
 Typical theory assumptions N-body Practice:

Complete

Compact phase 
space

All periodic orbits 
non-degenerate

Incomplete

Non-compact 
phase space

All periodic 
orbits degenerate

( Singularities: rij → 0)

(rij →∞)

( Symmetries)

FLOWS
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Goal: Make the N-body flow 

(A) Complete:  remove collision singularities!
Regularize binaries. Blow up triples (& higher?)

(B) Symmetry-free: remove symmetries by symplectic reduction.

(C)  Live on a compact space:  
add boundaries at the ends corresponding to escape.

Joint w Rick Moeckel. U of 
Minn.

(A) and (B): done! for the planar 3 body problem. 
Partial progress: spatial 3 body problem

 & planar 4 body problem

(C): open
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Partial History

(B): Reduction.  Lagrange [1772] d arbitrary, N = 3.

(A): Regularization method d=2. Levi-Civita [1921] 

(A) and (B)! Lemaitre[1954]: d=2, N=3; 
                          & d= 3, N=3 but w/ coord. singularities at collinearity

(B): Regularization, N arbitrary (& democratic). Heggie [1970]. d=2 & 3

(A): Regularization method d=3. Kuustanheimo-Steifel [1965]

(A): Blow-up Method. McGehee [1974]

for binary collisions. Initially: perturbed Kepler

for triple and higher collisions. 

(C): Partial compactification of  infinity: C. Robinson [1984]

(B): Symplectic Reduction.  Meyer; Marsden-Weinstein [1974]

(d, N) = (dim. of ambient space, Number of bodies)
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(d, N) = (dim. of ambient space, Number of bodies)Partial
Results: 

(2, 3): planar 3-body problem: (A) and (B) Done. (arXiv: (RM)^2) 
regularized reduced phase space = T∗(CP1)× T ∗([0,∞))

regularized shape sphere size r

r2 = I =
∑

mimjr2
ij∑

mi

symp. form: `twisted’ when ang. mom. nonzero

(2, 4): planar 4-body problem: (A) and (B) in progress (looks good) 

regularized reduced phase space = T∗(K3)× T ∗([0,∞))

regularized shape space size r
symp. form: `twisted’ when ang. mom. nonzero

(3, 3): spatial 3-body problem:  in progress (problematic) 

regularized reduced phase space= T∗(CP2)× T ∗([0,∞))×f O

two-sphere bundle over 
reg. shape space

fiber:instantaneous
Euler rigid body

fiber product
over reg. shape

space

size rregularized shape space
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z2 = q

q̈ =
−βq

|q|3

(A):Levi-Civita Regularization. d = 2

2:1 branched cover

slow time down as approach collision q=0

aa

cut open and unfold

=⇒ d2z

dτ2
= HKz

d

dτ
= |q| d

dt

HK =
1
2

|q̇|2 − 1
|q| =

−1
2a

harm. oscillator!Kepler:

; q ∈ C = R2
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q = z2 =⇒ dq = 2zdz

= 2(
−1
2a

+
1

|z|2 )4|z|2|dz|2

= 2(
−4|z|2

2a
+ 4)|dz|2

= 2(E − ω2|z|2

2
)|dz|2

= ds2
JM,Harm

E = 4, ω =
2√
a

Derivation of L-C  using Jacobi-Maupertuis [J-M]

ds2
JM = 2(H − V )ds2

Kin

ds2
JM,Kep = 2(

−1
2a

+
1
|q| )|dq|2

so:

⇐⇒ solutions to Newton’s eq. w Energy H

⇐⇒ Kepler. with Energy −1
2a

:L.C. var. change

Monday, January 14, 2013



q2

1

d

dτ
= r12r23r31

d

dt

Q12 + Q23 + Q31 = 0

regularizes all binary collisions ! Q12

Q23

Q31
q1

q3

Qij = qi − qj = −Qji

z2
12 + z2

23 + z2
31 = 0=⇒

{[z12, z23, z31] ∈ CP2 : z2
12 + z2

23 + z2
31 = 0}Regularized shape space=

standard shape sphere= 

a conic in the complex projective plane

{[Q12, Q23, Q31] ∈ CP2 : Q12 + Q23 + Q31 = 0}

a complex projective line in the complex projective plane

S2 = CP1 =

z2
ij = Qij

(*) recall: homogeneous coordinates 
on complex projective n-space

[Z0, Z1, . . . , Zn] = [λZ0, λZ1, . . . ,λZn],
λ ∈ C, λ "= 0, (Z0, Z1, . . . , Zn) "= (0, 0, . . . , 0)

Qij = z2
ij

(2,3) CASE
three Levi-Civita squaring maps: 

& the time change:

(A): reg. 

(B): reduce

(*) vector      homogeneous coordinates implements reduc. by rotation & scaling
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Combine  w/

(2,3) CASE

Well-known: conic in CP2 ∼= CP1

Explicit map: CP1 = {[x1, x2]}→ Our Conic = {z2
12 + z2

31 + z2
23 = 0} by:

z12 = 2ix1x2 z31 = x2
1 + x2

2 z23 = i(x2
1 − x2

2)

So CP1 = regularized shape sphere. To visualize...

Affine coordinates: v =
x2

x1
∈ C{∞}

or Stereo. projection: c = stereo(x1, x2) ∈ S2 ⊂ R3

Use binary collisions as landmarks:

0 = r12 = |Q12| = |z2
12| = |2x1x2|2 =⇒ [x1, x2] = [1, 0] or [0, 1]

0 = r31 = |Q31| = |z2
31| = |x2

1 + x2
2|2 =⇒ [x1, x2] = [1, i] or [0,−i]

0 = r23 = |Q23| = |z2
23| = |x2

1 − x2
2|2 =⇒ [x1, x2] = [1, 1] or [0,−1]
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Regularized Shape Sphere -- round version after stereographic projection

Octahedral symmetry -- imagine an octahedron inflated to become round.

Coordinates (c1, c2, c3) ∈ R3.
Can choose projection so

ρ12 = c21 + c22

ρ31 = c23 + c21

ρ23 = c22 + c23

Binary collisions are on coordinate axes.

ρ12 = 0 =⇒ c1 = c2 = 0.

Collinear shapes on coordinate planes.

ρ12 = ρ31 + ρ23 =⇒ c3 = 0.

ρij = rij/
√

I

(2,3) CASE
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Lemaitre’s Conformal Map: φ : C3 → C3 Xij = z2ij

induces
φpr : P (C) → P (W)

between regularized to unregularized shape spheres.

•four-to-one cover branched over the binary collisions
•each octant of regularized sphere maps to a hemisphere
•behaves like the squaring map near the six regularized binary collision points
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Some  Three-Body Orbits in the Regularized Reduced Configuration 

Figure-eight orbit

The orbit in regularized shape space is remarkably simple!
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Some  Three-Body Orbits in the Regularized Reduced Configuration 

Figure-eight orbit

The orbit in regularized shape space is remarkably simple!
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vs orbits plotted in usual reduced (shape) space
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vs orbits plotted in usual reduced (shape) space
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Regularizing map induces 4 = 22 new symmetries

which all cover the identity on original space, since z2
ij = qij

σ : zij !→ ±zij

z

σ(z)

.

.

Interior binary collisions
no longer excluded 

for (J-M) minimizers !

fixed points of σ: binary collision pair!

=⇒ variants of brake or italian symmetry: σ(z(−t)) = z(t)
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 (1) Reduce by translation

 (2)  Separate size and shape

 (3) Reduce by rotation : symp. reduction + homogeneous coordinates
  requires fixing of the total angular momentum

  (4) Compute the (co)metric [kinetic energy]in new coordinates
      *** hardest work here***

  (5)L-C regularize (squaring map) these homogeneous coordinates
    requires fixing of the the total energy

   (6)  McGehee blow-up

Guide to computing the reduced, regularize,
 blown-up  dynamical equations       

(*)

(*)

(*)
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 (1) Reduce by translation
 

H(q, p) = K(p)− U(q) =
(

|p1|2

2m1
+ . . .

)
−

(
m1m2

|q1 − q2| + . . .

)

= K(P )− U(Q) =
(

|
∑

P1j |2

2m1
+ . . .

)
−

(
m1m2

|Q12| + . . .

)

Relative position coordinates

Qij = qi − qj = −Qji :

components of linear map L : CN → C(N
2 ), L(q) = Q.

with image(L) ∼=(config. space)/(translations).

 (2): Separate  size and shape: 
 

∼= CN−1

dual map L∗: components pi =
∑

j Pij

Shape: [Q] = [Q12, . . . , QN−1,N ] ∈ CPN−2 ⊂ CP(N
2 )

size r = |Q| with r2 = I = 〈Q, Q〉 =
P

mimj |Qij |2P
mi

 [d = 2]
 

Qij + Qjk + Qki = 0
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(3): Reduce by rotation

ANGULAR MOMENTUMSIZE MOMENTUM

= Φ(Q, P )

scaling and rotation:

Qij !→ kQij , Pij !→
1
k̄

Pij , k ∈ C \ 0.

has momentum map: ∑
P̄ijQij = pr + i µ

CONNECTION

 [d = 2]
 

Momentum shift trick:
Take particular solution Pij = Γij(Q) to Φ(Q, P ) = 1

Substitute
Pij = (pr − iµ)Γij + Yij , Φ(Q, Y ) = 0

Yields general solution P to

Φ(Q, P ) = pr + iµ
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(P \ {0})/S1 ∼= R+ × R× T ∗CPN−2 × R
r pr [Q; Y] µ

Defines map (Q, Y )→ (Q, (pr − iµ)Γ(Q) + Y )
from 0-level of momentum map to level pr + iµ

inducing isomorphism

where P = (Q, P ) phase space (∼= T ∗CN−1)

Reduce by rotation... ct’d..

(4): Compute kinetic energy in new coord (hard work)
 & so the total energy

FUBINI-STUDY
U =

1
r

∑ mimj

ρij

ρij = |Qij |
r = normalized distance

Kµ =
1
2
(p2

r +
1
r2

Kshape([Q, Y ]) +
µ2

r2
)

Hµ = Kµ − U

WARNING: Eqns NOT canonical. Curvature term:

FUBINI-STUDY

ANG. MOMENTUM

)

 [d = 2]
 

Ω = dΓ
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 (5): Apply Levi-Civita squaring transformation:

z2
ij = Qij

d

dτ
= f

d

dt f =
∏

i<j

ρij

Use Poincaré trick for time reparam. by factor f at const. energy H = E

, 

, OR 

, 

H̃µ = f(Hµ − E)

f =
∏

i<j

ρij/(
∑

ρij)(
N
2 ) =

∏

i<j

rij/(
∑

rij)(
N
2 ) , OR... 

fU = 1
r

∑
ij mimj

∏
k! !=ij ρk!

ρij = 0

 Key to non-singularity at binary collisons:

 not singular at simple  binary collisons:

 [d = 2]
 

(r, pr, [Z, η]) !→ (r, pr, [Q, P ]) induced by [Z] !→ [Q];Qij = Z2
ij

K ⊂ CP(N
2 ) → CPN−2 ⊂ CP(N

2 )

triangle constraintspulled back triangle constraints
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 (6): McGehee blow-up: planar 3 body; eg

MAG. TERM

r′ = λ(z)vr

v′ = −1
2
λ(z)v2 + 2K̃ −W (z)

µ̃′ = −1
2
λ(z)vµ̃

z′ = (1 + |z|2)2α
α′ = λ(z)vα− K̃z + Wz + rhλz(z)− 2iµ̃λ(z)α

(1)

kinetic : 2K̃ = λv2 + λµ̃2 + 1
2 (1 + |z|2)2|α|2.

potential W (z) = r̃
(1+|z|2)6 (m1m2ρ̃31ρ̃23 + m1m3ρ̃12ρ̃23 + m2m3ρ̃12ρ̃31)

normalized distances: ρij = rij/r = ρ̃ij/r̃,

ρ̃12 = 4|z|2, ρ̃31 = |1 + z2|2, ρ̃23 = |1− z2|2

r̃2 = Ĩ =
m1m2ρ̃2

12 + m1m3ρ̃2
31 + m2m3ρ̃2

23

m1 + m2 + m3

McGehee time τ . d
dτ = ′ = r

3
2 d

dt (*)
Rescaled size momenta v = pr

r1/2 .
Rescaled reg. shape momenta α = r1/2Y .
Reg. shape variables [Z] unchanged. z = x2/x1 affine shape coord.

(*) alternative time scaling: f(r) =
(

r
r+1

) 3
2
, better behavior for large r

Normalized ang. mom. µ̃ := f(r)
r2 µ

λ = 4Mm1m2m3r12r31r23(r12+r31+r23)
I2 : conformal factor
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r12 = 0 r13 = 0

CP2

next talk: complex blowup for triple collisions

planar 4-body

r23 = 0

123 collision

6 double collision lines. 
 2:1 branched cover each.
result: 32:1 branched cover of 
-inverse image of each of the 
4 double collision points: a cone point
COMPLEX  blow up (a la alg. geom).
result: K3 = reg. reduced shape space  
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J-M remarks.

d = 2, N = 3, J = 0, H = −h < 0, m1 = m2 = m3 :

=⇒ J-M formulation takes form (roughly):

ds2
JM,reg. = 2(−h(ẑ2

12|ẑ23|2|ẑ31|2) + 1
Mr2 (|ẑ23|2|ẑ13|2 + |ẑ12|2|ẑ2

32 + |ẑ21|2|ẑ31|2...))ds2

with ẑij = zij/
√

|z12|2 + |z23
2

+ |z13|2

A.

B. Amusing toy case to see how a
regularized J-M solution can minimize
while its unregularized projection does not

Kepler: 0-energy: i.e PARABOLIC

ds2
JM =

1
r

|dq|2 , q = z2 =⇒ dq = 2zdq, r = |q|2

ds2
JM,reg = 4|dz|2 : EUCLIDEAN!
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Polar coordinates: q = reiθ

ds2
JM =

1
r
(dr2 + r2dθ2) = (

dr√
r
)2 + rdθ2

Change Variables: u = 1
2r1/2

=⇒ ds2
JM = du2 + 4u2dθ2

Again locally Euclidean, but origin a cone point!
Opening cone angle : 4π
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(d, N) = (3,3): partial progress

(d, N) = (dim. of ambient space, Number of bodies)

P(d, n) = regularized, reduced, blown-up phase space

= T ∗(X(d, n))× T ∗([0,∞))×f O

X(d, n) = regularized shape space; maybe blown up

; I =
∑

mimjr2
ij∑

mi

d = 2 =⇒ O = ∅

X(2, 3) = CP1

X(2, 4) = K3

P(3, 3) = T ∗(CP2)× T ∗([0,∞))×f O
O →CP1

CP2with

[0,∞) = size space parameter
√

I where

Partial
Results: 

OVERFLOW
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