Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up theory of singularities

Mitsuru SHIBAYAMA (Osaka University, JAPAN)

E-mail: shibayama@sigmath.es.osaka-u.ac.jp
URL: http://www.sigmath.es.osaka-u.ac.jp/~shibayama

Contents

I Background and Main theorem

II McGehee's blowing-up technique

III Proof

IV Example

V Comparison with Morales-Ramis theory

Contents

I Background and Main theorem

II McGehee's blowing-up technique

III Proof

IV Example

V Comparison with Morales-Ramis theory

Hamiltonian system and its integrability

- Hamiltonian system :

$$
\begin{equation*}
\frac{d q_{j}}{d t}=\frac{\partial H}{\partial p_{j}}(p, q), \quad \frac{d p_{j}}{d t}=-\frac{\partial H}{\partial q_{j}}(p, q) \quad(j=1, \ldots, k) \tag{1}
\end{equation*}
$$

where $p=\left(p_{1}, \ldots, p_{k}\right), q=\left(q_{1}, \ldots, q_{k}\right), H: \mathbb{R}^{2 k} \rightarrow \mathbb{R}$.

- Hamiltonian system (1) is integrable \Longleftrightarrow there are k first integrals $F_{1}(=H), F_{2}, \ldots, F_{k}$ such that $d F_{1}, \ldots, d F_{k}$ are linearly independent a.e. and that $\left\{F_{i}, F_{j}\right\}=0$ for any $i, j=1, \ldots, k$.
- The dynamics of the integrable Hamiltonian systems are well understood because of the Liouville-Arnold theorem.
- The dynamics of the non-integrable Hamiltonian systems may be "chaotic".
- Problem: distinguish between integrable and non-integrable Hamiltonian systems.

Brief history

- Bruns (1887) proved \nexists algebraic first integral in the 3BP.
- Poincaré(around 1890) proved \nexists analytic first integral in the R3BP.
- Kovalevskaya(1889) discovered an integrable parameter in the rigid body model by focusing on the property of the singularity.
- Ziglin(1982 -) provided a criterion for non-integrability by using Monodoromy matrix.
- Yoshida(1986 -) provided a criterion for non-integrability of homogeneous Hamiltonian systems.
- Morales-Ruiz \& Ramis (1999 -) extended the Ziglin analysis by using the differential Galois theory.
- Maciejewski (2011) proved meromorphic non-integrability of the P3BP for any masses by applying the Morales-Ramis theory.
- Goal: give a criterion of the non-integrability of the homogeneous Hamiltonian systems with two degrees of freedom from a new approach.

Homogeneous Hamiltonian system

Consider a homogeneous Hamiltonian system with two degrees of freedom:

$$
H(\mathbf{p}, \mathbf{q})=\frac{1}{2}\|\mathbf{p}\|^{2}+U(\mathbf{q}) \quad\left((\mathbf{p}, \mathbf{q}) \in \mathbb{R}^{2} \times \mathbb{R}^{2}\right)
$$

where U is a homogeneous potential with degree $\beta(\in \mathbb{R})$:

$$
U(\lambda \mathbf{q})=\lambda^{\beta} U(\mathbf{q}) \quad\left(\forall \mathbf{q} \in \mathbb{R}^{2} \backslash\{\mathbf{0}\}, \forall \lambda>0\right) .
$$

Let $V(\theta)=U(\cos \theta, \sin \theta)$.

Example(The isosceles three-body problem)

Consider the isosceles three-body problem.
Assume that $m_{1}=m_{2}, m_{3}=\alpha m_{1}$.
This model is governed by the homogeneous Hamiltonian system with the potential energy

$$
\begin{aligned}
& U(\mathbf{q})=-\frac{1}{q_{1}}-\frac{4 \alpha^{3 / 2}}{\sqrt{\alpha q_{1}^{2}+(\alpha+2) q_{2}^{2}}} \\
& \beta=-1
\end{aligned}
$$

$$
V(\theta)=-\sec \theta-\frac{4 \alpha^{3 / 2}}{\sqrt{\alpha+2 \sin ^{2} \theta}}
$$

Main result

Theorem Assume the following:

1. $\beta \in \mathbb{R} \backslash\{-2,0\}$;
2. $\exists \theta_{-1}<\exists \theta_{0}<\exists \theta_{1}$ s.t. $\frac{\partial V}{\partial \theta}\left(\theta_{l}\right)=0$;
3. $V(\theta)<0$ on $\left[\theta_{-1}, \theta_{1}\right]$;
4. $\frac{\partial V}{\partial \theta}(\theta) \neq 0$ on $\left(\theta_{-1}, \theta_{0}\right) \cup\left(\theta_{0}, \theta_{1}\right)$;
5. $\frac{\partial^{2} V}{\partial \theta^{2}}\left(\theta_{ \pm 1}\right)<0$;
6. $-\frac{1}{8}(\beta+2)^{2} V\left(\theta_{0}\right)<\frac{\partial^{2} V}{\partial \theta^{2}}\left(\theta_{0}\right)$.

Then the homogeneous Hamiltonian system has no meromorphic first integral independent from H.

Remark

In the case of $\beta=-2$, the Hamiltonian system is always integrable. Because a function

$$
G(\mathbf{p}, \mathbf{q})=(\mathbf{q} \cdot \mathbf{p})^{2}-2\|\mathbf{q}\|^{2} H(\mathbf{p}, \mathbf{q})
$$

is a first integral independent from H.

Contents
I Background and Main theorem

II McGehee's blowing-up technique

III Proof

IV Example

V Comparison with Morales-Ramis theory

McGehee coordinates

We mainly consider the case of $\beta<0$.
McGehee coordinates: (r, θ, v, w) and τ

$$
\begin{aligned}
\mathbf{q} & =r(\cos \theta, \sin \theta) \\
\mathbf{p} & =r^{\beta / 2}(v(\cos \theta, \sin \theta)+w(-\sin \theta, \cos \theta)) \\
d t & =r^{1-\beta / 2} d \tau
\end{aligned}
$$

Then the canonical equations become

$$
\begin{align*}
\frac{d r}{d \tau} & =r v \tag{2}\\
\frac{d \theta}{d \tau} & =w \tag{3}\\
\frac{d v}{d \tau} & =-\frac{\beta}{2} v^{2}+w^{2}-\beta V(\theta) \tag{4}\\
\frac{d w}{d \tau} & =-\left(\frac{\beta}{2}+1\right) v w-\frac{\partial V}{\partial \theta}(\theta) \tag{5}
\end{align*}
$$

$\mathbf{q}=0$ is singularity but $r=0$ is not singular in these differential equations (2)-(5).

Energy and Collision manifold
In these coordinates the total energy is

$$
\begin{equation*}
h=r^{\beta}\left(\frac{v^{2}+w^{2}}{2}+V(\theta)\right) \tag{6}
\end{equation*}
$$

We fix $h \neq 0$ and regard r as a function of (θ, v, w).
We consider the 3-dimensional dynamics.
The set

$$
\mathcal{M}=\left\{(\theta, v, w) \left\lvert\, \frac{v^{2}+w^{2}}{2}+V(\theta)=0\right.\right\}
$$

is invariant. In the case of the n-body problem, \mathcal{M} is called collision manifold.
Since we fix the energy, as $r \rightarrow \mathbf{0}(\mathbf{q} \rightarrow \mathbf{0})$, the orbit converges to \mathcal{M} in the $M c G e h e e$ coordinates.

Equilibrium points
Recall that θ_{l} are a critical point of V, i.e. $\frac{\partial V}{\partial \theta}\left(\theta_{l}\right)=0$.
Then $D_{l}^{ \pm}=\left(\theta_{l}, \pm \sqrt{-2 V\left(\theta_{l}\right)}, 0\right) \in \mathcal{M}$ are equilibrium points.

The case of the isosceles three-body problem
The invariant manifold
(collision manifold) \mathcal{M} for the isosceles threebody problem is like this figure:

Case of $\beta>0$
In the case of $\beta>0$, we replace r with $R=r^{-1}$.
The equation $\frac{d r}{d \tau}=r v$ becomes $\frac{d R}{d \tau}=-R v$.
We can define an invariant manifold corresponding to $R \rightarrow 0$ and we can discuss a similar argument as the case of $\beta<0$.

Contents

I Background and Main theorem

II McGehee's blowing-up technique

III Proof

IV Example

V Comparison with Morales-Ramis theory

Proof (homogeneous property)
We give the outline of the proof for $-2<\beta<0$. The other cases are similar (some signs change in the computation).
Assume that $\Phi(\mathbf{p}, \mathbf{q})$ is a moromorphic first integral where (\mathbf{p}, \mathbf{q}) are the original coordinates.
From the homogeneous property
(if $(\mathbf{p}(t), \mathbf{q}(t))$ is a solution, so is $\left(c^{\beta / 2} \mathbf{p}\left(c^{\beta / 2-2} t\right), c \mathbf{q}\left(c^{\beta / 2-2} t\right)\right.$) for any constant $c>0$), we can assume that Φ satisfies $\Phi\left(c^{\beta / 2} \mathbf{p}, c \mathbf{q}\right)=c^{\rho} \Phi(\mathbf{p}, \mathbf{q})$ without loss of generality.
In the McGehee coordinates, this property corresponds to the fact that Φ can be represented as $\Phi=r^{\rho} g(\theta, v, w)$.

Proof(Coordinates)

We use the coordinates (θ, z, w) where $z=\frac{v^{2}+w^{2}}{2}+V(\theta)$.
These are analytic near the equilibrium points. The energy is

$$
\begin{equation*}
h=r^{\beta} z . \tag{7}
\end{equation*}
$$

We consider the Laurent series of g at $z=0$ with respect to $z:$

$$
g=\sum_{k=\mu}^{\infty} \gamma_{k}(\theta, w) z^{k} \quad\left(\gamma_{\mu} \not \equiv 0\right)
$$

From (7), we get $\Phi=\left(\frac{h}{z}\right)^{\frac{\rho}{2 \beta}} \sum_{k=\mu}^{\infty} \gamma_{k}(\theta, w) z^{k}$.
The lowest order of z is $\mu-\frac{\rho}{2 \beta}$.

Proof(the case of $\mu-\frac{\rho}{2 \beta}<0$)
We first consider the case of $\mu-\frac{\rho}{2 \beta}<0$.
Lemma: γ_{μ} is zero on $W^{u}\left(D_{l}^{-}\right)$.
$W^{u}\left(D_{0}^{-}\right)$is an open set of \mathcal{M}. Hence $\gamma_{\mu} \equiv 0$.
This contradicts the assumption.

Proof(the case of $\mu-\frac{\rho}{2 \beta}>0$)
We consider the case of $\mu-\frac{\rho}{2 \beta}>0$.
Lemma: γ_{μ} is zero on $W^{s}\left(D_{l}^{-}\right)$
From assumption 6: $\left(-\frac{1}{8}(\beta+2)^{2} V\left(\theta_{0}\right)<\frac{\partial^{2} V}{\partial \theta^{2}}\left(\theta_{0}\right)\right)$, the dynamics near D_{0}^{-}on \mathcal{M} is unstable focus. $W^{s}\left(D_{1}^{-}\right)$is a spiral curve near D_{0}^{-}. Hence $\gamma_{\mu} \equiv 0$.

Proof(the case of $\mu-\frac{\rho}{2 \beta}=0$)
In the case of $\mu-\frac{\rho}{2 \beta}=0$,
Lemma: γ_{μ} is a constant on $W^{s / u}\left(D_{l}^{-}\right)$.
Therefore $\gamma_{\mu} \equiv c$. If Φ is not constant, by considering $\Phi-c$, this case can be reduced to the case of $\mu-\frac{\rho}{2 \beta}>0$.

Contents

I Background and Main theorem

II McGehee's blowing-up technique

III Proof

IV Example

V Comparison with Morales-Ramis theory

Non-integrability of the isosceles three-body problem
The function V of this problem is

$$
V(\theta)=-\sec \theta-\frac{4 \alpha^{3 / 2}}{\sqrt{\alpha+2 \sin ^{2} \theta}}
$$

By applying our theorem, we obtain the following:
Theorem 2
Assume that $\alpha<\frac{55}{4}$. Then the isosceles three-body problem is non-integrable. i.e. there is no moromorphic first integral independent from the energy.

Contents
I Background and Main theorem

II McGehee's blowing-up technique

III Proof

IV Example

V Comparison with Morales-Ramis theory

Yoshida coefficient

We call a point $\mathbf{c} \in \mathbb{R}^{2}$ the Darboux point if $\nabla U(\mathbf{c})=\mathbf{c}$. In the case of n-body problem, \mathbf{c} is called a central configuration. The eigenvalues of the Hessian matrix $D^{2} U(\mathbf{c})$ at the Darboux point \mathbf{c} are called the Yoshida coefficients.
Since $U(\mathbf{c})$ is homogeneous with degree β, one of Yoshida coefficients is $\beta-1$.
The other Yoshida coefficient is

$$
\lambda=\beta^{-1} V\left(\theta_{c}\right)^{-1} \frac{\partial^{2} V}{\partial \theta^{2}}\left(\theta_{c}\right)+1
$$

in the polar coordinates where $\frac{\partial V}{\partial \theta}\left(\theta_{c}\right)=0$.

Yoshida coefficient and integrability

The Morales-Ramis theorem(the differential Galois theory) proves nonintegrability if one of the Yoshida coefficient is not in a certain set of rational numbers. For example, in the case of $\beta=-1$, according to the Moreles-Ramis theorem, the homogeneous Hamiltonian system is non-integrable if λ is not in

$$
\left\{\left.-\frac{1}{2} p(p-3) \right\rvert\, p \in \mathbb{Z}\right\}=\{1,0,-2,-5,-9, \ldots\}
$$

In our theorem the assumption 6 is

$$
-\frac{1}{8}(\beta+2)^{2}>(\lambda-1) \beta \quad(\lambda>9 / 8 \text { if } \beta=-1)
$$

In the case of the isosceles three-body problem,

- Our theorem: non-integrability for $\alpha<\frac{55}{4}$
- M-R theory:non-integrability for any α.

Our theorem v.s. Morales-Ramis theory

- Our theorem can be applied to $\beta \in \mathbb{R} \backslash\{-2,0\}$ while $\mathrm{M}-\mathrm{R}$ theory can be applied to $\beta \in \mathbb{Z} \backslash\{-2,0\}$.
- In the case of integer $\beta, \mathrm{M}-\mathrm{R}$ theory is stronger.
- Our theorem can be applied to two degrees of freedom while M-R theory can be applied to any degrees of freedom.
- Our function class of first integrals is bigger: we prove the non-existence of first integral which is meromorphic as a real function, while M-R theory prove the non-existence of first integrals which is meromorphic as a complex function.
- Our proof is simpler and based on dynamics (the behavior of stable and unstable manifolds). M-R's method is far from the theory of the dynamics.

Thank you for your attention.

