integrable Hamiltonian systems may be "chaotic".
- Problem: distinguish between integrable and non-integrable Hamiltonian systems.

Brief history

- Bruns (1887) proved $\not\exists$ algebraic first integral in the 3BP.
- Poincaré(around 1890) proved ∄ analytic first integral in the R3BP.
- Kovalevskaya(1889) discovered an integrable parameter in the rigid body model by focusing on the property of the singularity.
- Ziglin(1982 –) provided a criterion for non-integrability by using Monodoromy matrix.
- Yoshida(1986 –) provided a criterion for non-integrability of homogeneous Hamiltonian systems.
- Morales-Ruiz & Ramis (1999 –) extended the Ziglin analysis by using the differential Galois theory.
- Maciejewski (2011) proved meromorphic non-integrability of the P3BP for any masses by applying the Morales-Ramis theory.

 Goal: give a criterion of the non-integrability of the homogeneous Hamiltonian systems with two degrees of freedom from a new approach.

Homogeneous Hamiltonian system

Consider a homogeneous Hamiltonian system with two degrees of freedom:

$$H(\mathbf{p},\mathbf{q}) = \frac{1}{2} \|\mathbf{p}\|^2 + U(\mathbf{q}) \qquad ((\mathbf{p},\mathbf{q}) \in \mathbb{R}^2 \times \mathbb{R}^2)$$

where U is a homogeneous potential with degree $\beta \in \mathbb{R}$:

$$U(\lambda \mathbf{q}) = \lambda^{\beta} U(\mathbf{q}) \qquad (\forall \mathbf{q} \in \mathbb{R}^2 \setminus \{\mathbf{0}\}, \forall \lambda > 0).$$

Let $V(\theta) = U(\cos \theta, \sin \theta)$.

Example(The isosceles three-body problem)

Consider the isosceles three-body problem. Assume that $m_1 = m_2, m_3 = \alpha m_1$. This model is governed by the homogeneous Hamiltonian system with the potential energy

$$U(\mathbf{q}) = -\frac{1}{q_1} - \frac{4\alpha^{3/2}}{\sqrt{\alpha q_1^2 + (\alpha + 2)q_2^2}}.$$

$$\beta = -1.$$

$$V(\theta) = -\sec\theta - \frac{4\alpha^{3/2}}{\sqrt{\alpha + 2\sin^2\theta}}.$$

Main result

<u>Theorem</u> Assume the following:

1.
$$\beta \in \mathbb{R} \setminus \{-2, 0\};$$

2. $\exists \theta_{-1} < \exists \theta_0 < \exists \theta_1 \text{ s.t. } \frac{\partial V}{\partial \theta}(\theta_l) = 0;$
3. $V(\theta) < 0 \text{ on } [\theta_{-1}, \theta_1];$
4. $\frac{\partial V}{\partial \theta}(\theta) \neq 0 \text{ on } (\theta_{-1}, \theta_0) \cup (\theta_0, \theta_1);$
5. $\frac{\partial^2 V}{\partial \theta^2}(\theta_{\pm 1}) < 0;$
6. $-\frac{1}{8}(\beta + 2)^2 V(\theta_0) < \frac{\partial^2 V}{\partial \theta^2}(\theta_0).$

Then the homogeneous Hamiltonian system has no meromorphic first integral independent from H.

<u>Remark</u>

In the case of $\beta = -2$, the Hamiltonian system is always integrable. Because a function

$$G(\mathbf{p},\mathbf{q}) = (\mathbf{q} \cdot \mathbf{p})^2 - 2\|\mathbf{q}\|^2 H(\mathbf{p},\mathbf{q})$$

is a first integral independent from H.

I Background and Main theorem

- II McGehee's blowing-up technique
- III Proof
- IV Example
- V Comparison with Morales-Ramis theory

McGehee coordinates

We mainly consider the case of $\beta < 0$. McGehee coordinates: (r, θ, v, w) and τ

$$\mathbf{q} = r(\cos\theta, \sin\theta),$$

$$\mathbf{p} = r^{\beta/2}(v(\cos\theta, \sin\theta) + w(-\sin\theta, \cos\theta))$$

$$dt = r^{1-\beta/2}d\tau.$$

Then the canonical equations become

$$\frac{dr}{d\tau} = rv \tag{2}$$

$$\frac{d\theta}{d\tau} = w \tag{3}$$

$$\frac{dv}{d\tau} = -\frac{\beta}{2}v^2 + w^2 - \beta V(\theta) \tag{4}$$

$$\frac{dw}{d\tau} = -\left(\frac{\beta}{2} + 1\right)vw - \frac{\partial V}{\partial \theta}(\theta)$$
(5)

q = 0 is singularity but r = 0 is not singular in these differential equations (2)-(5).

Energy and Collision manifold

In these coordinates the total energy is

$$h = r^{\beta} \left(\frac{v^2 + w^2}{2} + V(\theta) \right). \tag{6}$$

We fix $h \neq 0$ and regard r as a function of (θ, v, w) . We consider the 3-dimensional dynamics.

The set

$$\mathcal{M} = \left\{ (\theta, v, w) \mid \frac{v^2 + w^2}{2} + V(\theta) = 0 \right\}$$

is invariant. In the case of the *n*-body problem, \mathcal{M} is called collision manifold.

Since we fix the energy, as $r \to \mathbf{0}(\mathbf{q} \to \mathbf{0})$, the orbit converges to \mathcal{M} in the McGehee coordinates.

Equilibrium points

Recall that θ_l are a critical point of V, i.e. $\frac{\partial V}{\partial \theta}(\theta_l) = 0$. Then $D_l^{\pm} = (\theta_l, \pm \sqrt{-2V(\theta_l)}, 0) \in \mathcal{M}$ are equilibrium points.

The case of the isosceles three-body problem

The invariant manifold (collision manifold) \mathcal{M} for the isosceles threebody problem is like this figure:

Case of $\beta > 0$

In the case of $\beta > 0$, we replace r with $R = r^{-1}$. The equation $\frac{dr}{d\tau} = rv$ becomes $\frac{dR}{d\tau} = -Rv$. We can define an invariant manifold corresponding to $R \to 0$ and we can discuss a similar argument as the case of $\beta < 0$.

I Background and Main theorem

- II McGehee's blowing-up technique
- III Proof
- IV Example
- V Comparison with Morales-Ramis theory

Proof (homogeneous property)

We give the outline of the proof for $-2 < \beta < 0$. The other cases are similar (some signs change in the computation). Assume that $\Phi(\mathbf{p}, \mathbf{q})$ is a moromorphic first integral where (\mathbf{p}, \mathbf{q}) are the original coordinates.

From the homogeneous property

(if $(\mathbf{p}(t), \mathbf{q}(t))$ is a solution, so is $(c^{\beta/2}\mathbf{p}(c^{\beta/2-2}t), c\mathbf{q}(c^{\beta/2-2}t))$ for any constant c > 0),

we can assume that Φ satisfies $\Phi(c^{\beta/2}\mathbf{p}, c\mathbf{q}) = c^{\rho}\Phi(\mathbf{p}, \mathbf{q})$ without loss of generality.

In the McGehee coordinates, this property corresponds to the fact that Φ can be represented as $\Phi = r^{\rho}g(\theta, v, w)$.

Proof(Coordinates)

We use the coordinates (θ, z, w) where $z = \frac{v^2 + w^2}{2} + V(\theta)$. These are analytic near the equilibrium points. The energy is

$$h = r^{\beta} z. \tag{7}$$

We consider the Laurent series of g at z=0 with respect to z:

$$g = \sum_{k=\mu}^{\infty} \gamma_k(\theta, w) z^k \qquad (\gamma_\mu \neq 0).$$

From (7), we get
$$\Phi = (rac{h}{z})^{rac{
ho}{2eta}}\sum_{k=\mu}^{\infty}\gamma_k(heta,w)z^k$$
.
The lowest order of z is $\mu - rac{
ho}{2eta}$.

Proof(the case of
$$\mu - \frac{\rho}{2\beta} < 0$$
)

We first consider the case of $\mu - \frac{\rho}{2\beta} < 0$. <u>Lemma</u>: γ_{μ} is zero on $W^{u}(D_{l}^{-})$.

 $W^u(D_0^-)$ is an open set of \mathcal{M} . Hence $\gamma_\mu \equiv 0$. This contradicts the assumption.

Proof(the case of
$$\mu - \frac{\rho}{2\beta} > 0$$
)

We consider the case of $\mu - \frac{\rho}{2\beta} > 0$. <u>Lemma</u>: γ_{μ} is zero on $W^{s}(D_{l}^{-})$

From assumption 6: $\left(-\frac{1}{8}(\beta+2)^2 V(\theta_0) < \frac{\partial^2 V}{\partial \theta^2}(\theta_0)\right)$, the dynamics near D_0^- on \mathcal{M} is unstable focus. $W^s(D_1^-)$ is a spiral curve near D_0^- . Hence $\gamma_{\mu} \equiv 0$.

Proof(the case of $\mu - \frac{\rho}{2\beta} = 0$)

In the case of $\mu - \frac{\rho}{2\beta} = 0$, <u>Lemma</u>: γ_{μ} is a constant on $W^{s/u}(D_l^-)$.

Therefore $\gamma_{\mu} \equiv c$. If Φ is not constant, by considering $\Phi - c$, this case can be reduced to the case of $\mu - \frac{\rho}{2\beta} > 0$.

I Background and Main theorem

- II McGehee's blowing-up technique
- III Proof
- IV Example

V Comparison with Morales-Ramis theory

Non-integrability of the isosceles three-body problem

The function \boldsymbol{V} of this problem is

$$V(\theta) = -\sec\theta - \frac{4\alpha^{3/2}}{\sqrt{\alpha + 2\sin^2\theta}}.$$

By applying our theorem, we obtain the following: <u>Theorem 2</u>

Assume that $\alpha < \frac{55}{4}$. Then the isosceles three-body problem is non-integrable. i.e. there is no moromorphic first integral independent from the energy.

I Background and Main theorem

- II McGehee's blowing-up technique
- III Proof
- IV Example

V Comparison with Morales-Ramis theory

Yoshida coefficient

We call a point $\mathbf{c} \in \mathbb{R}^2$ the Darboux point if $\nabla U(\mathbf{c}) = \mathbf{c}$. In the case of *n*-body problem, \mathbf{c} is called a central configuration. The eigenvalues of the Hessian matrix $D^2U(\mathbf{c})$ at the Darboux point \mathbf{c} are called the Yoshida coefficients. Since $U(\mathbf{c})$ is homogeneous with degree β , one of Yoshida coefficients is $\beta - 1$.

The other Yoshida coefficient is

$$\lambda = \beta^{-1} V(\theta_c)^{-1} \frac{\partial^2 V}{\partial \theta^2}(\theta_c) + 1$$

in the polar coordinates where $\frac{\partial V}{\partial \theta}(\theta_c) = 0$.

Yoshida coefficient and integrability

The Morales-Ramis theorem(the differential Galois theory) proves nonintegrability if one of the Yoshida coefficient is not in a certain set of rational numbers. For example, in the case of $\beta = -1$, according to the Moreles-Ramis theorem, the homogeneous Hamiltonian system is non-integrable if λ is not in

$$\{-\frac{1}{2}p(p-3) \mid p \in \mathbb{Z}\} = \{1, 0, -2, -5, -9, \dots\}.$$

In our theorem the assumption 6 is

$$-\frac{1}{8}(\beta+2)^2 > (\lambda-1)\beta \qquad (\lambda > 9/8 \text{ if } \beta = -1).$$

In the case of the isosceles three-body problem,

- Our theorem: non-integrability for $\alpha < \frac{55}{4}$
- M-R theory:non-integrability for any α .

Our theorem v.s. Morales-Ramis theory

- Our theorem can be applied to $\beta \in \mathbb{R} \setminus \{-2, 0\}$ while M-R theory can be applied to $\beta \in \mathbb{Z} \setminus \{-2, 0\}$.
- In the case of integer β , M-R theory is stronger.
- Our theorem can be applied to two degrees of freedom while M-R theory can be applied to any degrees of freedom.
- Our function class of first integrals is bigger: we prove the non-existence of first integral which is meromorphic as a real function, while M-R theory prove the non-existence of first integrals which is meromorphic as a complex function.
- Our proof is simpler and based on dynamics (the behavior of stable and unstable manifolds). M-R's method is far from the theory of the dynamics.

Thank you for your attention.