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Mechanism of Instability

• Consider the three-body problem consisting of the Sun, Jupiter, and

an Asteroid which moves on (approximate) ellipses.

• A possible source of instabilities areorbital resonancesbetween the

frequencies of Jupiter and the Asteroid.

• Jupiter and the Asteroid are regularly in the same relative position.

Over a long time interval, Jupiter’s influence piles up and modifies

the eccentricity of the Asteroid.

• According to Kepler’s third law, resonances take place whenthe

semi-major axisa satisfies

a3/2 ≈
ωJ

ωA
∈ Q.
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Kirkwood Gaps

• The Asteroid Belt is located between the orbits of Mars and Jupiter.
The distribution of asteroids presents several gaps precisely at the
resonances.
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Kirkwood Gaps

• It is believed that these gaps are due to instability mechanisms.

• This motivates us to study the 3:1 resonance

a3/2 ≈
ωJ

ωA
=

1

3
.
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Theorem 1 (FGKR, 2011) Consider theelliptic RTBP with mass ratio

µ = 10−3 and eccentricity of Jupitere0 > 0.

For e0 small enough, there existT > 0 and a trajectory whose

eccentricitye(t) satisfies

e(0) < 0.55 and e(T ) > 0.85,

while its semi-major axis stays almost constant

a(t) ≈ 3−2/3.
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Summary of Proof

1. Prove the existence of a normally hyperbolic invariant cylinderΛ,

which exists near the resonance.

2. Establish transversality of its stable and unstable invariant manifolds.

3. Compare inner and outer dynamics onΛ, and check that they do not

have invariant circles.

4. Construct diffusing orbits by shadowing a composition ofouter and

inner maps.
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• Whenµ > 0, all known analytical techniques fail to estimate the

splitting of separatrices (even fore0 = 0).

• We setµ = 10−3, and we show numerically that the splitting is not

too small.

• Since the splitting varies smoothly with respect toe0, it suffices to

estimate the splitting fore0 = 0 (i.e. for thecircular problem)!!
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Ansatz 1 Consider thecircularRTBP with mass ratioµ = 10−3 and

HamiltonianH.

In each energy levelH ∈ [H−, H+] there exists a hyperbolic periodic

orbit λH(t) which satisfies

|LH(t)− 3−1/3| < 50µ for all t ∈ R.

EachλH has two branches of stable and unstable invariant manifolds

W s,j(λH) andWu,j(λH) for j = 1, 2. For eachH ∈ [H−, H+] either

W s,1(λH) ∩Wu,1(λH) transversally

or

W s,2(λH) ∩Wu,2(λH) transversally.
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Comments

• We verify the Ansatz numerically.

• Numerical analysis has several sources of error:

– roundoff errors in computer arithmetic,

– numerical approximation of ideal objects.

We evaluate such errors and check that they are appropriately small.

• Goal: to keep our numerics simple and convincing.

• Roldán and Zgliczynski are working towards a fully rigorous

Computer-Assisted proof.
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Choice of Coordinates

• Circular RTBP in rotating Cartesian coordinates

H(x, y, px, py) =
1

2
(p2x + p2y) + ypx − xpy −

µ1

r1
−

µ2

r2
,

r21 = (x− µ2)
2 + y2,

r22 = (x+ µ1)
2 + y2.

• Sun is located to the left of the orgin:µ1 = µ is the small mass and

µ2 = 1− µ is the large mass.
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Symmetries of the System

• The system is reversible with respect to the involution

R(x, y, px, py) = (x,−y,−px, y).

• Thus, a solution is symmetric if and only if it intersects the

symmetry plane

{y = 0, px = 0} ≡ {y = 0, ẋ = 0}.
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Conservation of Energy

• The circular problem has a conserved quantity, the Jacobi constantC.

• When the Hamiltonian is constantH = H0, we have

H0 = −
C − µ1µ2

2
.

• We will refer toH0 as theenergyof the system.

• It is natural to fixH = H0 and perform our analysis forH0. Then,

we letH vary and repeat our computations forH ∈ [H−, H+].

12



Computation of Periodic Orbits

• Fix H = H0, and look for an (almost) resonant periodic orbitλH(t)

in this level of energy.

• As a first approximation, consider the 2BP and look for the resonant

periodic orbitλ̃H(t) in the level of energyH2BP = H0.

• To simplify numerics, we choose asymmetricperiodic orbit.

• Refineλ̃H(t) into λH(t) in the R3BP using a Newton method.
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Poincaré Map

• Consider the RTBP in Cartesian coordinates.

• Define thePoincaŕe section

Σ+ = {y = 0, ẏ > 0}

with Poincaŕe map

P : Σ+ → Σ+.

• On the section, the variablepy can be elliminated. We can recover it

from the energy condition

H(x, y, px; py) = H0,

since∂py
H = ẏ 6= 0.

• Hence, at each energy level,P = P (x, px) is a 2-dimensional

symplectic map.
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Fixed Point Equation

• In the rotating frame, a 3:1 resonant periodic orbit makes2 turns

around the origin.

• One can look for a periodic pointa = (x, px) of the Poincaŕe map

a = P 2(a),

or equivalently, a fixed point of theiterated Poincaŕe mapP

a = P(a).

• However, we want asymmetricperiodic orbit. Thus, after half a

period, it must intersect the symmetry plane{y = 0, px = 0}:

Πpx
◦ P (a) = 0.

• Solve this 1-d equation using a Newton method.
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Family of Periodic Orbits

• Finally, letH vary in the range[H−, H+] = [−1.733,−1.405] to

obtain the family of (almost) resonant periodic orbits

Λ0 =
⋃

H∈[H
−
,H+]

λH .

• Λ0 is a family of symmetric periodic orbits around the Sun.

• Accuracy in the computation of periodic orbits:10−14.
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Family of Periodic Orbits
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Family of Periodic Orbits
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Family of Periodic Orbits
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Family of Periodic Orbits
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Family of Periodic Orbits
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Family of Periodic Orbits
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Family of Periodic Orbits
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Family of Periodic Orbits
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In the Loop

• WhenH ≈ −1.6, the periodic orbit develops loops. The reason is the

following:

• Near the apohelion, the sideral velocity of Asteroid becomes smaller

than the velocity of rotating frame=⇒ relative velocity is negative,

and orbit is direct.

• At other parts of the orbit, the sideral velocity of Asteroidis larger

than the velocity of rotating frame=⇒ relative velocity is positive,

and orbit is retrograde.

• Loops are inherent to this resonant family of periodic orbits in the

rotating system, even for the 2BP.
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In the Loop

• When the loops appear, there is one more iterate of the Poincaré map.

However, the family is continuous with respect to the periodTH .

• This is an artifact produced by rotating coordinates. One can get rid

of this technical problem by redefining the Poincaré map in a suitable

way.
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Numerical Bounds

• The period stays close to the resonant period of the unperturbed

system

|TH − 2π| < 15µ.

• LH(t) stays close to the resonant value3−1/3:

max
t∈[0,TH ]

|LH(t)− 3−1/3| < 50µ.
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Stability of Periodic Orbits

• Compute eigenvaluesλ, λ−1 of DP(a).
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Stability of Periodic Orbits

• The family of periodic orbits is

– less hyperbolic whenH → H−, or equivalentlye → 0.

– more hyperbolic whenH → H+, or equivalentlye → 1.

• Since the system is close to integrable (µ is small), one expects

eigenvaluesλ, λ−1 close to unity.

• Nevertheless, non-integrability is noticeable in the picture. This is

due to the effect of the perturbing body (Jupiter) on the Asteroid.
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Computation of Invariant Manifolds

• Fix H = H0, and look for the (1-d) invariant manifolds

Wu(a),W s(a) of the hyperbolic fixed pointa in this level of energy.

• Approximate the local invariant manifolds using a linear segment.

The error commited in the linear approximation is controled:

err(η) = ‖P(a+ ηv)− (a+ ληv)‖ ∈ O(η2).

• Globalize the manifolds using the Poincaré map.

• Choose a displacementη such thaterr(η) < 10−8 uniformly inH.
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Invariant Manifolds for H = −1.733
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New Poincaŕe Section

• Notice that the fixed pointsa1, a2 are in the symmetry plane by

construction.

• Unfortunately, the homoclinic points arenot in the symmetry plane.

• Consider the new Poincaré section

Σ− = {y = 0, ẏ < 0}.

• In the new sectionΣ−, the fixed pointsa1, a2 are reversible:

R(a1) = a2.

Hence, the homoclinic points are now in the symmetry plane.
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Invariant Manifolds on the sectionΣ−
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Homoclinic Points

• Thanks to reversibility, the intersection of the manifoldswith the

symmetry axispx = 0 is a homoclinic point.

• We consider two homoclinic points:

– z1 corresponds to the “inner” splitting,

– z2 corresponds to the “outer” splitting.

• Computez1, z2 using a standard bisection method.

• We verify thatz1, z2 lie on the symmetry axis with tolerance10−10

uniformly inH.
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Inner Splitting for H = −1.405
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Computation of Splitting Angle

• Look for the tangent vectorswu andws to the manifolds atz. The

splitting angleis the oriented angle between them.

• We use two different methods to compute the tangent vectors at z.

This way we can validate the numerical accuracy of the splitting

angle.

37



First Method

• Let p0 ∈ Wu
loc(a) be the preimage of the homoclinic pointz in the

local manifold

Pn(p0) = z.

• Let v0 be the tangent vector to the manifold atp0 (i.e. the

eigenvector).

• Transportv0 by the JacobianDP at the successive iterates ofp0

wu =

n−1∏

i=0

DP(pi)v0.
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Second Method

• Let z = (x∗, 0) be the homoclinic point.

• Look at the manifoldWu(a) as a graph over the vertical linex = x∗.

• Sample the manifoldWu(a) at different values ofpx:

px =
j

105
, j ∈ (−2,−1, 1, 2).

• Apply numerical differentiation to these values, using central
differences centered atpx = 0:

d1 =
x(0.00001)− x(−0.00001)

0.00002
,

d2 =
x(0.00002)− x(−0.00002)

0.00004
.

• Use Richardson extrapolation to improve the precision of derivative:

d =
4d1 − d2

3
.
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Splitting Angle (Inner Splitting)
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Accuracy of Computations

• LetH = H0 = −1.405, for example.

• According to the first method, the splitting angle is

σ(1) = −9.780327341442923e− 05.

• According to the second method,

px xu

−0.00002 −8.703373796876306e− 02

−0.00001 −8.703373845681261e− 02

0.00001 −8.703373943484494e− 02

0.00002 −8.703373992482412e− 02
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d1 = −4.890161608983589e− 05

d2 = −4.890152657810453e− 05

d = −4.890164592707968e− 05

σ(2) = −9.780329177619804e− 05

(1)

• Compare the splitting angle computed using the two methods:

σ(1) = −9.780327341442923e− 05,

σ(2) = −9.780329177619804e− 05.
(2)

They differ by less than10−10 (total numerical error).
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Validation of Splitting Angle

• The splitting angle is several orders of magnitude larger than the total
numerical error for a large range of energiesH ≈ [−1.6,−1.4].
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