Oscillatory motions for the restricted planar circular three body problem

Marcel Guardia ¹ (Pau Martin ², Tere M. Seara²)

¹University of Maryland, USA

²Universitat Politecnica de Catalunya, Spain

January 13, 2013

The circular restricted planar three body problem (RCP3BP)

- Three bodies of masses 1μ , μ and 0 under the effects of the Newtonian gravitational force.
- The bodies with mass (primaries) are not influenced by the massless one.
- They form a two body problem.
- Assume they move on circles
- Goal: understand the motion of a massless body under the influence of the other two.

(ロ) (型) (三) (三) (三) (2)

The equations of the RCP3BP

• The motion of the massless body q is described by

$$\frac{d^2q}{dt^2} = \frac{(1-\mu)(q_1(t)-q)}{|q_1(t)-q|^3} + \frac{\mu(q_2(t)-q)}{|q_2(t)-q|^3},$$

where $q_1(t) = -\mu q_0(t)$, $q_2(t) = (1-\mu)q_0(t)$ and
 $q_0(t) = (\cos t, \sin t)$

correspond to the circular motion of the primaries.

• This is a 2π-periodic in time Hamiltonian system (2 and 1/2 degrees of freedom) with Hamiltonian

$$\mathcal{H}(q,p,t;\mu) = rac{p^2}{2} - rac{(1-\mu)}{|q-q_1(t)|} - rac{\mu}{|q-q_2(t)|}.$$

• The parameter $\mu \in [0, 1/2]$ is not necessarily small.

- 4 同 6 4 日 6 4 日 6

- Observation When $\mu = 1/2$, the two bodies move in the same circle at diametrally oposed points.
- The Hamiltonian is π -periodic in time.

3

Image: Image:

Types of asymptotic motion in the RCP3BP

- Chazy (1922) gave a classification of all possible states that a three body problem can approach as time tends to infinity.
- For the restricted three body problem the possible final states are reduced to four:
 - H^{\pm} (hyperbolic): $\|q(t)\| \to \infty$ and $\|\dot{q}(t)\| \to c > 0$ as $t \to \pm \infty$.
 - P^{\pm} (parabolic): $||q(t)|| \to \infty$ and $||\dot{q}(t)|| \to 0$ as $t \to \pm \infty$.
 - B^{\pm} (bounded): $\limsup_{t\to\pm\infty} ||q|| < +\infty$.
 - OS^{\pm} (oscillatory): $\limsup_{t \to \pm \infty} \|q\| = +\infty$ and $\liminf_{t \to \pm \infty} \|q\| < +\infty$.
- Examples of all types of motion except oscillatory were already known by Chazy.

(ロ) (同) (三) (三) (三) (○) (○)

Limiting case $\mu \rightarrow 0$

- The massless body is only influenced by one body.
- Its motion is governed by Kepler laws.
- It moves on conic sections.
- Then,
 - H^{\pm} (hyperbolic): motion on hyperbolas.
 - P^{\pm} (parabolic): motion on parabolas.
 - B^{\pm} (bounded): motion on ellipses.
- Oscillatory motions cannot exist.

イロト 不得 とくほ とくほ とうほう

Existence of oscillatory motions

Oscillatory motions were first proved by

- Sitnikov (1960) considered the restricted spatial elliptic three body problem.
- More concretely,
 - The primaries have mass $\mu = 1/2$ and move on ellipses of small enough eccentricity.
 - The massless moves on the (invariant) vertical axis.
- For these parameters, he proved existence of oscillatory motions.
- Moser (1973) gave a new proof of Sitnikov results.

Oscillatory motions for the RPC3BP

- First results by Llibre and Simó, 1980.
- They follow Moser's approach.

Theorem (Llibre-Simó)

Fix μ small enough. Then, there exists an orbit (q(t), p(t)) of RCP3BP which is oscillatory. Namely, it satisfies

$$\limsup_{t\to\pm\infty}\|q\|=+\infty \quad \text{and} \quad \liminf_{t\to\pm\infty}\|q\|<+\infty.$$

Llibre-Simó results

- To state more precisely their results, we need to introduce the Jacobi constant
- The RPC3BP has a first integral called Jacobi constant

$$\mathcal{J}(q,p,t;\mu) = \mathcal{H}(q,p,t;\mu) - (q_1p_2 - q_2p_1).$$

 They obtain oscillatory motions in each J(q, p, t; μ) = J₀ for large enough J₀ and μ exponentially small with respect to J₀:

$$\mu \ll e^{-\frac{J_0^3}{3}}$$

イロト イポト イヨト イヨト

Other results in oscillatory motions

- Sia (1992), following Llibre-Simó shows that for RPC3BP there are oscillatory motions for every µ ∈ (0, 1/2] except a finite number of values.
- 2 J. Galante and V. Kaloshin (2011) use Aubry-Mather theory to prove the existence of orbits which initially are in the range of our Solar System and become oscillatory as time tends to infinity for the RPC3BP with $\mu = 10^{-3}$ (realistic for the Jupiter-Sun).
- Other results proving existence of oscillatory motions by Alexeev and Llibre-Simó.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Abundance of the different types of motions

- All possible combinations $X^- \cap Y^+$ for X, Y = H, P, B, OS exist.
- How abundant is each type of motion in the measure sense?
- It is known for each of them whether they have positive or zero measure except for $OS^- \cap OS^+$.
- Conjecture (Kolmogorov, Alexeev): Lebesgue measure of OS[−] ∩ OS⁺ is zero.
- Kaloshin and Gorodetski (2011): study the Hausdorff dimension of oscillatory motions for both the Sitnikov problem and the RPC3BP.
- For the RPC3BP:
 - Fix J_0 large enough. For a a Baire generic set in an open set of mass ratio μ , oscillatory motions have maximal Hausdorff dimension in $\mathcal{J}(q, p, t; \mu) = J_0$.
 - Fix μ ∈ (0, 1/2]. For a a Baire generic set in an open set of Jacobi constants J₀, the oscillatory motions have maximal Hausdorff dimension in J(q, p, t; μ) = J₀.

Oscillatory motions in the RCP3BP

- Our goal: generalize Llibre-Simó and Xia results to any value $\mu \in (0, 1/2]$.
- Recall that for $\mu = 0$ they cannot exist.

Theorem

Fix any $\mu \in (0, 1/2]$. Then, there exists an orbit (q(t), p(t)) of RCP3BP which is oscillatory. Namely, it satisfies

$$\limsup_{t \to \pm \infty} \|q\| = +\infty \quad \text{and} \quad \liminf_{t \to \pm \infty} \|q\| < +\infty.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

January 13, 2013

12 / 23

Marcel Guardia (UPC)

More precisely,

Theorem

Fix any $\mu \in (0, 1/2]$. Then, there exists $J_0 > 0$ big enough, such that for any $J > J_0$ there exists an orbit $(q_J(t), p_J(t))$ of RCP3BP in the hypersurface $\mathcal{J}(q, p, t; \mu) = J$ which is oscillatory. Namely, it satisfies

$$\limsup_{t \to \pm \infty} \|q_J\| = +\infty \quad \text{and} \quad \liminf_{t \to \pm \infty} \|q_J\| < +\infty.$$

- These orbits satisfy $\liminf_{t\to\pm\infty} \|q_J\| \sim J^2$.
- They are far from the primaries (far from collision).

Oscillatory motions in the RCP3BP: Moser and Llibre-Simó approach

- Moser approach:
 - McGehee coordinates send infinity to zero. Then, infinity becomes a parabolic critical point.
 - Consider the invariant manifolds of infinity
 - Prove that they intersect transversally.
 - Establish symbolic dynamics close to these invariant manifolds.
 - It leads to the existence of oscillatory motions.
- Main difficulty in applying the approach to RPC3BP: prove the transversality of the invariant manifold of infinity.

- 4 同 2 4 日 2 4 日 2

Transversality of the invariant manifolds of infinity in Llibre-Simó

- For μ = 0 the invariant manifolds coincide (parabolic orbits).
- In McGehee coordinates we have a homoclinic to a critical point.
- For $0 < \mu \ll 1$, expand in μ and compute the first order of the difference between the manifolds (Melnikov Theory).

- We know only how to compute it provided $J_0 \gg 1$.
- Llibre-Simó are only able to prove the transversality provided $J_0 \gg 1$ and $\mu \leq e^{-J_0^3/3}$.
- We prove the transversality for any $\mu \in (0, 1/2]$ and $J_0 \gg 1$.

RPC3BP in rotating polar coordinates

- Fix the primaries at the x axis.
- Polar coordinates for the third body: $q = (r \cos \phi, r \sin \phi)$.
 - y simplectic conjugate to r (radial velocity).
 - G symplectic conjugate to ϕ (angular momentum).
- Hamiltonian:

$$H(r,\phi,y,G;\mu) = rac{y^2}{2} + rac{G^2}{2r^2} - U(r,\phi;\mu),$$

- $U(r, \phi; \mu)$ is the Newtonian potential, which satisfies $U(r, \phi; 0) = \frac{1}{r}$.
- The system has two degrees of freedom.
- Conservation of energy corresponds to conservation of the Jacobi constant.

(ロ) (型) (三) (三) (三) (2)

Infinity

Equations

$$\dot{r} = y$$
$$\dot{y} = \frac{G^2}{r^3} + \partial_r U(r, \phi; \mu)$$
$$\dot{\phi} = -1 + \frac{G}{r^2}$$
$$\dot{G} = \partial_{\phi} U(r, \phi; \mu)$$

- Recall $U(r, \phi; 0) \sim \frac{1}{r}$
- For any value of G₀, the "infinity":

$$(r, y, \phi, G) = (\infty, 0, \phi_0 - t, G_0), t \in \mathbb{T}$$

is a periodic solution.

• At infinity, energy coincides with angular momentum: $H = -G_0$.

Marcel Guardia (UPC)

The two body problem: $\mu \rightarrow 0$

- When $\mu=$ 0, the massless body is only influenced by one primary, located at the origin
- Hamiltonian (in rotating coordinates)

$$H(r, \phi, y, G, s; 0) = \frac{y^2}{2} + \frac{G^2}{2r^2} - G - \frac{1}{r},$$

- *H* and *G* are first integrals.
- Fixing $G = G_0$, the variables (r, y) form a Hamiltonian system of one degree of freedom

$$H_0(r, y; G_0) = \frac{y^2}{2} + \frac{G_0^2}{2r^2} - \frac{1}{r}$$

- The invariant manifolds of infinity coincide forming a separatrix.
- We show that the separatrix splits when we add the perturbation.

Reduction to a Poincaré map

- Restrict to $H = -G_0$ with $G_0 \gg 1$ and consider a section $\phi = \phi_0$.
- Area preserving Poincaré map

$$\begin{array}{rcl} \mathcal{P}_{\phi_0} & : & \{\phi = \phi_0\} \longrightarrow \{\phi = \phi_0\} \\ & & (r, y) & \mapsto & \mathcal{P}_{\phi_0}(r, y) \end{array}$$

- $(r, y) = (\infty, 0)$ is a fixed point with 1 dim. invariant manifolds.
- $\mu = 0$: they coincide forming a separatrix.

January 13, 2013

19 / 23

 µ > 0: we measure their distance in a section transversal to the unperturbed separatrix.

Marcel Guardia (UPC)

The difference between the manifolds

Theorem

Consider the invariant manifolds of infinity of the Poincaré map \mathcal{P}_{ϕ_0} . Then, there exists $G_0^* > 0$ such that for any $G_0 > G_0^*$ and $\mu \in (0, 1/2]$, in a suitable section the distance d between these curves along this section is given by

$$d = C\mu(1-\mu)\sqrt{\pi} \left[\frac{1-2\mu}{2\sqrt{2}} G_0^{3/2} e^{-\frac{G_0^3}{3}} \sin(f(\phi_0)) + 8G_0^{7/2} e^{-\frac{2G_0^3}{3}} \sin(2f(\phi_0)) + \mathcal{O}\left((1-2\mu)G_0 e^{-\frac{G_0^3}{3}} + G_0^3 e^{-\frac{2G_0^3}{3}}\right) \right],$$

where C > 0 and $f(\phi)$ are an explicit constant and an explicit function.

Marcel Guardia (UPC)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem

Fix $\mu \in (0, 1/2]$. Then, there exists $G^* > 0$ such that for any $G_0 > G^*$, the invariant manifolds of infinity of \mathcal{P}_{ϕ_0} intersect transversally.

This result allow us to proof the existence of oscillatory motions.

Theorem

There exist G_0^* and a curve η in the parameter region

$$(\mu, G_0) \in \left(0, \frac{1}{2}\right] \times (G_0^*, +\infty),$$

of the form

$$\mu = \mu^*(G_0) = rac{1}{2} - 16\sqrt{2}G_0^2 e^{-rac{G_0^3}{3}} \left(1 + O\left(G_0^{-1/2}\right)\right),$$

such that, for $(\mu, G_0) \in \eta$, the invariant manifolds of infinity of \mathcal{P}_{ϕ_0} have a cubic homoclinic tangency and a transversal homoclinic point.

January 13, 2013

22 / 23

Bifurcation curve η in the parameter space where the homoclinic tangency is undergone.

イロト イポト イヨト イヨト 二日