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Zero-energy trajectories

Let us consider the conservative dynamical system

(DS) ẍ(t) = ∇V (x(t)), x ∈ R
d \ X , d ≥ 2,

where X is a singular (or collision) set and the potential V satisfies

V ∈ C2(Rd \ X ), V (x) → ∞ as dist(x ,X ) → 0;

the normalized condition 0 = lim inf |x |→∞V (x) < V (x) for every x .

Definition

A (global) parabolic trajectory for (DS) is a solution which:

is defined on R;

is collisionless, i.e. x(t) /∈ X ∀t ∈ R;

has null energy
1

2
|ẋ(t)|2 = V (x(t)), for every t ∈ R.
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Asympthotic Behaviour of Parabolic
Trajectories with Homogeneous Potentials

We assume that V is homogeneous of degree −α, α ∈ (0, 2).

In this setting parabolic trajectories can be equivalently defined as
solutions satisfying

|ẋ(t)| → 0 as t → ±∞.

Furthermore, they enjoy some asymptotic properties, regarding both their
“radial” and “angular” part:

r(t) := |x(t)| > 0 and s(t) := x(t)/|x(t)| ∈ S
d−1.

(A1) There exists γ > 0 such that

lim
t→+∞

V (s(t)) = γ.
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(A2) r(t) → +∞ and ṙ(t) → 0 with a prescribed rate that depends on α

r(t) ∼ (K (α)t)
2

2+α , and ṙ(t) ∼
√

2γ(K (α)t)−
α

2+α , as t → ±∞.

definition

Recall that a central configuration (c.c.) for V is a unitary vector which is
a critical point of the restriction of V to the sphere S

d−1.

(A3) s(t) has infinitesimal distance from the set of c.c. of V as t → ±∞.

Starting from Chazy in 1920, many authors worked on this kind of
motions: Devaney, Pollard, Saari, Marchall, Hulkhover,

Knauf, Chenciner, Maderna, Venturelli, Da Luz]).
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Parabolic Trajectories as Transition Orbits

In particular, whenever the set of c.c. of V is discrete and ξ± are c.c., a
parabolic trajectory x which satisfies

s(t) → ξ±, as t → ±∞,

can be read as a transition orbit between ξ− and ξ+. Since to every
central configuration ξ is associated the zero-energy homothetic motion

x(t) = t
2

2+α ξ,

when the set of c.c. of V is discrete parabolic trajectories are indeed
asympthotic to the justapposition of two homothetic motions.
We address to the following problem:

Under which conditions on V does a global parabolic solution
connecting two different (minimizing) c.c. exist?
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Parabolic Trajectories vs Collision motions

Such estimates are in some sense dual to the ones that describe the
behaviour of trajectories approaching a collision.

If x = rs solves (DS) on (a, t∗) ⊂ R and r(t∗) → 0 as t → t∗, then
(A1) lim

t→+∞
V (s(t)) = γ, for some γ > 0.

(A2)’ As t → t∗

r(t) ∼ (K (α)(t∗ − t))
2

2+α , and ṙ(t) ∼ −
√

2γ(K (α)(t∗ − t))−
α

2+α .

(A3) s(t) has infinitesimal distance from the set of c.c. of V as t → t∗.

Estimates (A1),(A2),(A2)’ and (A3) (or quite similar ones) actually
hold for huger classes of potentials including quasi-homogeneous and
logarithmic ones ([B.-Ferrario-Terracini (2008)]).
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Action Functional

Given any V as above (homogeneous, smooth outside X , positive....),
a < b, and x ∈ H1

(

(a, b);Rd
)

, let us consider the (possibly infinite)
lagrangian action functional with lagrangian L:

A(x) = A([a, b]; x) :=

∫

b

a

L(ẋ(t), x(t)) dt,

L(ẋ , x) :=
1

2
|ẋ |2 + V (x).

The action may be finite on solutions interacting with the singular set.

Admitting their existence, entire parabolic trajectories would have
infinite action.
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Variational Solutions: Free Morse Minimizers

Given two minimal c.c. for V , ξ− and ξ+, ingoing and outgoing
asympthotic directions, we consider the following class of minimizers for A

We say that x ∈ H1
loc(R) is a free-time Morse minimizer of A, if

x(t) /∈ X , ∀t ∈ R;

r(t) → +∞, s(t) → ξ± as t → ±∞;

for every a < b, a′ < b′, and z ∈ H1(a′, b′), there holds

z(a′) = x(a), z(b′) = x(b) =⇒ A([a, b]; x) ≤ A([a′, b′]; z).

A free-time Morse minimizer minimizes all fixed-endpoints problems both
in space and time, hence, by virtue of Maupertuis’ principle, it satisfies the
Euler-Lagrange equation (DS) and it has null energy.

Free-time Morse minimizers are indeed global parabolic trajectories.
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Motivations and Aims

1. Existence of free-time Morse minimizers.

In general a potential V does not need to admit global parabolic
trajectories.

Dealing with the N-body potential, in 2008, E. Maderna and A.

Venturelli proved that parabolic arcs -i.e. defined only on the half
line- asympthotic to a minimal c.c. exist for every starting
configuration. On the other hand, in 2011, A. da Luz and E.

Maderna showed that if no topological constraints are imposed, there
are no global parabolic trajectories.

Parabolic motions are indeed very unstable objects. Their existence
will be related to a specific threshold for a suitable parameter.

We provide a necessary and sufficient condition for the existence of
global parabolic trajectories restricting our analysis to the class of
anisotropic keplerian potentials in any dimension (X = {0}).
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2. Connection with colliding solutions.

In celestial mechanics, and more in general in the theory of singular
hamiltonian systems, parabolic trajectories play a central role and
they are known to carry precious information on the behavior of
solutions near collisions.

In 2011, A. da Luz and E. Maderna proved the absence of entire
parabolic trajectories which are Morse minimal follows from the
absence of collisions in Bolza minimizers (Marchal’s Principle).

For planar anisotropic keplerian potentials we connect the presence
of free Morse minimizers to the presence/absence of collisions to
other classes of problems (fixed-time Bolza problems, periodic
trajectories...) obtained by minimizing the action under topological
constraints.
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Devaney’s Work: the Anisotropic Kepler
Problem in R

2

In 1978 R.L. Devaney (Invent. Math., 45), considered the planar
anisotropic Kepler problem

V (r cos ϑ, r sinϑ) =
U(ϑ)

rα
, ϑ ∈ R, r > 0,

where U is a 2π-periodic function such that U(ϑ) ≥ Umin > 0,
∀ϑ ∈ R.

In this setting parabolic trajectories connecting minima correspond to
saddle-saddle heteroclinic connections for a planar dynamical system
he obtained after a suitable variable change (a variant of McGehee
coordinates).

But generically the unstable manifold at a saddle falls into a sink,
while the stable one emanates from a source, implying that parabolic
motions do no exist.
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Parabolic Trajectories as Phase Transition

The two pictures represent the phase portrait of the planar dynamical system studied by

Devaney with U(ϑ) = 2− cos(2ϑ), when α = 0.5 (at left) or α = 1 (at right). We focus

on the saddles (0, π) and (π, π): from the mutual positions of the heteroclinic departing

from (0, π) and the one ending in (π, π) we deduce that the two vector fields are not

topologically equivalent. Using standard arguments in the theory of structural stability,

we infer the existence, for some ᾱ ∈ (0.5, 1), of a saddle connection between (0, π) and

(π, π).
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Introducing a Bifurcation Parameter

Working in the class of anisotropic Keplerian potentials (not
necessarily planar), we choose as parameter the homogeneity
exponent −α.
To clarify the role of such parameter, it may be helpful to let the
potential vary in a class and look for parabolic orbits as pairs
trajectory-parameter.
More precisely, let us fix ξ+ 6= ξ− in S

d−1 and Vmin > 0, and let us
define the metric spaces

U =











V ∈ C2(Sd−1) :

s ∈ S
d−1 implies V (s) ≥ V (ξ±) = Vmin;

∃δ > 0, µ > 0 such that |s − ξ±| < δ

implies V (s)− V (ξ±) ≥ µ|s − ξ±|2











,

V =
{

(V , α) ∈ C2(Sd−1)× (0, 2) : V ∈ U
}

,

the latter being equipped with the product distance.
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An auxiliary Bolza problem

Fixed V in the described class, the existence of entire parabolic solutions is
related to its behaviour with respect to the following fixed-endpoints
problem:

c(V ) := inf
{

A ([a, b]; x) : a < b, x ∈ H1(a, b), x(a) = ξ−, x(b) = ξ+
}

.

We minimize among path (and their re-parametrization) connecting
ξ− to ξ+.

It turns out not only that c(V ) is achieved, but also that it can be
achieved only by two different kind of paths.
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Inner and Outer Potentials

In := {V : c(V ) is achieved by the juxtaposition
of two homothetic motions, the first connecting
ξ− to the origin and the second the origin to ξ+} ξ−

ξ+

0

Out := {V : c(V ) is achieved by motions which
are uniformly bounded away from the origin }

Bξ−

ξ+

The sets In and Out enjoy the following properties:

In ∩Out = ∅, In ∪Out = V;

In is closed;

Out is open.
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Structure Theorem

The role of the homogeneity parameter can be now clarified by the
following property. Let Π := ∂In ∩ ∂Out.

Lemma (Separation Property)

There exists an open nonempty set Σ ⊂ U , and a continuous function
ᾱ : Σ → (0, 2) such that

Π = {(V , ᾱ(V )) : V ∈ Σ} .

We can now characterize the set of potentials admitting parabolic Morse
minimizers as the graph of the above function.

Main Theorem.

V ∈ V admits a parabolic Morse minimizer ⇐⇒ V ∈ Π.
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Back to R
2: Topological Constraints

Let d = 2 and U(ϑ) := V (cosϑ, sinϑ).

For the sake of simplicity, let U be a positive, C2 Morse function such
that every local minimum is indeed a global one.

Since R
2 \ {0} is not simply connected, we can search for minimizers

with respect to a given homotopy class:

connecting ξ− and ξ+

with h ∈ Z rotations around 0
⇐⇒

connecting ϑ− := arg ξ−,
ϑ+ := arg ξ+ + 2hπ
in the universal covering

Motivated by this, we introduce the set

Θ := {ϑ ∈ R : ϑ is a (non-degenerate global) minimum for U} .
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The Parabolic Threshold

Theorem

Let ϑ−, ϑ+ ∈ Θ, ϑ− 6= ϑ+; then

1. there exists at most one ᾱ ∈ (0, 2) such that V = (U, α) admits a

corresponding parabolic trajectory with asympthotic directions ϑ−

and ϑ+ if and only if α = ᾱ;

2. every parabolic trajectory is indeed a free-time Morse minimizer.

Furthermore:

3. if |ϑ+ − ϑ−| > π then there exists exactly one ᾱ.

While the first two assertions follow from the Main Theorem, the
third one is peculiar for the planar case.

In order to guarantee the existence of ᾱ, we force the Bolza problem
to have a collision (i.e. the potential to be In) when α is small.
Increasing α necessarely the potential becomes Out, crossing the
boundary Π.
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Absence of Collisions for Bolza Problems
with Topological Constraint

When a topological constraint is imposed, the Marchal’s averaged
variation argument does not work, and other devices has to be
designed to avoid the occurrence of collisions.

Gordon’s Theorem is a first result in this direction: The keplerian

ellipses minimize the action among loops having nontrivial winding

number about the origin.

Theorem

Given any integer k 6= 0 and period T > 0, if

α > ᾱ(U, ϑ∗, ϑ∗ + 2kπ) , for every minimum ϑ∗ of U,

then there exists an action minimizing collisionless T–periodic trajectory

winding k times around zero.
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Construction of Parabolic Trajectories

To construct Morse minimizers of parabolic type, we will first consider
analogous problems on bounded intervals (Bolza problems), and then
pass to the limit.

This procedure may fail for two main reasons: sequences of
approximating trajectories may either converge to the singularity, or
escape to infinity.

This naturally leads to introduce some constraints and to study the
constrained minimization problem

m = m(ε, x1, x2) := inf
x∈Γ

A(x) where Γ :=
⋃

T>0

ΓT , and

ΓT :=

{

x ∈ H1(−T ,T ) : x(−T ) = x1, x(T ) = x2, min
t∈[−T ,T ]

|x(t)| = ε

}

,

where ε > 0 and x1, x2 ∈ R
d \ Bε(0) are fixed.
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This procedure may fail for two main reasons: sequences of
approximating trajectories may either converge to the singularity, or
escape to infinity.

This naturally leads to introduce some constraints and to study the
constrained minimization problem

m = m(ε, x1, x2) := inf
x∈Γ

A(x) where Γ :=
⋃

T>0

ΓT , and

ΓT :=

{

x ∈ H1(−T ,T ) : x(−T ) = x1, x(T ) = x2, min
t∈[−T ,T ]

|x(t)| = ε

}

,

where ε > 0 and x1, x2 ∈ R
d \ Bε(0) are fixed.
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Properties of Bolza Constrained Minimizers

• If x̄ = r̄ s̄ ∈ Γ
T̄

is a constrained minimizer and r̄(t) > ε for t ∈ (a, b),
then

¨̄x(t) = ∇V (x̄(t)) and
1

2
| ˙̄x(t)| = V (x̄(t)), for every t ∈ (a, b).

• If x̄ achieves m and it does interact with the constraint, then there
exist t∗ ≤ t∗∗ such that

r̄(t) = ε ⇔ t ∈ [t∗, t∗∗];
t ∈ (−T , t∗) ⇒ ˙̄r(t) < 0;
t ∈ (t∗∗,T ) ⇒ ˙̄r(t) > 0;

|x | ≤ ε

x1

x2

x̄(t∗∗)
x̄(t∗)

t ∈ (t∗, t∗∗) ⇒











¨̄x(t) = ∇TV (x̄(t))−
1

ε2
| ˙̄x(t)|2x̄(t),

1

2
| ˙̄x(t)| = V (x̄(t)).

⇒ If x̄ achieves m then it may be not regular only in t∗ and t∗∗.
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Interaction with the Constraint

Proposition

If x̄ achieves m, then one of the following situations occurs:

(a) t∗ < t∗∗ and x̄ ∈ C1(−T̄ , T̄ );

(b) t∗ = t∗∗ and x̄ ∈ C1(−T̄ , T̄ );

(c) t∗ = t∗∗ and ˙̄x(t−∗ ) 6= ˙̄x(t+∗ ); in such a case x̄ undergoes a radial
reflection, that is ˙̄r(t−∗ ) = − ˙̄r(t+∗ ) 6= 0 and ˙̄s(t−∗ ) = ˙̄s(t+∗ ).

⇒ We can classify Bolza minimizers with respect to the discontinuity of
the quantities x and ẋ on the constraint.

Definition

Given a constrained Bolza minimizer x = rs we define :

∆pos(x) := |s(t∗∗)− s(t∗)| , ∆vel(x) := εα/2
[

ṙ(t+∗∗)− ṙ(t−∗ )
]

respectively as the normalized position-jump and velocity-jump of x .
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x1

x2

x(t∗)

x(t∗∗)

ϑ

(a) t∗ < t∗∗, x̄ ∈ C1,
∆pos > 0, ∆vel = 0,
x is position-jumping

x1

x2

x(t∗)
(b) t∗ = t∗∗, x̄ ∈ C1,
∆pos = 0, ∆vel = 0,
x is parabolic

x1

x2

x(t∗)ϑ

(c) t∗ = t∗∗, ˙̄x(t
−
∗ ) 6= ˙̄x(t+∗ ),

∆pos = 0, ∆vel > 0,
x is velocity-jumping
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From Bolza to Morse Minimizers

Definition

We say that x ∈ H1
loc(R) is an ε-constrained Morse minimizer if

mint |x(t)| = ε;

|x(t)| → +∞ and
x(t)

|x(t)|
→ ξ±, as t → ±∞;

for every a < b and T > 0, and for every z ∈ H1(−T ,T ), with
mint∈[−T ,T ] |z(t)| = mint∈[a,b] |x(t)|, there holds

z(−T ) = x(a), z(T ) = x(b) =⇒ A([a, b]; x) ≤ A([−T ,T ]; z).

Proposition

M = {ε-constrained Morse minimizer} 6= ∅.

We argue by approximation, solving the Bolza problem with x1 = Rξ− and
x2 = Rξ+ and then letting R → +∞.
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Constrained Minimizers have the Same Jumps

Since by definition any restriction of a Morse minimizer is indeed a
Bolza one (with the appropriate constraint), we have that also Morse
minimizers can be classified according to their jumps.

In general, for any fixed potential V , there is no reason to expect
uniqueness for the Morse minimizers.

Nevertheless, it is possible to show that

Proposition

Let V ∈ V be fixed and let x , x̂ ∈ M. Then

∆pos(x) = ∆pos(x̂) and ∆vel(x) = ∆vel(x̂).

We can then define

∆pos(V ) := ∆pos(x), ∀x ∈ M

∆vel(V ) := ∆vel(x), ∀x ∈ M
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Looking for Free Parabolic Minimizers

Constrained Morse minimizers for potentials in the set

{V : ∆pos(V ) = ∆vel(V ) = 0}

are indeed solutions for ẍ = ∇V (x) on the whole real line. Such potentials
are then good candidates to belong to the set Π.
At this moment we do not know:

if such set is not empty;

whether it contains free parabolic minimizers.

These questions will find an answer after an investigation on the relation
between the set In/Out and the classification of potentials with respect to
their jumps.
We recall that In and Out were defined in terms of the Bolza level

c(V ) := inf
{

A ([a, b]; x) : a < b, x ∈ H1(a, b), x(a) = ξ−, x(b) = ξ+
}

.
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Conclusion of the proof

Key Equivalences

V ∈ In ⇐⇒ ∆vel(V ) = 0, V ∈ Out ⇐⇒ ∆vel(V ) > 0.

We can then deduce that:
α1 < α2 implies:

∆pos(V , α2) > 0 =⇒ ∆pos(V , α1) > 0;

∆vel(V , α1) > 0 =⇒ ∆vel(V , α2) > 0;

∆pos(V , α1) > 0 and ∆vel(V , α2) > 0

=⇒ ∆pos(V , ᾱ) = ∆vel(V , ᾱ) = 0,

for a unique ᾱ ∈ (α1, α2).
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