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The (planar) elliptic restricted three body problem (ER3BP).

We consider the motion of a particle q with zero mass under the attraction
of two particles qS and qJ, called primaries, with mass ratio µ which
move in elliptic orbits with eccentricity e0 around their center of mass.

Typical models:

• Sun–Jupiter–asteroid or comet: e0 = 0.048

• Sun–Earth–Moon systems: e0 = 0.016

We consider the motion of the particle q (comet) when it moves outside of
the orbit of the primaries along nearly parabolic orbits.
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The equations

The motion of the particle q (comet) is described by

d2q

dt2
= −(1− µ)

q − qS(t, e0)

|q − qS(t, e0)|3
− µ q − qJ(t, e0)

|q − qJ(t, e0)|3
.

This is a time-periodic Hamiltonian system (2 and 1/2 degrees of
freedom) with Hamiltonian

H(q, p, t; e0, µ) =
p2

2
− (1− µ)

|q − qS(t, e0)|
− µ

|q − qJ(t, e0)|
.

Parameters: 0 < µ, e0 < 1.
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The two body problem:

When µ = 0, the second primary does not appear in the equations and the
first primary is fixed at the origin: qS(t, e0) = 0

The first primary qS and the third body q form the two-body problem with

the Hamiltonian H(q, p, t; e0, 0) = H0(q, p) =
p2

2
− 1

|q|
.

The two–body problem is integrable.
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The ER3BP as a perturbation of the 2BP

Hamiltonian Hµ(q, p, t, e0) is a small 2π-periodic in time perturbation (if
µ is small) of the integrable two body problem.

The perturbation term is

∆Hµ(q, p, t; e0) = H(q, p, t; e0, µ)−H0(q, p)

= (1− µ)

(
1

|q − qS(t, e0)|
− 1

|q|

)
+ µ

(
1

|q − qJ(t, e0)|
− 1

|q|

)
.

Since qJ(t, e0) moves along an ellipse with semi-major axis 1− µ, in the
case q being uniformly away from the unit ball both terms are of order of
µ and tend to zero as q →∞.
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Hamiltonian equations in polar coordinates

With Polar coordinates q = (x, y) = (r cosα, r sinα), α ∈ T, r ≥ 0 the
Hamiltonian reads:

H(r, Pr, α, Pα, t; e0, µ) =
P 2
r

2
+
P 2
α

2r2
− U(r, α, t; e0, µ)

where (r, Pr) and (α, Pα) are pairs of conjugate variables,

U(r, α, t; e0, µ) =
1− µ
|q − qS|

+
µ

|q − qJ|
,

|q − qJ|2 = r2 − 2(1− µ)r r0 cos(α− f) + (1− µ)2r20,

|q − qS|2 = r2 + 2µ r r0 cos(α− f) + µ2r20.

r0 = r0(t; e0) =
1− e20

1 + e0 cos f
,

df

dt
=

(1 + e0 cos f)2

(1− e20)3/2
.

where f = f(t; e0) is the true anomaly.
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Hamiltonian equations in polar coordinates

Pα := G is the angular momentum.

H(r, Pr, α,G, s; e0, µ) =
P 2
r

2
+
G2

2r2
− U(r, α, s; e0, µ)

We will work in the extended phase space
(r, Pr, α,G, s) ∈ R× R× T× R× T
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The two body problem in polar coordinates

In the polar coordinates: q = (x, y) = (r cosα, r sinα), α ∈ T, r ≥ 0,
The Hamiltonian of the two body problem µ = 0, becomes

H0(r, Pr, α,G) =
P 2
r

2
+
G2

2r2
− 1

r
,

h = H0 is the energy.

G and H0 are both first integrals of motion.

If h < 0, motions are elliptic:

If h = 0 the motion is parabolic.
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Increassing the angular momentum

Final goal: in the elliptic restricted three body (ERTBP) problem we want
to see that the angular momentum of the third body G(t) can have large
changes

We have partial results when the eccentricity e0 > 0 and µ > 0 are small
enough:

Given any G1, G2 � 1, there exist heteroclinic trajectories of the ERTBP
whose angular momentum satisfies, for some T > 0:

G(0) < G1 G(T ) > G2

Proven for 0 < µ� e0 � 1 and any 1� G1, G2 ≤ 1/e0.
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Previous results

For oscillatory motions or diffusion close to parabolic orbits:

Llibre-Simó 1980 (oscillatory motions in the RPC3BP for 0 < µ� 1)

Xia 1992 ( for RPC3BP oscillatory motions for every µ ∈ (0, 1/2] except
a finite number of values)

Guàrdia-Martı́n-Seara 2012 (idem for any 0 < µ < 1)

Galante-Kaloshin 2011( orbits initially bounded and which become
oscillatory: µ = 10−3, realistic for the Jupiter-Sun)

Kaloshin and Gorodetski 2011 (results about the Hausdorff dimension of
oscillatory motions for both the Sitnikov problem and the RPC3BP)

Xia 1993 (local diffusion in the ERTBP)

Martı́nez-Pinyol 1994 (Massive computations in the ERTBP)
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Previous results

Other types of oscillatory motions or diffusion:

Llibre-Martı́nez-Simó 1985 (oscillatory motions close to L2 in the
CRTBP)

Bolotin 2006 (close to collision in the ERTBP)

Capiñski-Zgliczyñski 2011 (close to L2 in the ERTBP)

Féjoz-Guàrdia-Kaloshin-Roldán 2012 (close to resonances in the ERTBP)
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One limit: the two body problem: µ = 0

A priori unstable structure

Introducing x2 := 1/r, y := Pr, we get new Hamiltonian equations:

ẋ = −x
3

2

∂H0

∂y
α̇ =

∂H0

∂G

ẏ =
x3

2

∂H0

∂x
Ġ = −∂H0

∂α
= 0 ṡ = 1

with HamiltonianH0(x, y,G) =
y2

2
+
G2x4

8
− x2

2
, and Poisson bracket

{f, g} = −x
3

2

(
∂f

∂x

∂g

∂y
− ∂g

∂x

∂f

∂y

)
+
∂f

∂α

∂g

∂G
− ∂g

∂α

∂f

∂G

which has the separatrix loop γG = {H0(x, y,G) = 0} to the origin.
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One limit: the two body problem: µ = 0

A priori unstable structure: An invariant “normally parabolic” cylinder.

Main features we will use:

• The 3 dimensional manifold:

Λ̃∞ = {x = y = 0, (α,G, s) ∈ T× R+ × T}

is invariant.

• Λ̃∞ =
⋃
α,G Λ̃α,G, being Λ̃α,G periodic orbits.

• The inner dynamics on Λ̃∞ is trivial:

(α,G, s)→ (α,G, s+ t)

• Λ̃∞ has stable and unstable manifolds.
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One limit: the two body problem: µ = 0

A priori unstable structure: An invariant homoclinic manifold to Λ̃∞.

γ̃ = W s
0 (Λ̃∞) = Wu

0 (Λ̃∞)

= {H0(x, y,G) = 0, (α,G, s) ∈ T× R+ × T}

that can be seen as a union of parabolic homoclinic orbits to Λ̃α,G

(homoclinic manifold).
γ̃ =

⋃
(α,G)

γ̃α,G

We can parameterize the 4-dimensional homoclinic manifold as:

γ̃ = {z̃0 := (xG(τ), yG(τ), αG(τ)+α,G, s), τ ∈ R, G ∈ R+, (α, s) ∈ T2}
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One limit: the two body problem: µ = 0

Outer dynamics: the scattering map (Delshams-Llave-S. 2000) in Λ̃∞.
We can define a map in Λ̃∞ associated to the homoclinic manifold γ̃

S0 : Λ̃∞ → Λ̃∞

by z̃+ = S0(z̃−) iff ∃z̃ ∈ γ̃ such that

d(ϕ(t; z̃), ϕ(t; z̃±))→ 0 as t→ ±∞.

The orbit through z̃ is a heteroclinic connection between the orbits
through z̃±.

Using the point of z̃ = z̃0 = (xG(τ), yG(τ), αG(τ) + α,G, s), one can
compute S0 in coordinates:

S0(α,G, s) = (α,G, s)
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One limit: the two body problem: µ = 0

Outer dynamics: the scattering map in Λ̃∞.

As S0 = Id, the unperturbed periodic orbits Λ̃α,G only have homoclinic
connections.

Main goal:

For µ > 0 (and e0 > 0) we want to see that we can define a scattering
map such that the image of one periodic orbit intersects other periodic
orbits with larger angular momentum G. Then we will have heteroclinic
orbits between periodic orbits

18



Dynamics of infinity for e0 > 0, µ > 0

In variables (x, y), the Hamiltonian is:

H(x, y, α,G, s; e0, µ) =
y2

2
+
G2x4

2
− U(x, α, s; e0, µ)

with U(x, α, s; e0) = x2Ũ(x, α, s; e0, µ)

Implications:

• Λ̃∞ = {x = y = 0, (α,G, s) ∈ T× R+ × T} is still invariant.

• The periodic orbits Λ̃α,G persist.

• The inner dynamics on Λ̃∞ is still trivial:

(α,G, s)→ (α,G, s+ t)
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The invariant manifolds of Λ̃∞ for e0 > 0, µ > 0: Melnikov approach

For µ > 0, e0 > 0, the manifolds W s
µ(Λ̃∞) and Wu

µ (Λ̃∞) intersect
transversally along TWO homoclinic manifolds.

This result is based on a Melnikov type computation.

Classical Melnikov potential:

L(α,G, s; e0) =

∫
R

∆U(xG(t), αG(t) + α, s+ t; e0) dt.

where U(x, α, s; e0, µ) = x2 + µ∆U(x, α, s; e0) +O(µ2)

Intersection property: If the function

τ 7→ L(α,G, s− τ ; e0)

has a non-degenerate critical point τ∗(α,G, s; e0), then there is a
transversal intersection between Wu(Λ̃∞) and W s(Λ̃∞) close to
z̃0 = (xG(τ), yG(τ), αG(τ) + α,G, s).
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The invariant manifolds of Λ̃∞ for e0 > 0, µ > 0: the reduced
Poincaré function

For any fixed (α,G, e0), we just need to find a non-degenerate critical
point s∗(α,G; e0) of s 7→ L(α,G, s; e0), that is, a solution s∗(α,G; e0)

of the equation

∂L
∂s

(α,G, s; e0) = 0,
∂2L
∂s2

(α,G, s; e0) 6= 0

and we recover τ∗(α,G, s; e0) = s− s∗(α,G; e0)

Once we have τ∗(α,G, s; e0) we can consider the reduced Poincaré
function

L∗(α,G; e0) = L(α,G,−τ∗(α,G, 0; e0); e0) = L(α,G, s∗(α,G; e0); e0)
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The scattering map for e0 > 0, µ > 0

The scattering map S given by the homoclinic intersection associated to
the critical point s∗(α,G; e0) is given as:

(α,G, s) 7→ (α− µ∂L
∗

∂G
+O(µ2), G+ µ

∂L∗

∂α
+O(µ2), s)

S is given, up to first order in µ, as the time −µ Hamiltonian flow of the
autonomous Hamiltonian L∗(α,G; e0)!

Then, looking at the level curves of L∗(α,G; e0) we get the images under
the scattering map.
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The scattering map for e0 > 0, µ > 0

The inner dynamics in Λ̃∞ is trivial:

(α,G, s) 7→ (α,G, s+ t)

The classical geometric mechanism to obtain diffusion does not work:
there is no possibility of combining the inner and the outer dynamics to
obtain large changes of G.

The time 2π-Poincaré map P (α,G, s) = (α,G, s), therefore S ◦ P = S

Only with one scattering map we cannot get large changes in G.
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Combining two scattering maps for e0 > 0, µ > 0

The function L(α,G, s; e0) has two non-degenerate critical points
s∗+(α,G; e0), s∗−(α,G; e0) which give rise to two different perturbed
scattering maps S+, S−.

The foliations of their level curves are transversal.

We can construct heteroclinic chains of periodic orbits with increasing
angular momentum choosing the right scattering map any time
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Computation of the Melnikov potential L for e0G� 1 and big G

Computation of the Melnikov potential is delicate.

We have rigourous computations and bounds of the errors for e0G� 1.

Main idea:

• L is periodic in s and α.

• The k-th Fourier coefficient in the angle s is of order O(e−k
G3

3 ).

This is difficult to prove.

• One needs to compute the asymptotic of the first Fourier coefficients
and bound the rest.
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Computation of the Melnikov potential L for e0G� 1 and big G

Fourier expanding in the angle s (and α), we get

L(α,G, s; e0) = L0(α,G; e0) + L1(α,G, s; e0)

+ F (α,G; e0) + E(α,G, s; e0)

L0(α,G; e0) = − π

G3
− 15πe0

8G5
cosα,

L1(α,G, s; e0) =

√
π

8

e−G
3/3

G1/2
(cos(s− α) + p cos(s− 2α)) ,

where p = 10ee0G
2, F is small: F = O

(
e20G

−7), and E is exponentially
small: E = e−G

3/3O(G−3/2, e0G
1/2, e20G

5/2).

• L0 contains the main term of the zero harmonic in s.

• L0 contains the main terms of the two first order harmonics in s.

• e0G ≤ 1 needed for the convergence of the expansions.
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Computation of the term L1 for e0G� 1

The form of L1 ensures the existence of TWO scattering maps.

s 7→ L1(α,G, s; e0) is indeed a cosine function:

L1(α,G, s; e0) =

√
π

8

e−G
3/3

G1/2

√
1 + 2p cosα+ p2 cos(s− α− α∗),

where α∗ = α∗(p, α) = 2 arctan p sinα
1+p cosα (p = 10ee0G

2), with a unique
non-degenerate maximum for s = α+ α∗ and a unique non-degenerate
minimum for s = α+ α∗ + π, where L1 takes the values

±L∗1(α,G; e0) = ±
√
π

8

e−G
3/3

G1/2

√
1 + 2p cosα+ p2.
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Computation of the reduced Poincaré functions L∗

Since
∣∣∣∣∂E∂s

∣∣∣∣� ∣∣∣∣∂L1

∂s

∣∣∣∣, the function s 7→ L(α,G, s; e0) is a “cosine-like”

function, with unique non-degenerate maximum and minimum at s∗±. We
can define two reduced Poincaré functions

L∗±(α,G; e0) = L(α,G, s∗±; e0) = L0 ± L∗1 + F + E∗±

so that the associated scattering maps S± are given by

(α,G, s) 7→
(
α− µ

∂L∗±
∂G

+O(µ2), G+ µ
∂L∗±
∂α

+O(µ2), s

)
.
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Functionally independent Scattering maps S±

The scattering maps S± are given by

(α,G) 7→
(
α− µ

∂L∗±
∂G

+O(µ2), G+ µ
∂L∗±
∂α

+O(µ2)

)
.

• S± are given, except for O(µ2), as the time µ Hamiltonian flow of
the autonomous Hamiltonians −L∗±(α,G).

• The iterates under S± follow the level curves of L∗±.

• Since {L∗+,L∗−} = −2{L0,L∗1}+ · · · only vanishes on α = 0, π, we
can choose alternatively S± to get diffusing pseudo-orbits and get
diffusion along 1� G ≤ 1/e0.
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Arnold diffusion: e0 > 0, µ > 0

• We have rigourous results for the existence of heteroclinic orbits with

increasing angular momentum if e0G ≤ 1 and µe
G3

3 <� 1

• A rigourous λ-lemma is needed to get true orbits.

How can improve the range of the parameters with the same results?

• A priori chaotic: In a recent work (Guardia-Martin-S) we have
proved that Wu(Λ̃∞) and W s(Λ̃∞) intersect transversally for
e0 = 0. Then, the circular restricted theree body problem becomes a

priori chaotic for any value of µ, and we get results for |e0e
G3

3 | << 1
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Arnold diffusion: e0 > 0, any µ > 0

One can see that this problem is a perturbation of the two body problem
without assuming µ small, nor e0 small.

Take ε small and perform the following changes of variables

r =
1

ε2
r̃, y = εỹ, α = α̃ and G =

1

ε
G̃

and we rescale time as

t =
1

ε3
s.

The rescaled system is Hamiltonian with respect

H̃(r̃, ỹ, α, G̃,
s

ε3
;µ, e0) =

ỹ2

2
+
G̃2

2r̃2
− Ṽ (r̃, α,

s

ε3
; ε, e0, µ),
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The equations in scaled variables for small ε where

Ṽ (r̃, α, sε3 ; ε, e0, µ) = 1−µ
(r̃2−2(µε2)r̃ cosφ+(µε2)2)1/2

+ µ

(r̃2+2((1−µ)ε2)r̃ cosφ+((1−µ)ε2)2)1/2 .

where φ = α+ f(t0 + s
ε3 ; e0).

Note that, for any µ, and e0, Ṽ = 1
r̃ +O(ε2) and its dependence on time

is through φ = α+ f(t0 + s
ε3 ; e0),

In this way one can see:

• The exponentially small splitting comes from the fact that the
restricted three body problem is a small and fast perturbation of the
two body problem for ε small and any e0 and µ.

• One can expect the diffusion phenomenon if we are able to deal with
these exponentially small phenomena

• The first step will be the case e0G small without assumptions in µ
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