Typical theory assumptions N -body Practice:

Complete

Compact phase
space

All periodic orbits non-degenerate
(Singularities: $r_{i j} \rightarrow 0$)

Incomplete

Non-compact
phase space

$$
\left(r_{i j} \rightarrow \infty\right)
$$

All periodic
orbits degenerate
(Symmetries)

Goal: Make the N-body flow

(A) Complete: remove collision singularities!

Regularize binaries. Blow up triples (\& higher?)
(B) Symmetry-free: remove symmetries by symplectic reduction.
(C) Live on a compact space:
add boundaries at the ends corresponding to escape.
(A) and (B) : done! for the planar 3 body problem.
Partial progress: spatial 3 body problem
\& planar 4 body problem
(C): open

Joint w Rick Moeckel. U of Minn.

Partial History

$$
(\mathrm{d}, \mathrm{~N})=(\text { dim. of ambient space, Number of bodies })
$$

(B): Reduction. Lagrange [1772] d arbitrary, $\mathrm{N}=3$.
(B): Symplectic Reduction. Meyer; Marsden-Weinstein [1974]
(A): Regularization method d=2. Levi-Civita [192I] for binary collisions. Initially: perturbed Kepler
(A) and (B)! Lemaitre[1954]: $\mathrm{d}=2, \mathrm{~N}=3$; \& $d=3, N=3$ but w/ coord. singularities at collinearity
(A): Regularization method $\mathrm{d}=3$. Kuustanheimo-Steifel [1965]
(B): Regularization, N arbitrary (\& democratic). Heggie [1970]. $\mathrm{d}=2$ \& 3
(A): Blow-up Method. McGehee [1974] for triple and higher collisions.
(C): Partial compactification of infinity: C. Robinson [1984]

Partial Results:
$(\mathrm{d}, \mathrm{N})=($ dim. of ambient space, Number of bodies)
(2, 3): planar 3-body problem: (A) and (B) Done. (arXiv: (RM)^2) regularized reduced phase space $=\mathrm{T}^{*}\left(\mathbb{C P}^{1}\right) \times T^{*}([0, \infty))$
regularized shape sphere
symp. form: 'twisted' when ang. mom. nonzero
(2, 4): planar 4-body problem: (A) and (B) in progress (looks good)
regularized reduced phase space $=\mathrm{T}^{*}(K 3) \times T^{*}([0, \infty))$

 size r
symp. form: 'twisted' when ang. mom. nonzero
$(3,3)$: spatial 3 -body problem: in progress (problematic) regularized reduced phase space $=\mathrm{T}^{*}\left(\mathbb{C P}^{2}\right) \times T^{*}([0, \infty)) \times{ }_{f} \mathcal{O}$

(A):Levi-Civita Regularization. $\mathrm{d}=2$

$H_{K}=\frac{1}{2}|\dot{q}|^{2}-\frac{1}{|q|}=\frac{-1}{2 a} \quad ; q \in \mathbb{C}=\mathbb{R}^{2}$

Kepler: $\quad \ddot{q}=\frac{-\beta q}{|q|^{3}}$

$$
z^{2}=q
$$

2:I branched cover

$$
\frac{d}{d \tau}=|q| \frac{d}{d t}
$$

slow time down as approach collision $\mathrm{q}=0$
$\Longrightarrow \frac{d^{2} z}{d \tau^{2}}=H_{K} z$ harm. oscillator!

Derivation of L-C using Jacobi-Maupertuis [J-M]

$$
d s_{J M}^{2}=2(H-V) d s_{K i n}^{2} \Longleftrightarrow \text { solutions to Newton's eq. w Energy } H
$$

so:

$$
\begin{aligned}
d s_{J M, \text { Kep }}^{2}= & 2\left(\frac{-1}{2 a}+\frac{1}{|q|}\right)|d q|^{2} \quad \Longleftrightarrow \text { Kepler. with Energy } \frac{-1}{2 a} \\
& =2\left(\frac{-1}{2 a}+\frac{1}{|z|^{2}}\right) 4|z|^{2}|d z|^{2} \\
& =2\left(\frac{-4|z|^{2}}{2 a}+4\right)|d z|^{2} \\
& =2\left(E-\frac{\omega^{2}|z|^{2}}{2}\right)|d z|^{2} \\
& =d s_{J M, \text { Harm }}^{2}
\end{aligned}
$$

$(2,3)$ CASE

three Levi-Civita squaring maps:

$$
z_{i j}^{2}=Q_{i j}
$$

\& the time change:
(A): reg.
regularizes all binary collisions !

$$
\begin{aligned}
& Q_{12}+Q_{23}+Q_{31}=0 \\
\Longrightarrow \quad & z_{12}^{2}+z_{23}^{2}+z_{31}^{2}=0
\end{aligned}
$$

(B): reduce

Regularized shape space $=\left\{\left[z_{12}, z_{23}, z_{31}\right] \in \mathbb{C P}^{2}: z_{12}^{2}+z_{23}^{2}+z_{31}^{2}=0\right\}$
a conic in the complex projective plane
$\begin{aligned} & \\ & S^{2}=\stackrel{\mathbb{C P}^{1}}{\downarrow}= \begin{array}{l}\text { standard shape sphere }=\left\{\left[Q_{12}, Q_{23}, Q_{31}\right] \in \mathbb{C P}^{2}: Q_{12}+\right. \\ \\ \\ \end{array} \begin{array}{l}Q_{i j}=z_{i j}^{2}\end{array} \\ & \text { a complex projective line in the complex projective plane }\end{aligned}$
(*) recall: homogeneous coordinates on complex projective n-space

$$
\begin{gathered}
{\left[Z_{0}, Z_{1}, \ldots, Z_{n}\right]=\left[\lambda Z_{0}, \lambda Z_{1}, \ldots, \lambda Z_{n}\right]} \\
\lambda \in \mathbb{C}, \lambda \neq 0,\left(Z_{0}, Z_{1}, \ldots, Z_{n}\right) \neq(0,0, \ldots, 0
\end{gathered}
$$

${ }^{*}$) vector \rightarrow homogeneous coordinates implements reduc. by rotation \& scaling

Well-known: conic in $\mathbb{C P}^{2} \cong \mathbb{C P}^{1}$
Explicit map: $\mathbb{C P}^{1}=\left\{\left[x_{1}, x_{2}\right]\right\} \rightarrow$ Our Conic $=\left\{z_{12}^{2}+z_{31}^{2}+z_{23}^{2}=0\right\}$ by:

$$
z_{12}=2 i x_{1} x_{2} \quad z_{31}=x_{1}^{2}+x_{2}^{2} \quad z_{23}=i\left(x_{1}^{2}-x_{2}^{2}\right)
$$

So $\mathbb{C P}^{1}=$ regularized shape sphere. To visualize...
Combine w/

$$
\begin{aligned}
\text { Affine coordinates: } & v & =\frac{x_{2}}{x_{1}} \in \mathbb{C}\{\infty\} \\
\text { or Stereo. projection: } & & c=\operatorname{stereo}\left(x_{1}, x_{2}\right) \in S^{2} \subset \mathbb{R}^{3}
\end{aligned}
$$

Use binary collisions as landmarks:

$$
\begin{aligned}
& 0=r_{12}=\left|Q_{12}\right|=\left|z_{12}^{2}\right|=\left|2 x_{1} x_{2}\right|^{2} \Longrightarrow\left[x_{1}, x_{2}\right]=[1,0] \text { or }[0,1] \\
& 0=r_{31}=\left|Q_{31}\right|=\left|z_{31}^{2}\right|=\left|x_{1}^{2}+x_{2}^{2}\right|^{2} \Longrightarrow\left[x_{1}, x_{2}\right]=[1, i] \text { or }[0,-i] \\
& 0=r_{23}=\left|Q_{23}\right|=\left|z_{23}^{2}\right|=\left|x_{1}^{2}-x_{2}^{2}\right|^{2} \Longrightarrow\left[x_{1}, x_{2}\right]=[1,1] \text { or }[0,-1]
\end{aligned}
$$

Regularized Shape Sphere -- round version after stereographic projection

Coordinates $\left(c_{1}, c_{2}, c_{3}\right) \in \mathbb{R}^{3}$.
Can choose projection so

$$
\begin{aligned}
& \rho_{12}=c_{1}^{2}+c_{2}^{2} \\
& \rho_{31}=c_{3}^{2}+c_{1}^{2} \\
& \rho_{23}=c_{2}^{2}+c_{3}^{2}
\end{aligned}
$$

Binary collisions are on coordinate axes.

$$
\rho_{12}=0 \Longrightarrow c_{1}=c_{2}=0
$$

Collinear shapes on coordinate planes.

$$
\rho_{12}=\rho_{31}+\rho_{23} \Longrightarrow c_{3}=0
$$

Octahedral symmetry -- imagine an octahedron inflated to become round.

Lemaitre's Conformal Map: $\quad \phi: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3} \quad X_{i j}=z_{i j}^{2}$ induces

$$
\phi_{p r}: P(\mathcal{C}) \rightarrow P(\mathcal{W})
$$

between regularized to unregularized shape spheres.

- four-to-one cover branched over the binary collisions
- each octant of regularized sphere maps to a hemisphere
- behaves like the squaring map near the six regularized binary collision points

Some Three-Body Orbits in the Regularized Reduced Configuration

Figure-eight orbit

Some Three-Body Orbits in the Regularized Reduced Configuration

Figure-eight orbit

vs orbits plotted in usual reduced (shape) space

vs orbits plotted in usual reduced (shape) space

Regularizing map induces $4=2^{2}$ new symmetries

$$
\sigma: z_{i j} \mapsto \pm z_{i j}
$$

which all cover the identity on original space, since $z_{i j}^{2}=q_{i j}$
\Longrightarrow variants of brake or italian symmetry: $\sigma(z(-t))=z(t)$

Interior binary collisions no longer excluded for (J-M) minimizers !
fixed points of σ : binary collision pair!

Guide to computing the reduced, regularize, blown-up dynamical equations

(*) (1) Reduce by translation
(*) (2) Separate size and shape
(3) Reduce by rotation : symp. reduction + homogeneous coordinates requires fixing of the total angular momentum
(4) Compute the (co)metric [kinetic energy]in new coordinates
*** hardest work here***
$\left(^{*}\right)(5) \mathrm{L}-\mathrm{C}$ regularize (squaring map) these homogeneous coordinates requires fixing of the the total energy
(6) McGehee blow-up
(1) Reduce by translation

$$
[d=2]
$$

Relative position coordinates

$$
Q_{i j}=q_{i}-q_{j}=-Q_{j i}:
$$

components of linear map $L: \mathbb{C}^{N} \rightarrow \mathbb{C}^{\binom{N}{2}}, L(q)=Q$.
with image $(\mathrm{L}) \cong($ config. space $) /($ translations $) . \cong \mathbb{C}^{N-1}$ dual map L^{*} : components $p_{i}=\sum_{j} P_{i j}$

$$
\begin{aligned}
H(q, p) & =K(p)-U(q)=\left(\frac{\left|p_{1}\right|^{2}}{2 m_{1}}+\ldots\right)-\left(\frac{m_{1} m_{2}}{\left|q_{1}-q_{2}\right|}+\ldots\right) \\
& =K(P)-U(Q)=\left(\frac{\left|\sum P_{1 j}\right|^{2}}{2 m_{1}}+\ldots\right)-\left(\frac{m_{1} m_{2}}{\left|Q_{12}\right|}+\ldots\right)
\end{aligned}
$$

(2): Separate size and shape:
size $r=|Q|$ with $r^{2}=I=\langle Q, Q\rangle=\frac{\sum m_{i} m_{j}\left|Q_{i j}\right|^{2}}{\sum m_{i}}$
Shape: $[Q]=\left[Q_{12}, \ldots, Q_{N-1, N}\right] \in \mathbb{C P}^{N-2} \subset \mathbb{C P}^{\binom{N}{2}}$

(3): Reduce by rotation scaling and rotation:

$$
Q_{i j} \mapsto k Q_{i j}, P_{i j} \mapsto \frac{1}{\bar{k}} P_{i j}, \quad k \in \mathbb{C} \backslash 0 .
$$

has momentum map:

$$
\sum \bar{P}_{i j} Q_{i j}=p_{r}+i \mu \quad=\Phi(Q, P)
$$

SIZE MOMENTUM

ANGULAR MOMENTUM

Momentum shift trick:
Take particular solution $P_{i j}=\Gamma_{i j}(Q)$ to $\Phi(Q, P)=1$

Substitute

$$
P_{i j}=\left(p_{r}-i \mu\right) \Gamma_{i j}+Y_{i j}, \quad \Phi(Q, Y)=0
$$

Yields general solution P to

$$
\Phi(Q, P)=p_{r}+i \mu
$$

Reduce by rotation... ct'd..
Defines map $(Q, Y) \rightarrow\left(Q,\left(p_{r}-i \mu\right) \Gamma(Q)+Y\right)$

$$
[d=2]
$$

from 0 -level of momentum map to level $p_{r}+i \mu$
inducing isomorphism

$$
(\mathcal{P} \backslash\{0\}) / S^{1} \cong \mathbb{R}^{+} \times \mathbb{R} \times T^{*} \mathbb{C P}^{N-2} \times \mathbb{R}
$$

$$
\mathrm{r} \quad \mathrm{p}_{r} \quad[\mathrm{Q} ; \mathrm{Y}]
$$

where $\mathcal{P}=(Q, P)$ phase space $\left(\cong T^{*} \mathbb{C}^{N-1}\right)$
ANG. MOMENTUM
(4): Compute kinetic energy in new coord (hard work) \& so the total energy
$U=\frac{1}{r} \sum \frac{m_{i} m_{j}}{\rho_{i j}}$

$$
K_{\mu}=\frac{1}{2}\left(p_{r}^{2}+\frac{1}{r^{2}} K_{\text {shape }}([Q, Y])+\frac{\mu^{2}}{r^{2}}\right)
$$

FUBINI-STUDY
$\rho_{i j}=\frac{\left|Q_{i j}\right|}{r}=$ normalized distance

$$
H_{\mu}=K_{\mu}-U
$$

WARNING: Eqns NOT canonical. Curvature term: $\Omega=d \Gamma$
(5): Apply Levi-Civita squaring transformation: [d=2]

$$
\begin{aligned}
& z_{i j}^{2}=Q_{i j} \quad, \quad \frac{d}{d \tau}=f \frac{d}{d t} \quad, \quad f=\prod_{i<j} \rho_{i j} \\
& \quad, \text { OR } \quad f=\prod_{i<j} \rho_{i j} /\left(\sum \rho_{i j}\right)^{\binom{N}{2}}=\prod_{i<j} r_{i j} /\left(\sum r_{i j}\right)^{\binom{N}{2}}, \text { OR... }
\end{aligned}
$$

Use Poincaré trick for time reparam. by factor f at const. energy $H=E$

$$
\tilde{H}_{\mu}=f\left(H_{\mu}-E\right)
$$

Key to non-singularity at binary collisons:

$$
\begin{aligned}
f U= & \frac{1}{r} \sum_{i j} m_{i} m_{j} \prod_{k \ell \neq i j} \rho_{k \ell} \\
& \text { not singular at simple binary collisons: } \rho_{i j}=0
\end{aligned}
$$

$$
\left(r, p_{r},[Z, \eta]\right) \mapsto\left(r, p_{r},[Q, P]\right) \quad \text { induced by }[Z] \mapsto[Q] ; Q_{i j}=Z_{i j}^{2}
$$

(6): McGehee blow-up: planar 3 body; eg

McGehee time $\tau \cdot \frac{d}{d \tau}={ }^{\prime}=r^{\frac{3}{2}} \frac{d}{d t}\left({ }^{*}\right)$
Rescaled size momenta $v=\frac{p_{r}}{r^{1 / 2}}$.
Rescaled reg. shape momenta $\alpha=r^{1 / 2} Y$.
Reg. shape variables $[Z]$ unchanged. $z=x_{2} / x_{1}$ affine shape coord.
$r^{\prime}=\lambda(z) v r$
$v^{\prime}=-\frac{1}{2} \lambda(z) v^{2}+2 \tilde{K}-W(z)$
$\tilde{\mu}^{\prime}=-\frac{1}{2} \lambda(z) v \tilde{\mu} \longleftarrow$ Normalized ang. mom. $\tilde{\mu}:=\frac{f(r)}{r^{2}} \mu$
$z^{\prime}=\left(1+|z|^{2}\right)^{2} \alpha$
$\alpha^{\prime}=\lambda(z) v \alpha-\tilde{K}_{z}+W_{z}+r h \lambda_{z}(z)-2 i \tilde{\mu} \lambda(z) \alpha$ MAG. TERM
kinetic: $2 \tilde{K}=\lambda v^{2}+\lambda \tilde{\mu}^{2}+\frac{1}{2}\left(1+|z|^{2}\right)^{2}|\alpha|^{2}$.
potential $W(z)=\frac{\tilde{r}}{\left(1+|z|^{2}\right)^{6}}\left(m_{1} m_{2} \tilde{\rho}_{31} \tilde{\rho}_{23}+m_{1} m_{3} \tilde{\rho}_{12} \tilde{\rho}_{23}+m_{2} m_{3} \tilde{\rho}_{12} \tilde{\rho}_{31}\right)$ normalized distances: $\rho_{i j}=r_{i j} / r=\tilde{\rho}_{i j} / \tilde{r}$,

$$
\begin{gathered}
\tilde{\rho}_{12}=4|z|^{2}, \quad \tilde{\rho}_{31}=\left|1+z^{2}\right|^{2}, \quad \tilde{\rho}_{23}=\left|1-z^{2}\right|^{2} \\
\tilde{r}^{2}=\tilde{I}=\frac{m_{1} m_{2} \tilde{\rho}_{12}^{2}+m_{1} m_{3} \tilde{\rho}_{31}^{2}+m_{2} m_{3} \tilde{\rho}_{23}^{2}}{m_{1}+m_{2}+m_{3}}
\end{gathered}
$$

(*) alternative time scaling: $f(r)=\left(\frac{r}{-1+1}\right)^{\frac{3}{2}}$, better behavior for large r
planar 4-body
6 double collision lines.
2:I branched cover each.
result: 32:I branched cover of $\mathbb{C P}^{2}$ -inverse image of each of the 4 double collision points: a cone point COMPLEX blow up (a la alg. geom). result: K3 = reg. reduced shape space

J-M remarks.

A. $d=2, N=3, J=0, H=-h<0, m_{1}=m_{2}=m_{3}$:
$\Longrightarrow J-M$ formulation takes form (roughly):
$d s_{J M, \text { reg. }}^{2}=2\left(-h\left(\hat{z}_{12}^{2}\left|\hat{z}_{23}\right|^{2}\left|\hat{z}_{31}\right|^{2}\right)+\frac{1}{M r^{2}}\left(\left|\hat{z}_{23}\right|^{2}\left|\hat{z}_{13}\right|^{2}+\left.\left|\hat{z}_{12}\right|^{2}\left|\hat{z}_{32}^{2}+\left|\hat{z}_{21}\right|^{2}\right| \hat{z}_{31}\right|^{2} \ldots\right)\right) d s^{2}$ with $\hat{z}_{i j}=z_{i j} /{\sqrt{\left|z_{12}\right|^{2}+\mid z_{23}}}^{2}+\left|z_{13}\right|^{2}$
B. Amusing toy case to see how a regularized J-M solution can minimize while its unregularized projection does not

Kepler: 0-energy: i.e PARABOLIC

$$
\begin{aligned}
& d s_{J M}^{2}=\frac{1}{r}|d q|^{2} \quad, q=z^{2} \Longrightarrow d q=2 z d q, r=|q|^{2} \\
& d s_{J M, \text { reg }}^{2}=4|d z|^{2}: \quad \text { EUCLIDEAN! }
\end{aligned}
$$

Polar coordinates: $q=r e^{i \theta}$

$$
d s_{J M}^{2}=\frac{1}{r}\left(d r^{2}+r^{2} d \theta^{2}\right)=\left(\frac{d r}{\sqrt{r}}\right)^{2}+r d \theta^{2}
$$

Change Variables: $u=\frac{1}{2} r^{1 / 2}$
$\Longrightarrow d s_{J M}^{2}=d u^{2}+4 u^{2} d \theta^{2}$

Again locally Euclidean, but origin a cone point! Opening cone angle : 4π
$(\mathrm{d}, \mathrm{N})=($ dim. of ambient space, Number of bodies)
Results:
$\mathcal{P}(d, n)=$ regularized, reduced, blown-up phase space

$$
=T^{*}(X(d, n)) \times T^{*}([0, \infty)) \times_{f} \mathcal{O}
$$

VER $X(d, n)=$ regularized shape space; maybe blown up

$$
; I=\frac{\sum m_{i} m_{j} r_{i j}^{2}}{\sum m_{i}}
$$

$[0, \infty)=$ size space parameter \sqrt{I} where

$$
d=2 \Longrightarrow \mathcal{O}=\emptyset
$$

$$
\begin{aligned}
& X(2,3)=\mathbb{C P}^{1} \\
& X(2,4)=K 3
\end{aligned}
$$

$(\mathrm{d}, \mathrm{N})=(3,3)$: partial progress

$$
\begin{aligned}
\mathcal{P}(3,3)= & T^{*}\left(\mathbb{C P}^{2}\right) \times T^{*}([0, \infty)) \times_{f} \mathcal{O} \\
& \text { with } \mathcal{O} \rightarrow \mathbb{C P}^{1} \mathbb{C P}^{2}
\end{aligned}
$$

