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Hamiltonian system and its integrability

• Hamiltonian system :

dqj

dt
=

∂H

∂pj
(p, q),

dpj

dt
= −∂H

∂qj
(p, q) (j = 1, . . . , k) (1)

where p = (p1, . . . , pk), q = (q1, . . . , qk), H : R2k → R.

• Hamiltonian system (1) is integrable ⇐⇒ there are k first integrals

F1(= H), F2, . . . , Fk such that dF1, . . . , dFk are linearly indepen-

dent a.e. and that {Fi, Fj} = 0 for any i, j = 1, . . . , k.

• The dynamics of the integrable Hamiltonian systems are well un-

derstood because of the Liouville-Arnold theorem.

• The dynamics of the non-integrable Hamiltonian systems may be

“chaotic”.

• Problem: distinguish between integrable and non-integrable Hamil-

tonian systems.
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Brief history

• Bruns (1887) proved 6 ∃ algebraic first integral in the 3BP.

• Poincaré(around 1890) proved 6 ∃ analytic first integral in the R3BP.

• Kovalevskaya(1889) discovered an integrable parameter in the rigid body

model by focusing on the property of the singularity.

• Ziglin(1982 –) provided a criterion for non-integrability by using Mon-

odoromy matrix.

• Yoshida(1986 –) provided a criterion for non-integrability of homoge-

neous Hamiltonian systems.

• Morales-Ruiz & Ramis (1999 –) extended the Ziglin analysis by using

the differential Galois theory.

• Maciejewski (2011) proved meromorphic non-integrability of the P3BP

for any masses by applying the Morales-Ramis theory.
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Goal

• Goal: give a criterion of the non-integrability of the

homogeneous Hamiltonian systems with two degrees of

freedom from a new approach.
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Homogeneous Hamiltonian system

Consider a homogeneous Hamiltonian system with two degrees

of freedom:

H(p,q) =
1

2
‖p‖2 + U(q) ((p,q) ∈ R2 × R2)

where U is a homogeneous potential with degree β(∈ R):

U(λq) = λβU(q) (∀q ∈ R2\{0},∀λ > 0).

Let V (θ) = U(cos θ, sin θ).
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Example(The isosceles three-body problem)

Consider the isosceles three-body problem.

Assume that m1 = m2, m3 = αm1.

m2

m3

m1

This model is governed by the homo-

geneous Hamiltonian system with the

potential energy

U(q) = − 1

q1
− 4α3/2

p

αq2
1 + (α + 2)q2

2

.

β = −1.

V (θ) = − sec θ − 4α3/2

p

α + 2 sin2 θ
.
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Main result
Theorem Assume the following:

1. β ∈ R\{−2, 0};
2. ∃θ−1 < ∃θ0 < ∃θ1 s.t. ∂V

∂θ
(θl) = 0;

3. V (θ) < 0 on [θ−1, θ1];

4. ∂V
∂θ

(θ) 6= 0 on (θ−1, θ0) ∪ (θ0, θ1);

5. ∂2V
∂θ2 (θ±1) < 0;

6. − 1
8
(β + 2)2V (θ0) < ∂2V

∂θ2 (θ0).

0 2πθ0 θ1

V(θ)

θ−1

Then the homogeneous Hamiltonian system has no meromorphic first integral

independent from H.

9



Remark

In the case of β = −2, the Hamiltonian system is always

integrable. Because a function

G(p,q) = (q · p)2 − 2‖q‖2H(p,q)

is a first integral independent from H.

10



Contents

I Background and Main theorem

II McGehee’s blowing-up technique

III Proof

IV Example

V Comparison with Morales-Ramis theory

11



McGehee coordinates
We mainly consider the case of β < 0.

McGehee coordinates: (r, θ, v, w) and τ

q = r(cos θ, sin θ),

p = rβ/2(v(cos θ, sin θ) + w(− sin θ, cos θ))

dt = r1−β/2dτ.

Then the canonical equations become

dr

dτ
= rv (2)

dθ

dτ
= w (3)

dv

dτ
= −

β

2
v2 + w2 − βV (θ) (4)

dw

dτ
= −

„

β

2
+ 1

«

vw −
∂V

∂θ
(θ) (5)

q = 0 is singularity but r = 0 is not singular in these differential equations (2)-(5).
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Energy and Collision manifold

In these coordinates the total energy is

h = rβ

(
v2 + w2

2
+ V (θ)

)
. (6)

We fix h 6= 0 and regard r as a function of (θ, v, w).

We consider the 3-dimensional dynamics.

The set

M =

{
(θ, v, w) | v2 + w2

2
+ V (θ) = 0

}
is invariant. In the case of the n-body problem, M is called

collision manifold.

Since we fix the energy, as r → 0(q → 0), the orbit converges

to M in the McGehee coordinates.
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Equilibrium points

Recall that θl are a critical point of V , i.e. ∂V
∂θ

(θl) = 0.

Then D±
l = (θl,±

√
−2V (θl), 0) ∈ M are equilibrium points.

D-
0

D-
1

D-
-1

D+
-1

D+
0

D+
1
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The case of the isosceles three-body problem

C

C
*

E- E+

E
*
+E

*
-

The invariant manifold

(collision manifold) M
for the isosceles three-

body problem is like

this figure:
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Case of β > 0

In the case of β > 0, we replace r with R = r−1.

The equation dr
dτ

= rv becomes dR
dτ

= −Rv.

We can define an invariant manifold corresponding to R → 0

and we can discuss a similar argument as the case of β < 0.
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Proof (homogeneous property)

We give the outline of the proof for −2 < β < 0. The other

cases are similar (some signs change in the computation).

Assume that Φ(p,q) is a moromorphic first integral where

(p,q) are the original coordinates.

From the homogeneous property

(if (p(t),q(t)) is a solution, so is (cβ/2p(cβ/2−2t), cq(cβ/2−2t))

for any constant c > 0),

we can assume that Φ satisfies Φ(cβ/2p, cq) = cρΦ(p,q) with-

out loss of generality.

In the McGehee coordinates, this property corresponds to the

fact that Φ can be represented as Φ = rρg(θ, v, w).
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Proof(Coordinates)

We use the coordinates (θ, z, w) where z = v2+w2

2
+ V (θ).

These are analytic near the equilibrium points. The energy is

h = rβz. (7)

We consider the Laurent series of g at z = 0 with respect to

z:

g =
∞∑

k=µ

γk(θ, w)zk (γµ 6≡ 0).

From (7), we get Φ = (
h

z
)

ρ
2β

∞∑
k=µ

γk(θ, w)zk.

The lowest order of z is µ − ρ
2β

.
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Proof(the case of µ − ρ
2β

< 0)

We first consider the case of µ − ρ
2β

< 0.

Lemma: γµ is zero on W u(D−
l ).

W u(D−
0 ) is an open set of M. Hence γµ ≡ 0.

This contradicts the assumption.

z

w

M

D-
1

D-
-1

D-
0
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Proof(the case of µ − ρ
2β

> 0)

We consider the case of µ − ρ
2β

> 0.

Lemma: γµ is zero on W s(D−
l )

From assumption 6: (−1
8
(β + 2)2V (θ0) < ∂2V

∂θ2 (θ0)), the dy-

namics near D−
0 on M is unstable focus. W s(D−

1 ) is a spiral

curve near D−
0 . Hence γµ ≡ 0.

z

w

M

D-
1

D-
-1

D-
0
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Proof(the case of µ − ρ
2β

= 0)

In the case of µ − ρ
2β

= 0,

Lemma: γµ is a constant on W s/u(D−
l ).

Therefore γµ ≡ c. If Φ is not constant, by considering Φ − c,

this case can be reduced to the case of µ − ρ
2β

> 0.

z

w

M

D-
1

D-
-1

D-
0
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Non-integrability of the isosceles three-body problem

The function V of this problem is

V (θ) = − sec θ − 4α3/2

√
α + 2 sin2 θ

.

By applying our theorem, we obtain the following:

Theorem 2

Assume that α < 55
4
. Then the isosceles three-body problem

is non-integrable. i.e. there is no moromorphic first integral

independent from the energy.
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Yoshida coefficient

We call a point c ∈ R2 the Darboux point if ∇U(c) = c. In

the case of n-body problem, c is called a central configuration.

The eigenvalues of the Hessian matrix D2U(c) at the Darboux

point c are called the Yoshida coefficients.

Since U(c) is homogeneous with degree β, one of Yoshida

coefficients is β − 1.

The other Yoshida coefficient is

λ = β−1V (θc)
−1∂2V

∂θ2
(θc) + 1

in the polar coordinates where ∂V
∂θ

(θc) = 0.
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Yoshida coefficient and integrability
The Morales-Ramis theorem( the differential Galois theory) proves non-

integrability if one of the Yoshida coefficient is not in a certain set of rational

numbers. For example, in the case of β = −1, according to the Moreles-Ramis

theorem, the homogeneous Hamiltonian system is non-integrable if λ is not in

{−1

2
p(p − 3) | p ∈ Z} = {1, 0,−2,−5,−9, . . . }.

-5 -4 -3 -2 -1 0 1 2 3 4 5
λ

In our theorem the assumption 6 is

−1

8
(β + 2)2 > (λ − 1)β (λ > 9/8 if β = −1).

-5 -4 -3 -2 -1 0 1 2 3 4 5
λ

In the case of the isosceles three-body problem,

• Our theorem: non-integrability for α < 55
4

• M-R theory:non-integrability for any α.
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Our theorem v.s. Morales-Ramis theory

• Our theorem can be applied to β ∈ R\{−2, 0} while M-R theory can be

applied to β ∈ Z\{−2, 0}.
• In the case of integer β, M-R theory is stronger.

• Our theorem can be applied to two degrees of freedom while M-R theory

can be applied to any degrees of freedom.

• Our function class of first integrals is bigger: we prove the non-existence

of first integral which is meromorphic as a real function, while M-R

theory prove the non-existence of first integrals which is meromorphic

as a complex function.

• Our proof is simpler and based on dynamics (the behavior of stable

and unstable manifolds). M-R’s method is far from the theory of the

dynamics.
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Thank you for your attention.
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