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Main Task

Goal

Studying the Newtonian three and N body problems in 3D from the point of
view of averaging and reductions of continuous symmetries:

i) Investigating the dynamics of the most possible reduced problem:
existence, stability and bifurcations of the relative equilibria in terms of
two parameters.

ii) Reconstructing the flow of the original problem: KAM tori of various
types.
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Main Task

Method

By introducing a small parameter we average the perturbation over 2 (or
N − 1) angles obtaining a Hamiltonian system on the reduced (orbit) space

associated with the symmetries introduced.

We use singular reduction theory and have conclusions about the full
system.

We obtain new invariant tori of the spatial three body problem (or the spatial
N body problem).
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Equations and Integrals of Motion

The Spatial N Body Problem: Equations of Motion

The Spatial N Body Problem (SNBP) is an IVP:

Given initial values for the positions qj(0) and velocities q̇j(0) of N particles
j = 0, 1, . . . ,N − 1 with qj(0) 6= qk(0) for all distinct j and k, find the solution
of the second order system whose Hamiltonian is:

H =
1
2

∑
0≤j≤N−1

|pj|2

mj
− G

∑
0≤j<k≤N−1

mjmk

|qj − qk|
,

where the pj are the linear momenta associated to the position vectors qj.

Counting positions qj ∈ R3 and momenta pj ∈ R3 for j = 0, 1, . . . ,N − 1 one
has 6 N variables.

It is a problem of 3 N degrees of freedom.
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Equations and Integrals of Motion

The Integrals of the N Body Problem

The N body problem has 10 independent algebraic integrals:

placing the centre of mass at the origin and fixing the linear momentum
reduces the problem to a linear subspace of dimension 6 N − 6,
fixing the angular momentum vector reduces the problem to a
(6 N − 9)-dimensional space,
identifying configurations that differ by a rotation about the angular
momentum reduces the problem to a space of dimension 6 N − 10.

Conclusion
Thus, it is possible to study the N body problem in a reduced space
(symplectic manifold) of dimension 6 N − 10, thus, as a system of 3 N − 5
degrees of freedom (respectively 4 N − 6 and 2 N − 3 for the planar N body
problem).

For N = 3 we study a problem of 4 degrees of freedom
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Reductions

Passing from 9 to 6 Degrees of Freedom #1

(1) The centre of mass moves uniformly with time, then we introduce Jacobi
coordinates:

x0 = q0, x1 = q1 − q0, x2 = q2 − σ0q0 − σ1q1,

y0 = p0 + p1 + p2, y1 = p1 + σ1p2, y2 = p2,

where
1/σ0 = 1 + m1/m0, 1/σ1 = 1 + m0/m1.
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Reductions

Passing from 9 to 6 Degrees of Freedom #2

(2) Attach the reference frame to the centre of mass, i.e. make y0 = 0, then if
x2 6= 0 we can write:

H = HKep +Hpert

with

HKep =
|y1|2

2µ1
+
|y1|2

2µ2
− µ1M1

|x1|
− µ2M2

|x2|
,

Hpert = −m0m1 − µ1M1

|x1|
− m1m2

|x2 − σ0x1|
− m0m2

|x2 + σ1x1|
+
µ2M2

|x2|
,

and
1
µ1

=
1

m0
+

1
m1
,

1
µ2

=
1

m0 + m1
+

1
m2
,

M1 = m0 + m1, M2 = m0 + m1 + m2.
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Reductions

Elimination of the Nodes #1

Let the angular momentum vector

2∑
k=1

Gk ≡
2∑

k=1

xk × yk = C 6= 0.

Spatial Delaunay elements are not useful for carrying out the reduction of
the nodes as the conservation of the components of C requires that

h1 − h2 = π, G2
1 − H2

1 = G2
2 − H2

2 , H1 + H2 = C · k,

k is the vertical unit vector of an inertial frame centred at the centre of mass.

Reason
The constrainst given above imply that the transformation is only possible in a
submanifold of R12 that has dimension 10
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Reductions

Elimination of the Nodes #2

We use Deprit’s coordinates devised by André Deprit in 1983 to deal with the
N body problem: [Elimination of the Nodes in Problems of N Bodies, CM 30
181-195 (1983).]

1 Choose an inertial frame Q = (i, j,k): if C 6= 0 then C = C n with
C > 0 and |n| = 1.

2 Introduce an angle I such that k · n = cos I with 0 ≤ I ≤ π: when
I ∈ (0, π) there exists a unit vector l with k× n = l sin I and |l| = 1.

3 Define the invariable frame I = (n, l,m).
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Reductions

Elimination of the Nodes #3

1 The angle ν is the longitude of l, i.e. l = i cos ν + j sin ν with
0 ≤ ν ≤ 2π,

2 If Gk = Gknk with |nk| = 1, Ik is the angle between C and Gk and
n× nk = lk sin Ik with |lk| = 1, then the angle νk is defined such that
lk = l cos νk + m sin νk with 0 ≤ νk ≤ 2π,

3 γk is the argument of the pericentre in the plane defined by lk and mk,

4 B = C · k,

5 The coordinates Lk’s, Gk’s and `k’s are the same as the spatial Delaunay’s
elements.

We introduce Deprit’s coordinates as the set of action-angle variables:

(`1, `2, γ1, γ2, ν1, ν,L1,L2,G1,G2,C,B)
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Reductions

Elimination of the Nodes #4

Some considerations:

For the three body problem the variables C, B and ν are integrals of
motion and in particular the nodes ν and ν1 are not present in the
equations.

Deprit’s variables were constructed for N bodies using recursion. See the
recent paper [L. Chierchia, G. Pinzari: Deprit’s Reduction of the Nodes
Revisited, CMDA 109 285-301 (2011).]

The number of degrees of freedom is then reduced to 3 N − 5 (i.e. to 4 if
N = 3).
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Averaging and Further Reductions

Perturbative Region #1

Let a1, a2 be the semimajor axes and e1 and e2 the corresponding

eccentricities of the ellipses 1 and 2 and let εk =
√

1− e2
k .

We define

σ̂ = max{σ1, σ2}, ∆ = σ̂
a1(1 + e1)

a2(1 + e2)
.

For 0 < ε� 1 and k ∈ Z+, the perturbative region is

P = max

{
m2

M1

(
a1

a2

)3/2

,
µ1
√

M2

M3/2
1

(
a1

a2

)2
}

1

ε
3(2+k)
2 (1−∆)2k+1

< ε.
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Averaging and Further Reductions

Perturbative Region #2

where, for p-uplets k of Zp; j ! j stands for the l2-norm:

jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ ! ! ! þ k2p

q
;

HDg;tðpÞ is the tranversally Cantor set of frequency vectors in Rp which
satisfy homogeneous diophantine conditions of constants g; t and hdg;t is the
inverse image of HDg;tð2Þ by the Keplerian frequency map ðn1; n2Þ in the
space P&M: In the definition of hdg;t; nothing prevents g or t to be
functions on P&M: Besides, let

hd ¼
[

g>0;t51

hdg;t:

If x1 and x2 are two quantities, let $xx ¼ minðx1; x2Þ: When e ! 0; let

*PP
k
e ¼ ðPk

e & R2Þ\ f $LL ¼ Oð $LL0Þg \ f$nn ¼ aOð$nn0Þg;

*AA
k
e ¼ ðAk

e & R2Þ\ f $LL ¼ Oð $LL0Þg \ f$nn ¼ Oð$nn0Þg

8
<

:

be some open sets of Pk
e & R2 and of Ak

e & R2; where ð $LL0; $nn0Þ stand for
coordinates of R2: These open sets can be thought of as fiber bundles over
the parameter space M& R2: The additional parameters ð $LL0; $nn0Þ are meant
to localize the particular region on which we focus in the phase space.

FIG. 1. The perturbing region.

QUASIPERIODIC MOTIONS IN PLANAR THREE-BODY PROBLEM 311

[J. Féjoz: Quasiperiodic Motions in the Planar Three-Body Problem,
JDE 183, 303–341 (2002)]
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Averaging and Further Reductions

Inner and Outer Ellipses

2m

0m

m1

x2

0σ 1x

1x−σ1

Figure: Inner and outer ellipses
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Averaging and Further Reductions

Averaging with Respect to the Mean Anomalies

In a region free of resonances among `1 and `2 (e.g. the ratio ν2/ν1 is not too
close to a rational number) we average over the two anomalies:

K1 =
1

4π2

∫ 2π

0

∫ 2π

0
Hpert d `1 d `2,

and the generating function satisfies:

ν1
∂W1

∂`1
+ ν2

∂W1

∂`2
= Hpert −K1.

Truncating the Legendre expansion at n = 2, we get:

K1 =
m7

2M7
1

64m3
0m3

1M3
2

L2
1

L3
2G2

1G5
2

(
(
− 3(C2 − G2

1)2 + 2(3C2 − G2
1)G2

2 − 3G4
2
)
(5L2

1 − 3G2
1)

+ 15
(
(C + G1)2 − G2

2
)(

(C − G1)2 − G2
2
)
(L2

1 − G2
1) cos 2γ1

)
.

Palacián, Sayas & Yanguas (UPNa) The Spatial Three and N Body Problems January, 14th 16 / 42



Averaging and Further Reductions

Consequences of Averaging

1 After truncating higher order terms, the resulting system is of two
degrees of freedom.

2 However, as γ2 is not present in the equations (it appears if we truncate at
n = 3), thus the reduced system is of one degree of freedom.
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Averaging and Further Reductions

Regular Reduction #1

Once we truncate higher order terms we construct the orbit space. We apply
Meyer (or Marsden-Weinstein) regular reduction theory.

Invariants associated to the symmetries L1 and L2:
1 Take the Laplace-Runge-Lenz vectors Ak = (yk ×Gk)/µk − xk/rk,

k = 1, 2.
2 Introduce a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3) and

d = (d1, d2, d3) through

a = G1+L1A1, b = G1−L1A1, c = G2+L2A2, d = G2−L2A2.

3 a, b, c and d satisfy |a|2 = |b|2 = L2
1,

|c|2 = |d|2 = L2
2.
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Averaging and Further Reductions

Regular Reduction #2

For fixed and strictly positive values of L1 and L2 the reduced phase space (i.e.
the orbit space) related to the normalisation of `1 and `2 and the truncation of
the corresponding tail is given by

AL1,L2 = S2
L1
× S2

L1
× S2

L2
× S2

L2

=
{

(a,b, c,d) ∈ R8 | |a|2 = |b|2 = L2
1, |c|2 = |d|2 = L2

2, C ≤ L1 + L2

}
.

(i) AL1,L2 defines a manifold of dimension eight and is regular.

(ii) The trajectories of the inner ellipses can be rectilinear, i.e. e2 = 1
as we regularise the inner collisions.

(iii) Circular and/or coplanar trajectories are also studied properly in AL1,L2 .
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Averaging and Further Reductions

Singular Reductions #1

Reduction by the symmetry related with C and B:

Arms, Cushman and Gotay: As the reduction process has non-trivial isotropy
groups the reduction is singular.

Central question
How do we get the invariants associated to the symmetries

The actions C and B in terms of a, b, c and d are:

C = 1
2

√
(a1 + b1 + c1 + d1)2 + (a2 + b2 + c2 + d2)2 + (a3 + b3 + c3 + d3)2,

B = 1
2(a3 + b3 + c3 + d3).

Invariants: we look for polynomials in ak’s, bk’s, ck’s and dk’s such that
{p,C2} = {p,B} = 0.
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Averaging and Further Reductions

Singular Reductions #2

We proceed constructively, starting by polynomials of degree one, then
polynomials of degree two and so on, all with arbitrary coefficients that we
have to determine.

The result yields one valid combination:

π1 = a3 + b3 + c3 + d3,

π2 = a1b1 + a2b2 + a3b3, π3 = a1c1 + a2c2 + a3c3, π4 = a1d1 + a2d2 + a3d3,

π5 = b1c1 + b2c2 + b3c3, π6 = b1d1 + b2d2 + b3d3, π7 = c1d1 + c2d2 + c3d3,

π8 = (a1 + b1 + c1 + d1)2 + (a2 + b2 + c2 + d2)2,

π9 = −(a1 + b1 + c1)(a1 + b1 + c1 + 2d1)

− (a2 + b2 + c2)(a2 + b2 + c2 + 2d2) + d2
3.
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Averaging and Further Reductions

Singular Reductions #3

Questions:

Are they independent invariants?

Where do we have to stop?

Do we have to compute invariants of degree three?

It is a topic of Computer Algebra: we need to find out a Hilbert basis
(fundamental set of invariants).

If {π1, π2, . . . , πn} is the Hilbert basis, the reduced Hamiltonian has to
be expressible in terms of the basis, and the basis together with the
constraints involved has to define the singular space.

If we build a Gröbner basis from the Hilbert basis, say, {π̄1, π̄2, . . . , π̄n},
pick any invariant and apply the multivariate division algorithm with
respect to it, then the remainder of the division must be zero.
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Averaging and Further Reductions

Singular Reductions #4

To compute the Gröbner basis is a formidable task.
However we can use the relationships between a, b, c and d and Deprit’s
elements (we have obtained all of them). We easily obtain that

π2 = 2G2
1 − L2

1, π7 = 2G2
2 − L2

2,

π3 + π4 − π5 − π6 =

2
G1

√(
(C + G2)2 − G2

1

)(
G2

1 − (C − G2)2
)√

L2
1 − G2

1 sin γ1,

π3 − π4 + π5 − π6 =

2
G2

√(
(C + G2)2 − G2

1

)(
G2

1 − (C − G2)2
)√

L2
2 − G2

2 sin γ2.

Thus, we define:

σ1 = π2, σ2 = π7,

σ3 = 1
2(π3 + π4 − π5 − π6), σ4 = 1

2(π3 − π4 + π5 − π6).
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Averaging and Further Reductions

Singular Reductions #5

However this is not enough:
{σ1, σ2, σ3, σ4} does not verify the multivariate division algorithm, i.e., they
cannot form a Hilbert basis.
Going to degree three, we arrive at the following invariants:

σ5 = 1
2

(
a1
(
b3(c2 + d2)− b2(c3 + d3)

)
+ a2

(
− b3(c1 + d1) + b1(c3 + d3)

)
+ a3

(
b2(c1 + d1)− b1(c2 + d2)

))
,

σ6 = 1
2

(
c1
(
− d2(a3 + b3) + d3(a2 + b2)

)
+ c2

(
d1(a3 + b3)− d3(a1 + b1)

)
+ c3

(
− d1(a2 + b2) + d2(a1 + b1)

))
.

The expressions of σ5 and σ6 in terms of Deprit’s elements are:

σ5 =
√(

(C + G2)2 − G2
1

)(
G2

1 − (C − G2)2
)√

L2
1 − G2

1 cos γ1,

σ6 =
√(

(C + G2)2 − G2
1

)(
G2

1 − (C − G2)2
)√

L2
2 − G2

2 cos γ2.
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Averaging and Further Reductions

Singular Reductions #6

{σ1, σ2, σ3, σ4, σ5, σ6} satisfies all the requirements and is a fundamental set
of invariants.
The reduced space is:

SL1,L2,C =
{

(σ1, σ2, σ3, σ4, σ5, σ6) ∈ R6 | the σi’s satisfy (1)
}
,

with the constraints

(σ1 − L2
1)
(

(σ2 − σ1 + L2
2 − L2

1 + C2)2 − 8C2(σ2 + L2
2)
)

=

(1) 4(σ1 + L2
1)σ2

3 + 8σ2
5,

(σ2 − L2
2)
(

(σ1 − σ2 + L2
1 − L2

2 + 2C2)2 − 8C2(σ1 + L2
1)
)

=

4(σ2 + L2
2)σ2

4 + 8σ2
6.

SL1,L2,C is a four-dimensional symplectic orbifold as it has singularites.
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Averaging and Further Reductions

Singular Reductions #6

Reduction by the symmetry related with G2:

TL1,C,G2 =
{

(τ1, τ2, τ3) ∈ R3 | the invariants τi’s satisfy (2)
}
,

where

(τ1 − L2
1)
(
(τ1 + L2

1 − 2C2 − 2G2
2)2 − 16C2G2

2
)

= 4(τ1 + L2
1)τ 2

2 + 8τ 2
3 . (2)

It defines an orbifold of dimension two.

The invariants τ1, τ2 and τ3 generate the fully-reduced space.

The rest of invariants of different degrees belong to the ideal defined by
the selected invariants (i.e. the Hilbert basis) using the multivariate
division algorithm.
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Averaging and Further Reductions

Fully-Reduced Phase Space: TL1,C,G2

τ1, τ2 and τ3 are represented in terms of Deprit’s coordinates by

τ1 = 2G2
1 − L2

1,

τ2 =
1

G1

√(
(C + G2)2 − G2

1

)(
G2

1 − (C − G2)2
)√

L2
1 − G2

1 sin γ1,

τ3 =
√(

(C + G2)2 − G2
1

)(
G2

1 − (C − G2)2
)√

L2
1 − G2

1 cos γ1.

Coordinates: G1 and γ1.

Parameters: L1, C and G2.

γ1 ∈ [0, 2π), G1 ∈ [0,L1].

If L1 = |C − G2|: the space gets reduced to a unique point.
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Averaging and Further Reductions

Fully-Reduced Phase Space: TL1,C,G2

Special motions concerning the inner bodies which represent points where
Deprit’s coordinates are singular:

Circular motions: (L2
1, 0, 0)

Coplanar motions: (2(C − G2)2 − L2
1, 0, 0)

Circular coplanar motions: ((C + G2)2, 0, 0)

Set of rectilinear solutions:{
(−L2

1 , τ2 , 0) | τ2 ∈ [−2L1G2, 2L1G2]
}
.

Palacián, Sayas & Yanguas (UPNa) The Spatial Three and N Body Problems January, 14th 28 / 42



Averaging and Further Reductions

Fully-Reduced Phase Space: TL1,C,G2

τ1

τ2

τ3

τ1

τ2

τ3

Green points: circular motions.
Yellow points: coplanar solutions.
Red segment: all possible rectilinear motions.

There can be 0, 1, 2 or 3 singular points in TL1,C,G2
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Averaging and Further Reductions

Two More Pictures of TL1,C,G2

3τ

τ1

2τ

τ1

τ3

τ2
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Analysis of the Reduced STBP

Application to the STBP: The Reduced Hamiltonian and
The Equations of Motion

After dropping constant terms, The fully-reduced Hamiltonian is:

K1 = 2(−L2
1 + 2C2 + 6G2

2)τ1 − τ 2
1 + 20τ 2

2 .

The vector field associated to K1 is:

˙̄τ1 = −160τ̄2τ̄3,

˙̄τ2 = −8(τ̄1 − 2p2 − 6q2 + 1)τ̄3,

˙̄τ3 = 2τ̄2

(
(τ̄1 + 1)(−13τ̄1 + 7) + 20τ̄ 2

2 + 4p2(9τ̄1 − 1)

+ 4q2(7τ̄1 + 10p2 − 3)− 20(p4 + q4)
)
,

where p = C/L1, q = G2/L1, τ̄1 = τ1/L2
1, τ̄2 = τ2/L2

1 and τ̄3 = τ3/L3
1.

Circular and coplanar type of trajectories are always equilibria.
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Analysis of the Reduced STBP

Application to the STBP: Plane of Parametric Bifurcations
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Γ1, Γ2, Γ3, Γ4: Hamiltonian Pitchfork
Γ5: Double Centre-Saddle
T2 and T3: Reversible Elliptic Umbilic
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Analysis of the Reduced STBP

Some Remarks

1 This approach for the STBP follows works initiated by Jefferys and
Moser (1966), Harrington (1968, 1969), Lidov and Ziglin (1976), Ferrer
and Osácar (1994), Farago and Laskar (2010).

Our study is global in phase space and makes use of singular
reduction, avoiding degeneracy in the analysis of bifurcations (using
regular reduction there are some artificial distortions).

2 We have found relative equilibria of rectilinear type (for the inner
ellipses), specifically vertical solutions and coplanar solutions.
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KAM Tori of the Three Body Problem

Reconstruction of the Dynamics

We can apply KAM theory to get families of invariant tori of the system in
four degrees of freedom.

Other related issues:

Do the relative equilibria analysed so far correspond with invariant 2-tori
of the 4 DOF Hamiltonian?

Can we obtain periodic solutions related to the KAM tori?

Can we study the bifurcations of the invariant tori following the guides
provided by the reduced system and the bifurcation of the relative
equilibria?

Can we establish the existence of lower-dimensional tori?
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KAM Tori of the Three Body Problem

Different Cases of Invariant Tori

All possible relative equilibria that are elliptic

Space Dimension Cases (Inner / Outer Ellipses)
No Circular/No Circular - No Coplanar

TL1,C,G2 2 Circular / No Circular - No Coplanar

Rectilinear / No Circular

No Circular / Circular - No Coplanar

Circular/Circular - No Coplanar

SL1,L2,C 4 No Circular / No Circular - Coplanar

Circular / No Circular - Coplanar

No Circular / Circular - Coplanar

RL1,L2,B 6 Circular / Circular - Coplanar - C 6= |B|

UL1,B,G2 6 Rectilinear / Circular - C 6= |B|

AL1,L2 8 Circular / Circular - Coplanar - C = |B|

Rectilinear /Circular - C = |B|
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KAM Tori of the Three Body Problem

Circular / Circular - Coplanar: G1 = C + G2, C = |N|

H = HKep + εK1 +O(ε2), whereHKep ≡ HKep(L1,L2) is the sum of two
Keplerian Hamiltonians.

We introduce local coordinates of AL1,L2 through:

x1 =
√

2(L1 − G1) cos(g1 ± ν + ν1) y1 =
√

2(L1 − G1) sin(g1 ± ν + ν1)

x2 =
√

2(L2 − G2) cos(g2 ∓ ν − ν1) y2 =
√

2(L2 − G2) sin(g2 ∓ ν − ν1)

x3 = ∓
√

2(C + G2 − G1) cos(ν ± ν1) y3 =
√

2(C + G2 − G1) sin(ν ± ν1)

x4 = ∓
√

2(C ∓ N) sin ν y4 =
√

2(C ∓ N) cos ν

H̄ ≡ H(L1,L2, x1, x2, x3,−, y1, y2, y3,−).
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KAM Tori of the Three Body Problem

Invariant Tori in Hamiltonian Systems with High Order
Proper Degeneracy

h(I, ϕ, ε) = h0(In0) + εm1h1(In1) + . . .+ εmaha(Ina) + εma+1p(I, ϕ, ε), (1)

(I, ϕ) ∈ Rn × Tn are action-angle variables,

ε > 0 is a sufficiently small parameter,

h is real analytic and is considered in a closed region Z × Tn ⊂ Rn × Tn,

a, mj, ni (j = 0, 1, . . . , a) and (i = 0, 1, . . . , a) are positive integers,

n0 ≤ n1 ≤ . . . ≤ na = n, m1 ≤ m2 ≤ . . . ≤ ma = m,

Ini = (I1, . . . , Ini), i = 1, 2, . . . , a,

p depends on ε smoothly,

the intermediate Hamiltonian
h̃(I, ϕ, ε) = h0(In0) + εm1h1(In1) + . . .+ εmaha(Ina) admits a family of
invariant n-tori Tεζ = {ζ} × Tn.
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KAM Tori of the Three Body Problem

Invariant Tori in Hamiltonian Systems with High Order
Proper Degeneracy

Let

Īni = (Ini−1+1, . . . , Ini), with n−1 = 0 and Īn0 = In0 .

Ω =
(
∇Īn0 h0(In0), . . . ,∇Īna hna(Ina)

)
, i = 0, 1, . . . , a.

Condition (A): Rank
{
∂αI Ω(I) : 0 ≤ |α| ≤ s

}
= n, ∀ I ∈ Z.

Theorem (Han, Li and Yi):
Assume the condition (A) and let δ with 0 < δ < 1/5 be given. Then there
exists an ε0 > 0 and a family of Cantor sets Zε ⊂ Z, 0 < ε < ε0, with
|Z \ Zε| = O(εδ/s), such that each ζ ∈ Zε corresponds to a real analytic,
invariant, quasi-periodic n-torus T̄εζ of the Hamiltonian (1) which is slightly
deformed from the intermediate n-torus Tεζ . Moreover, the family
{T̄εζ : ζ ∈ Zε, 0 < ε < ε0} varies Whitney smoothly.
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KAM Tori of the Three Body Problem

Invariant Tori: Circular / Circular - Coplanar - C = |N|

We linearize H̄ around the origin.

This point represents motions in AL1,L2 of the type circular / circular and
coplanar:

xi = ν1/8x̄i yi = ν1/8ȳi

The change is symplectic with multiplier ν−1/4.

The next step is the passage to action-angle coordinates:

x̄i =
√

2Ii sinϕi ȳi =
√

2Ii cosϕi
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KAM Tori of the Three Body Problem

Invariant Tori: Circular / Circular - Coplanar - C = |N|
After averaging over ϕi we end up with:

H̄ε(L1,L2, I1, I2, I3) = h0(L1,L2) + ε4h1(L1,L2)

+ ε5h2(L1,L2, I1, I2, I3)

+ ε6h3(L1,L2, I1, I2, I3) +O(ε7),

whereHKep = h0 and ν = ε4.

Ω ≡ (Ω1, Ω2, Ω3, Ω4, Ω5, Ω6, Ω7, Ω8)

=

(
∂h0

∂L1
,
∂h0

∂L2
,
∂h2

∂I1
,
∂h2

∂I2
,
∂h2

∂I3
,
∂h3

∂I1
,
∂h3

∂I2
,
∂h3

∂I3

)
.

Rank
{
∂αL,I Ω(L, I) : 0 ≤ |α| ≤ s

}
= 5.

There are families of KAM 5-tori around relative equilibria
of type circular / circular - coplanar.
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KAM Tori of the Three Body Problem

Invariant Tori

These invariant tori are a particular case of the tori computed by
Chierchia and Pinzari for the N body problem: [The Planetary N-Body
Problem: Symplectic Foliation, Reductions and Invariant Tori, Invent.
Math. 186 1-77 (2011)] and other papers by them; see also the papers by
J. Féjoz.

We conclude with the persistence of different types of invariant tori,
not only in a circular/circular and coplanar regime, enlarging the known
results by Moser and Jefferys (1966), Robutel (1993), Chierchia and
Pinzari (2011), etc. for N = 3.

There are families of KAM 5-tori around each elliptic equilibrium, even
for the equilibria of rectilinear type.
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KAM Tori of the Three Body Problem

Invariant Tori for the N Body Problem

We plan to apply a similar scheme to the N–body problem with the aim of
finding families KAM tori apart from the ones of circular coplanar type.
After averaging over `1, . . . , `n1 , the reduced space is

AL1,...,LN−1 = S2
L1
× S2

L1
× . . .× S2

LN−1
× S2

LN−1

=
{

(a1,b1, . . . , aN−1,dN−1) ∈ R4 N−1 | |ak|2 = |bk|2 = L2
k ,

C ≤ L1 + . . .+ LN−1

}
.

Next step is the construction of the singular reduced space after reducing the
nodes.
Ingredients:

The Hamiltonian has to be averaged w.r.t `1, . . . , `N1 using Deprit’s
variables.
One needs to apply an inductive process to get the invariants σk’s
and the reduced space SL1,...,LN−1,C
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