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Hamiltonian system and its integrability

e Hamiltonian system :

% OH dpj oOH

dt=@(p,qx E:_a_qj(p’@ 1=1,...,k) (1)

where p = (p1,...,pk).q = (q1,...,qx), H : R?* — R,
e Hamiltonian system ([l)) is integrable <= there are k first integrals

Fi(=H), F5, ..., Fy such that dF1y,...,dF} are linearly indepen-
dent a.e. and that {F}, F;} =0foranyi,j=1,... k.

e The dynamics of the integrable Hamiltonian systems are well un-
derstood because of the Liouville-Arnold theorem.

e The dynamics of the non-integrable Hamiltonian systems may be
“chaotic”.

e Problem: distinguish between integrable and non-integrable Hamil-

tonian systems.



Brief history

Bruns (1887) proved A algebraic first integral in the 3BP.
Poincaré(around 1890) proved A analytic first integral in the R3BP.

Kovalevskaya(1889) discovered an integrable parameter in the rigid body
model by focusing on the property of the singularity.

Ziglin(1982 —) provided a criterion for non-integrability by using Mon-
odoromy matrix.

Yoshida(1986 —) provided a criterion for non-integrability of homoge-
neous Hamiltonian systems.

Morales-Ruiz & Ramis (1999 —) extended the Ziglin analysis by using
the differential Galois theory.

Maciejewski (2011) proved meromorphic non-integrability of the P3BP
for any masses by applying the Morales-Ramis theory.



Goal

e Goal: give a criterion of the non-integrability of the
homogeneous Hamiltonian systems with two degrees of

freedom from a new approach.



Homogeneous Hamiltonian system

Consider a homogeneous Hamiltonian system with two degrees

of freedom:
H(p.a) = o plP +Ua)  ((p.a) € B x B
where U is a homogeneous potential with degree G(€ R):
UMq) = U(q) (Vg e R*N{0},V\ > 0).

Let V(0) = U(cosf,sin6).



Example(The isosceles three-body problem)

Consider the isosceles three-body problem.
Assume that m1 = mo, m3 = amj.

This model is governed by the homo-
geneous Hamiltonian system with the

potential energy

U(q) =

8=-1

V(0) = —secl —

1

d1

4@3/2

Vag@ + (a+2)¢3

4a>/?

\/oz—|—281n20.
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Main result
Theorem Assume the following:

1. 8 € R\{-2,0};
301 < 30 < 61 s.t. Zr(6;) = 0;
V(@) < 0 on [9_1, 91],

( )#£ 0 on (60_1,00) U (6o, 61);
392 (9:|:1) < 0;
~1(B+2)*V(00) < %% (6o).

Then the homogeneous Hamiltonian system has no meromorphic first integral

S ok LN

independent from H.

Ot 9_1 eo 91 ZT[




Remark

In the case of § = —2, the Hamiltonian system is always

integrable. Because a function

G(p,q) = (q-p)* - 2|la|*H(p, q)

is a first integral independent from H.
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McGehee coordinates

We mainly consider the case of 5 < 0.

McGehee coordinates: (7,0, v,w) and T

q = r(cos6,sin6),
p = rﬂ/z(v(cos 6,sin6) + w(—sinf, cosh))
dt = r1=F/24r.

Then the canonical equations become

dr

= = (2)
% — W (3)
Z_: - —§v2 +w? — BV (0) (4)
Z_T::_<§+1>vw—%—‘e/(e) (5)

q = 0 is singularity but » = 0 is not singular in these differential equations (2))-(5).



Energy and Collision manifold
In these coordinates the total energy is

ho= P (”2 +2 W V(9)> . (6)

We fix h # 0 and regard r as a function of (0, v, w).
We consider the 3-dimensional dynamics.

The set

v+ w?

— + V() :o}

Is invariant. In the case of the n-body problem, M is called

M={(6.0.0)

collision manifold.
Since we fix the energy, as r — 0(q — 0), the orbit converges

to M in the McGehee coordinates.



Equilibrium points

Recall that 6§, are a critical point of V, i.e. 22(6;) = 0.

Then D;* = (0, £+/—2V(;),0) € M are equilibrium points.




The case of the isosceles three-body problem

The invariant manifold
(collision manifold) M
for the isosceles three-
body problem s like
this figure:




Case of 3 > 0
1

In the case of 3 > 0, we replace » with R =r~".

The equation & = rv becomes 4£ = —Ru.
dr dr

We can define an invariant manifold corresponding to R — 0
and we can discuss a similar argument as the case of 5 < 0.
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Proof (homogeneous property)

We give the outline of the proof for —2 < 5 < 0. The other
cases are similar (some signs change in the computation).

Assume that ®(p,q) is a moromorphic first integral where
(p,q) are the original coordinates.

From the homogeneous property

(if (p(t), q(t)) is a solution, so is (¢?/2p(cP/272t), cq(c?/?~2t))
for any constant ¢ > 0),

we can assume that ® satisfies ®(c”/?p, cq) = c*®(p, q) with-
out loss of generality.

In the McGehee coordinates, this property corresponds to the

fact that ® can be represented as & = r”g(6, v, w).



Proof(Coordinates)

We use the coordinates (6, z,w) where z = ”2ng2 -V (0).

These are analytic near the equilibrium points. The energy is
h=r"z (7)

We consider the Laurent series of g at z = 0 with respect to

Z .

he o ~—
From ([7), we get & = (—)25 ka(ﬁ,w)zk.
2

The lowest order of 2z is 11 — 35



Proof(the case of u — 5 < 0)

We first consider the case of y — % < 0.
Lemma: v, is zero on W*(D;").

W*(Dy ) is an open set of M. Hence v, = 0.
This contradicts the assumption.

z

L

w

R




Proof(the case of u — 5 > 0)

We consider the case of 1 — % > 0.

Lemma: v, is zero on W*(D;")

From assumption 6: (—=(8 + 2)2V(6y) < %55 (o)), the dy-
namics near Dy on M is unstable focus. W#( D7) is a spiral

curve near D, . Hence v, = 0.

z

L

w

|
# B




Proof(the case of p1 — 35 = 0)

In the case of,u—— =0,
Lemma: v, is a constant on W*/*(D;").

Therefore v, = c. If @ is not constant, by considering ® — c,

this case can be reduced to the case of u — —5 > 0.

z

pa
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Non-integrability of the isosceles three-body problem

The function V' of this problem is

4&3/2

\/a+281n29.

V(f) = —sech

By applying our theorem, we obtain the following:
Theorem 2

Assume that a < 54—5. Then the isosceles three-body problem
Is non-integrable. i.e. there is no moromorphic first integral

independent from the energy.
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Voshid i
We call a point ¢ € R? the Darboux point if VU(c¢) = c. In

the case of n-body problem, c is called a central configuration.

The eigenvalues of the Hessian matrix D*U(c) at the Darboux
point c are called the Yoshida coefficients.

Since U(c) is homogeneous with degree 3, one of Yoshida
coefficients is 3 — 1.

The other Yoshida coefficient is
0%V

A= [7V(0:)" 502

(6:) +1

0
in the polar coordinates where $7(6..) = 0.



Yoshida coefficient and integrability

The Morales-Ramis theorem( the differential Galois theory) proves non-

integrability if one of the Yoshida coefficient is not in a certain set of rational

numbers. For example, in the case of 3 = —1, according to the Moreles-Ramis

theorem, the homogeneous Hamiltonian system is non-integrable if X\ is not in

1

-5 -4 -3 -2 -1 0 1 2 3 4 5 - A
In our theorem the assumption 6 is
1 :
—g(ﬁ+2)2>(>\—1)[3 (A >9/8if g =—1).
> A

-5 -4 -3 -2 -1 0 1 2 3 4 5

In the case of the isosceles three-body problem,
e Our theorem: non-integrability for a < %

e M-R theory:non-integrability for any «.



Our theorem v.s. Morales-Ramis theory

Our theorem can be applied to 3 € R\{—2,0} while M-R theory can be
applied to g € Z\{—2,0}.

In the case of integer 5, M-R theory is stronger.

Our theorem can be applied to two degrees of freedom while M-R theory
can be applied to any degrees of freedom.

Our function class of first integrals is bigger: we prove the non-existence
of first integral which is meromorphic as a real function, while M-R
theory prove the non-existence of first integrals which is meromorphic
as a complex function.

Our proof is simpler and based on dynamics (the behavior of stable
and unstable manifolds). M-R’s method is far from the theory of the

dynamics.



Thank you for your attention.



