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We consider the classical planar three-body problem in celestial
mechanics. Denote by q1, q2, q3 ∈ R2 the position vectors of three
particles with masses m = (m1,m2,m3) ∈ (R+)3 respectively. By
Newton’s second law and the law of universal gravitation, the
system of equations for this problem is

mi q̈i =
∂U(q)

∂qi
, for i = 1, 2, 3, (1)

where
U(q) = U(q1, q2, q3) =

∑
1≤i<j≤3

mimj

|qi − qj |

is the potential function by using the standard norm | · | of vector
in R2.



For periodic solutions with period τ > 0, the system is the
Euler-Lagrange equation of the action functional

Aτ (q) =

∫ τ

0

[
3∑

i=1

mi |q̇i (t)|2

2
+ U(q(t))

]
dt

defined on the loop space W 1,2(R/τZ,X ), where

X ≡

{
q = (q1, q2, q3) ∈ (R2)3

∣∣∣∣∣
3∑

i=1

miqi = 0, qi 6= qj , ∀i 6= j

}

is the configuration space of the planar three-body problem. Each
τ -periodic solution to (1) appears to be a critical point of the
action functional Aτ .



In 1772, J. Lagrange discovered his τ -periodic elliptic solutions of
the 3-BP (ELS for short): q(t) = r(t)R(θ(t))q(0), with

q(0) ∈ (R2)3, r(t) > 0, and R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
for θ ∈ R.

Here, q(0) and consequently q(t) always form an equilateral
triangle (central configuration), and (r(t) cos θ(t), r(t) sin θ(t)) in
R2 describes elliptic curves depending on the period, masses, and
eccentricity, which are solutions of the two body Kepler problem, if
q(0) is not collinear. Denote these τ -periodic ELS by qm,e(t).



Figure: Sun, Jupiter and Trojan stars



We write the 3-BP system (1) into a Hamiltonian system:

ż = JH ′(z), z(τ) = z(0). (2)

with z = (p, q) = (p1, p2, p3, q1, q2, q3) ∈ (R2)6, p(t) = M̄q̇(t),
and

H(z) = H(p, q) =
3∑

i=1

|pi |2

2mi
− U(q), J =

(
0 −I2
I2 0

)
,

with M̄ = diag(m1,m1,m2,m2,m3,m3). The linearized
Hamiltonian system at zm,e(t) = (M̄q̇m,e(t), qm,e(t)) ∈ (R2)6 is
given by

ẏ(t) = JH ′′(zm,e(t))y(t), y(τ) = y(0), (3)

whose fundamental solution ψ = ψm,e(t) satisfies ψ(0) = I12 and
ψm,e(t) ∈ Sp(12) = {M ∈ GL(R12) |MT JM = J} for all t ∈ [0, τ ].



Our main concern is the linear stability of these ELS, which is
determined by ψm,e(τ) and its eigenvalues. Let
U = {z ∈ C | |z | = 1}.
Definition:

M ∈ Sp(2n) is spectrally stable, if σ(M) ⊂ U,

M ∈ Sp(2n) is linearly stable,
if σ(M) ⊂ U and M is semi− simple,
if and only if sup

m≥1
‖Mm‖ < +∞.

M ∈ Sp(2n) is strongly linearly stable,
if ∃ε > 0 such that N is linearly stable

whenever ‖M − N‖ < ε.

M is semi-simple, if its minimal polynomial is the product of
relatively prime irreducible polynomials.



Let M ∈ Sp(2n). Then possible eigenvalue distributions of M are:

1 is of even multiplicities; −1 is of even multiplicities;
e, e ∈ U \ R; b, b−1 ∈ R \ {0,±1};
a, a−1, a, a−1 ∈ C \ (U ∪ R).

Thus there are 3 possible ways for eigenvalues to escape from U as
shown in the Figure.



Figure: Circular solution of the 3-body problem with e = 0

Earlier studies on the linear stability:
M.Gascheau (1843) and E.Routh (1875) for circular orbits, i.e.,
e = 0.
J.Danby (1964), G.Roberts (2003): for e ≥ 0 sufficiently small,
by perturbation method.



Consider the linearized Hamiltonian system at zm,e(t):

ẏ(t) = JH ′′(zm,e(t))y(t), y(τ) = y(0),

with fundamental solution ψm,e(t) ∈ Sp(12) and ψm,e(0) = I12.
First integrals of (1):
(i) (Integral of the center of masses)∑n

i=1 miqi (t) = V1t + V2 = 0. (2-dim.)
(ii) (Integral of the linear momentum)

∑3
i=1 mi q̇i (t) = V1 = 0.

(2-dim.)
(iii) (Integral of the energy) 1

2

∑n
i=1 mi |q̇i (t)|2 − U(q(t)) = h.

(periodic solution) z̈(t) = JH ′′(z(t))ż(t). (in total 2-dim.)
(iv) (Integral of the angular momentum)

∑n
i=1 miqi × q̇i (t) = 0.

(2-dim.)

Thus 1 ∈ σ(ψm,e(τ)) has always algebraic multiplicity at least 8 in
total.



K.Meyer and D.Schmidt (2005): Using the central configuration
coordinates, they decomposed the linearized Hamiltonian system at
ELS into two parts symplectically:

ψm,e(τ) = P−1

[(
1 1
0 1

)
�
(

1 1
0 1

)
�
(

1 1
0 1

)
�I2�M

]
P.

(i) the 8 eigenvalue 1 stays always for all (m, e) ∈ (R+)3 × [0, 1);
(ii) the other part corresponding to M is the 4-dim. essential part
for the linear stability, which can be transformed to a linear system
with coefficient matrix:

B̄(θ) =


1 0 0 1
0 1 −1 0

0 −1 2e cos θ−1−
√

9−β
2(1+e cos θ) 0

1 0 0 2e cos θ−1+
√

9−β
2(1+e cos θ)

 ,

where t ∈ [0, τ ] is transformed to the true anomaly θ ∈ [0, 2π].
They studied also the linear stability for e ≥ 0 small enough.



Rewrite Meyer and Schmidt’s essential part (4-dim. linearized
Hamiltonian system) for ELS as (use t to replace θ):

ẏ(t) = JBβ,e(t)y(t), y(2π) = y(0), (4)

Bβ,e(t) =

(
I2 −J
J I2 − Kβ,e(t)

)
,

with Kβ,e(t) =

(
3−
√

9−β
2(1+e cos t) 0

0 3+
√

9−β
2(1+e cos t)

)
, and the mass

parameter β and the eccentricity e satisfy

β =
27(m1m2 + m1m3 + m2m3)

(m1 + m2 + m3)2
∈ [0, 9], e ∈ [0, 1).

Denote the fundamental solution of this system by
γβ,e(t) ∈ Sp(4), which satisfies γβ,e(0) = I4. The linear stability
of zβ,e ≡ zm,e(t) is determined by γβ,e(2π) ∈ Sp(4).



R.Mart́ınez, A.Samà and C.Simó (2004-2006) Perturbation method
for e ≥ 0 small enough + numerical method:
EE: σ(γβ,e(2π)) = {ω1, ω1, ω2, ω2} with ωi ∈ U \ R for i = 1, 2;
EH: σ(γβ,e(2π)) = {λ, λ−1, ω, ω} for some −1 6= λ < 0 and
ω ∈ U \ R;
HH: σ(γβ,e(2π)) = {λ1, λ

−1
1 , λ2, λ

−1
2 } for some λi ∈ R \ {0,±1}

with i = 1, 2;
Complex hyperbolic: σ(γβ,e(2π)) ⊂ C \ (U ∪ R).



We are not aware of any rigorous mathematical method on this
linear stability problem which works for the full range of
parameters (β, e) ∈ [0, 9]× [0, 1) before 2010 !

Difficulty: due to the substantial dependence of the coefficients
on t when 0 < e < 1:

ẏ(t) = J


1 0 0 1
0 1 −1 0

0 −1 2e cos(t)−1−
√

9−β
2(1+e cos(t)) 0

1 0 0 2e cos(t)−1+
√

9−β
2(1+e cos(t))

 y(t),

y(2π) = y(0).



Preparations for further results:
W.Gordon (1977) The Kepler elliptic orbit q = q(t) is the solution
of the equation

q̈(t) = − q(t)

|q(t)|3
.

The functional

f (q) =

∫ τ

0

(
1

2
|q̇(t)|2 +

1

|q(t)|

)
dt

attains its minimum in W 1,2(R/(τZ),R2 \ {0}) on Kepler elliptic
orbits.

A.Venturelli (2001), S.Zhang-Q.Zhou (2001) ELS is a global
minimizer of the action A(q) on the loops in the non-trivial
homology class of W 1,2(R/τZ,X ). Specially its Morse index
satisfies

i1(ELS) = 0.



For any M,N ∈ Sp(2n), we write M ≈ N if ∃P ∈ Sp(2n) s.t.
M = P−1NP holds.

D(λ) =

(
λ 0
0 λ−1

)
, R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
,

N1(λ, a) =

(
λ a
0 λ

)
, N2(e

√
−1θ, b) =

(
R(θ) b

0 R(θ)

)
,

N2(−1, c) =


−1 1 c1 0
0 −1 c2 c2

0 0 −1 0
0 0 −1 −1

 ,

where b =

(
b1 b2

b3 b4

)
, and λ, a, θ, bi , ci ∈ R.



Theorem. (X.Hu and S.Sun, 2010, Advances in Math.)

(I) 2 ≤ i1(z
2
β,e) ≤ 4 holds always;

Suppose γβ,e(2π)2 is non-degenerate, i.e., 1 6∈ σ(γβ,e(2π)2). Then

(II-1) If i1(z
2
β,e) = 4, then γβ,e(2π) ≈ R(θ1)�R(θ2) holds for some

θ1 and θ2 ∈ (π, 2π), and ELS is linearly stable;

(II-2) If i1(z
2
β,e) = 3, then γβ,e(2π) ≈ D(λ)�R(θ) for some

−1 6= λ < 0 and θ ∈ (π, 2π), and ELS is linearly unstable;

(II-3) If i1(z
2
β,e) = 2 and ∃k ≥ 3 such that i1(z

k
β,e) > 2(k − 1),

then γβ,e(2π) ≈ R(2π − θ1)�R(θ2) holds with 0 < θ1 < θ2 < π,
and ELS is linearly stable;

(II-4) If i1(z
k
β,e) = 2(k − 1) for all k ∈ N, then γβ,e(2π) and ELS

are hyperbolic or spectrally stable and linearly unstable.

As usual, zk
β,e(t) = zβ,e(kt) is used for all k ∈ N.



Advantage of Hu-Sun’s Theorem:

〈1〉 The first method which works for the full range of parameters
(β, e) ∈ [0, 9]× [0, 1);
〈2〉 Based on different iterated Morse indices of regions, some
regions of linear stability are given (not all).

Further understanding needed after Hu-Sun’s Theorem:

〈1〉 The non-degeneracy assumption (on γβ,e(2π)2) needs to be
understood.
〈2〉 The classification is based on the values of iterated Morse
indices, but is not directly related to the two parameters;
〈3〉 No information is given on properties of the shape of the
curves which separate the linear stability regions and their
behaviors in the rectangle (β, e) ∈ [0, 9]× [0, 1).
〈4〉 The (II-4) case is not clear.



A brief introduction on ω-index theory of symplectic matrix
paths starting from the identity matrix I
Let M ∈ Sp(2), Then we have:

M =

(
r z

z 1+z2

r

)(
cos θ − sin θ
sin θ cos θ

)
↔ (r , θ, z) ∈ R3\{z−axis}.

1 ∈ σ(M) ⇔ det(M − I ) = 0 ⇔ (r2 + z2 + 1) cos θ = 2r .

Sp(2)01 = {M ∈ Sp(2) | 1 ∈ σ(M)}
= {(r , θ, z) ∈ R3 \ {z − axis} | (r2 + z2 + 1) cos θ = 2r}.



Figure: Graph of Sp(2)01



Figure: Graph of Sp(2)01 when z = 0



For γ ∈ C ([0, τ ],Sp(2n)) with γ(0) = I , we define

ν1(γ) = dim ker(γ(τ)− I ),

i1(γ) = [γ ∗ ξ : Sp(2n)01], if ν1(γ) = 0,

i1(γ) = min{i1(φ) | ν1(φ) = 0 and φ is suff. close to γ},
if ν1(γ) > 0.

Similarly, for every ω ∈ U we define

νω(γ) = dimC kerC(γ(τ)− ωI ),

iω(γ) = [γ ∗ ξ : Sp(2n)0ω], if νω(γ) = 0,

iω(γ) = min{i1(φ) | νω(φ) = 0 and φ is suff. close to γ},
if νω(γ) > 0.

(iω(γ), νω(γ)) ∈ Z× {0, 1, . . . , 2n}, ∀ ω ∈ U.



Figure: Graph of Sp(2)0ω when z = 0



For second order Hamiltonian system, the following theorem on the
relation of the Morse index iω(qm,e ,Aτ ) and nullity νω(qm,e ,Aτ )
of Aτ at qm,e and the ω-index iω(ψm,e) and ω-nullity νω(ψm,e) of
ψm,e) hold:
Theorem. ([Viterbo,1990], [An-Long, 1998], [Long-An,1998]) For
every ω ∈ U, there hold

iω(qm,e ,Aτ ) = iω(ψm,e), νω(qm,e ,Aτ ) = νω(ψm,e).

Lemma. ([Hu-Sun,2010]) For every ω ∈ U, there hold

iω(γβ,e) = iω(ψm,e) = iω(qm,e ,Aτ ),

νω(γβ,e) = νω(ψm,e) = νω(qm,e ,Aτ ).

Specially

i1(γβ,e) = i1(ψm,e) = i1(qm,e ,Aτ ) = 0, ∀ (β, e) ∈ [0, 9]× [0, 1).



Such index theories were defined by

1984, C. Conley-E. Zehnder: for any path γ in Sp(2n) with n ≥ 2
and γ being 1-non-degenerate, i.e., (i1(γ), ν1(γ)) with ν1(γ) = 0;

1990, Y. Long-E. Zehnder: for any path γ in Sp(2) and γ being
1-non-degenerate, i.e., (i1(γ), ν1(γ)) with ν1(γ) = 0;

1990, Y. Long, C. Viterbo (independently): for any path γ in
Sp(2n) and γ may be 1-degenerate, i.e., (i1(γ), ν1(γ)) with
ν1(γ) ≥ 0;

1999, Y. Long: for any path γ in Sp(2n) with respect to every
ω ∈ U, i.e., (iω(γ), νω(γ)) with νω(γ) ≥ 0.



Important observation:

ω-index change implies the existence of some eigenvalue ω

iω(ξ)− iω(γ) 6= 0 ⇒ ω ∈ σ(γβ,e(2π))

for some point (β, e), where M = γβ,e(2π).



Main results of Hu-Long-Sun, 2012:

Main Theorem 1. (X. Hu-Y. Long-S. Sun) The ELS is
1-nondegenerate when (β, e) ∈ (0, 9]× [0, 1). Specially we have

i1(γβ,e) = 0 and ν1(γβ,e) =

{
3, if β = 0,
0, if β ∈ (0, 9],

e ∈ [0, 1).

Thus no eigenvalues of γβ,e(2π) can escape from U at 1 as β > 0!



Main results of Hu-Long-Sun, 2012:

Main Theorem 2. (X. Hu-Y. Long-S. Sun) In the (β, e) rectangle
(0, 9]× [0, 1) there exist three distinct continuous curves from left
to right: two −1-degeneracy curves Γs and Γm going up from
(3/4, 0) with tangents −

√
33/4 and

√
33/4 respectively and

converges to (0, 1), and the Krein collision eigenvalue curve Γk

going up from (1, 0) and converges to (0, 1) as e increases from 0
to 1; each of them intersects every horizontal segment
e = constant ∈ [0, 1) only once.

Moreover the linear stability pattern of γβ,e(2π) as well as that
of the ELS zβ,e changes if and only if (β, e) passes through one of
these three curves Γs , Γm and Γk .



Three separating curves and linear stability subregions



New observations and ideas (I) Reduction to a 2nd order OD
operator.
Let

ξβ,e(t) =

(
R(t) 0

0 R(t)

)
γβ,e(t), R(t) =

(
cos t − sin t
sin t cos t

)
,

for all t ∈ [0, 2π]. Then ξβ,e(2π) = γβ,e(2π), ξβ,e ∼ γβ,e , and it is
the fundamental solution of:

ẏ(t) = JBβ,e(t)y(t), y(2π) = y(0),

with Bβ,e(t) =

(
I2 0
0 I2 − R(t)Kβ,e(t)R(t)T

)
,

Recall : Bβ,e(t) =

(
I2 −J
J I2 − Kβ,e(t)

)
.

For ω ∈ U, Bβ,e corresponds to a self-adjoint linear operator:

A(β, e) = − d2

dt2
I2 − I2 + R(t)Kβ,e(t)R(t)T , defined on

D(ω) = {y ∈ W 2,2([0, 2π],C2) | y(2π) = ωy(0), ẏ(2π) = ωẏ(0)}.



New observations and ideas (II) Index monotonicity.
Fix e ∈ [0, 1) and ω ∈ U. On D(ω) we have:

A(β, e) = − d2

dt2
I2 − I2 + R(t)Kβ,e(t)R(t)T

= − d2

dt2
I2 − I2 +

1

2(1 + e cos t)
(3I2 +

√
9− βS(t))

≡
√

9− β Â(β, e),

where for β ∈ [0, 9),

Â(β, e) =
A(9, e)√

9− β
+

S(t)

2(1 + e cos t)
, S(t) =

(
cos 2t sin 2t
sin 2t − cos 2t

)
.



New observations and ideas (II) Index monotonicity.
Main Lemma 1. For β near β0, the eigenvalues λ(β) near
λ(β0) = 0 of Â(β, e) satisfies

d

dβ
λ(β)|β=β0 > 0.

In fact, we have

λ(β) = λ(β)ξ(β) · ξ(β) = Â(β, e)ξ(β) · ξ(β).

Differentiating both sides yields

d

dβ
λ(β)|β=β0 = (

∂

∂β
Â(β, e))ξ(β) · ξ(β)|β=β0

+ 2Â(β, e)ξ(β) · ( d

dβ
ξ(β))|β=β0

=
A(9, e)ξ(β) · ξ(β)

2(9− β)3/2
|β=β0 > 0.



Main Lemma 2. Fix e ∈ [0, 1). For any ω ∈ U, when β increases
in (0, 9], the index iω(γβ,e) is non-increasing, i.e.,

#{negative eigenvalues of A(β, e)} is non− increasing.

Here iω(γβ,e) = iω(A(β, e)) = iω(Â(β, e))

= #{negative eigenvalues of Â(β, e)|D(ω)}.



New observations and ideas (III) Studies on the three
boundary segments of [0, 9]× [0, 1)

On the boundary segment {0} × [0, 1)
For every e ∈ [0, 1), we have

γ0,e(2π) ≈ I2�
(

1 1
0 1

)
,

iω(γ0,e) =

{
0,
2,

νω(γ0,e) =

{
3, when ω = 1,
0, when ω ∈ U \ {1}.



On the boundary segment {9} × [0, 1)
For every e ∈ [0, 1), we have

γ9,e(2π) ≈ D(λ)�D(λ) with some 0 < λ 6= 1,

iω(γ9,e) = 0, νω(γ9,e) = 0, ∀ ω ∈ U.

On the boundary segment (0, 9]× {0}
We have

For 0 < β < 3/4 : γβ,0(2π) ≈ R(θ1)�R(θ2) with θ1, θ2 ∈ (π, 2π),

i1(γβ,0) = 0, i−1(γβ,0) = 2, ν±1(γβ,0) = 0,

For β = 3/4 : γ3/4,0(2π) ≈ −I2�R(θ2) with θ2 ∈ (π, 2π),

i±1(γ3/4,0) = 0, ν1(γ3/4,0) = 0, ν−1(γ3/4,0) = 3,

For 3/4 < β ≤ 1 : σ(γβ,0(2π)) ⊂ U \ {±1},
i±1(γβ,0) = 0, ν±1(γβ,0) = 0;

For 1 < β ≤ 9 : σ(γβ,0(2π)) ∩U = ∅,
i±1(γβ,0) = 0, ν±1(γβ,0) = 0.



Main new results
Main Theorem 1 (Hu-Long-Sun, 2012).

i1(γβ,e) = 0, ∀ (β, e) ∈ [0, 9]× [0, 1),

ν1(γβ,e) =

{
3, if β = 0,
0, if β ∈ (0, 9],

e ∈ [0, 1).

That is, the ELS is non-degenerate when β > 0.

Idea of the proof.
(1) Fix e ∈ [0, 1). By The Main Lemma 2 and our computations of
i1(γβ,e) on the two boundaries {β = 0} and {β = 9}, we obtain

0 = i1(γ0,e) ≥ i1(γβ,e) ≥ i1(γ9,e) = 0,

then 0 = i1(γβ,e) = i1(A(β, e)) = i1(Â(β, e)) ∀β ∈ [0, 9].

(2) If Â(β0, e) has an eigenvalue λ(β0) = 0 for some β0 ∈ (0, 9),
then Main Lemma 1 implies d

dβλ(β0) > 0, and thus

i1(Â(β, e)) > 0 for some β < β0 close to β0. Contradiction !



Main new results
Main Theorem 1 (Hu-Long-Sun, 2012).

i1(γβ,e) = 0, ∀ (β, e) ∈ [0, 9]× [0, 1),

ν1(γβ,e) =

{
3, if β = 0,
0, if β ∈ (0, 9],

e ∈ [0, 1).

That is, the ELS is non-degenerate when β > 0.
Idea of the proof.
(1) Fix e ∈ [0, 1). By The Main Lemma 2 and our computations of
i1(γβ,e) on the two boundaries {β = 0} and {β = 9}, we obtain

0 = i1(γ0,e) ≥ i1(γβ,e) ≥ i1(γ9,e) = 0,

then 0 = i1(γβ,e) = i1(A(β, e)) = i1(Â(β, e)) ∀β ∈ [0, 9].

(2) If Â(β0, e) has an eigenvalue λ(β0) = 0 for some β0 ∈ (0, 9),
then Main Lemma 1 implies d

dβλ(β0) > 0, and thus

i1(Â(β, e)) > 0 for some β < β0 close to β0. Contradiction !



Because 1 6∈ σ(γβ,e(2π)) for β > 0, there are only 2 possible ways
for eigenvalues to escape from U as shown in the Figure, i.e., from
−1 or from Krein collision eigenvalues.



Theorem 3 (Hu-Long-Sun, 2012). For every e ∈ [0, 1), the −1
index i−1(γβ,e) is non-increasing, and strictly decreasing precisely
on two values of β = β1(e) and β = β2(e) ∈ (0, 9), at which
−1 ∈ σ(γβ,e(2π)) holds. For e ∈ [0, 1), define

βs(e) = min{β1(e), β2(e)} and βm(e) = max{β1(e), β2(e)},
Γs = {(βs(e), e) | e ∈ [0, 1)} and Γm = {(βm(e), e) | e ∈ [0, 1)}.

They form the two −1-degeneracy curves in [0, 9]× [0, 1).



Idea of the proof.
Because i−1(γ0,e) = 2 and i−1(γ9,e) = 0, there exist two β1(e) and
β2(e) such that i−1(γβ,e) strictly decreases by 1 when β passes
βi (e). Here it is possible that β1(e) = β2(e) and i−1(γβ,e) strictly
decreases by 2 when β passes β1(e).

Specially −1 ∈ σ(γβi (e),e(2π)) holds for i = 1 and 2.



Idea of the proof (continued): Let

B(e, ω) = A(9, e)−
1
2

1

2(1 + e cos(t))
S(t)A(9, e)−

1
2 .

Here B(e, ω) depends on ω, because A(9, e) is defined on
D(ω, 2π).

Lemma. For any ω boundary condition and e ∈ (0, 9), A(β, e) is
ω degenerate if and only if λ(e, β, ω) = −1√

9−β
∈ σp(B(e, ω)).

Here B(β, e) depends on e analytically. Thus λ(e, β, ω) depends
on e analytically by Operator Theory ([Kato]). Thus the above
Lemma yields the analyticity of βi (e) in e ∈ (−1, 1), and then Γs

and Γm are well defined and have at most isolated intersection
points.



Theorem 4-(I) (Hu-Long-Sun, 2012). Let e ∈ [0, 1). We have

(i) i−1(γβ,e) =


2, if 0 ≤ β < βs(e),
1, if βs(e) ≤ β < βm(e),
0, if βm(e) ≤ β ≤ 9,

(ii) γβ,e(2π) ≈ R(θ1)�R(θ2) for some θ1 and θ2 ∈ (π, 2π), and
thus is strongly linearly stable, when 0 < β < βs(e);

(iii) γβ,e(2π) ≈ D(λ)�R(θ)) for some 0 > λ 6= −1 and θ ∈ (π, 2π),
and it is hyperbolic-elliptic and thus linearly unstable, when
βs(e) < β < βm(e).



Idea of the proof Theorem 4-(I)-(ii). When 0 < β < βs(e), let
M = γβ,e(2π). Because σ(M) ⊂ U \ R when 0 < β < βs(e) (no
eigenvalues ±1 and hyperbolic ones), we obtain

2 = i−1(γβ,e)

= i1(γβ,e) + S+
M(1) +

2∑
i=1

(−S−M(ωi ) + S+
M(ωi ))− S−M(−1)

=
2∑

i=1

(−S−M(ωi ) + S+
M(ωi )) ≤

2∑
i=1

S+
M(ωi ) ≤ 2.

Then we get 2 = S+
M(ω1) + S+

M(ω2). It implies
γβ,e(2π) ≈ R(θ1)�R(θ2) for some θ1 and θ2 ∈ (π, 2π),

and thus is strongly linearly stable.



Theorem 5 (Hu-Long-Sun, 2012). For every e ∈ [0, 1) we define

βk(e) = inf{β ∈ [0, 9] | σ(γβ,e(2π)) ∩U = ∅},
Γk = {(βk(e), e) ∈ [0, 9]× [0, 1) | e ∈ [0, 1)}.

Then (i) βs(e) ≤ βm(e) ≤ βk(e) < 9 holds for all e ∈ [0, 1);

(ii) Γk is the boundary curve of the hyperbolic region of γβ,e(2π)
in the (β, e) rectangle [0, 9]× [0, 1);

(iii) Γk is continuous in e ∈ [0, 1), starts from (1, 0) and goes up,
lime→1 βk(e) = 0, and Γk is distinct from Γm.



Idea of the proof. (A)
γβ1,e(2π) is hyperbolic ⇒ i−1(γβ1,e) = 0 by Theorem 4-(I).

Similarly iω(γβ1,e) = 0 ∀ω ∈ U

Main Lemma 2 ⇒ iω(γβ,e) = 0 ∀ω ∈ U and β ∈ (β1, 9]

Main Lemma 1 ⇒ νω(γβ,e(2π)) = 0 ∀ω ∈ U and β ∈ (β1, 9],
i.e., γβ,e(2π) is hyperbolic,

i.e., the hyperbolic subregion of γβ,e(2π) is connected. Then Γk is
well-defined and contains one point on each {e = const.}.
(B) Other hard parts: to prove the continuity of Γk , and
βk(e) → 0 as e → 1.



Theorem 4-(II) (Hu-Long-Sun, 2012). Let e ∈ [0, 1). We have

(iv) γβ,e(2π) ≈ R(θ1)�R(θ2) for some θ1 ∈ (0, π) and θ2 ∈ (π, 2π)
with 2π − θ2 < θ1, and thus is strongly linearly stable, when
βm(e) < β < βk(e).



Theorem 6 (Hu-Long-Sun, 2012). Let e ∈ [0, 1).
(i) If βs(e) < βm(e), γβs(e),e(2π) ≈ N1(−1, 1)�R(θ) for some
θ ∈ (π, 2π), and is spectrally stable and linearly unstable;
(ii) If βs(e) = βm(e) < βk(e), γβs(e),e(2π) ≈ −I2�R(θ) for some
θ ∈ (π, 2π), and is inearly stable, but not strongly linearly stable;
(iii) If βs(e) < βm(e) < βk(e), γβm(e),e(2π) ≈ N1(−1,−1)�R(θ)
for some θ ∈ (π, 2π), and is spectrally stable and linearly unstable;

(iv) If βs(e) ≤ βm(e) < βk(e), γβk (e),e(2π) ≈ N2(e
√
−1θ, b) for

some θ ∈ (0, π) and (b2 − b3) sin θ > 0, and is spectrally stable
and linearly unstable;
(v) If βs(e) < βm(e) = βk(e), either
γβk (e),e(2π) ≈ N1(−1, 1)�D(λ) for some −1 6= λ < 0 and is
linearly unstable; or γβk (e),e(2π) ≈ N2(−1, c) with c1, c2 ∈ R and
c2 6= 0, and is spectrally stable and linearly unstable;
(vi) If βs(e) = βm(e) = βk(e), either γβk (e),e(2π) ≈ M2(−1, c)
with c1 ∈ R and c2 = 0 which possesses basic normal form
N1(−1, 1)�N1(−1, 1), or γβk (e),e(2π) ≈ N1(−1, 1)�N1(−1, 1); and
thus is spectrally stable and linearly unstable.



New estimate of Yuwei Ou, 2012:

Theorem. (Y. Ou, 2012) γβ,e(2π) is hyperbolic for all (β, e) in
rectangle (8, 9]× [0, 1), i.e.,

σ(γβ,e(2π)) ⊂ C \U, ∀ (β, e) ∈ (8, 9]× [0, 1).



Further open problems
(i) Precise locations of the three curves Γs , Γm and Γk ;
(ii) No intersection of Γs and Γm;
(iii) The coincidence part of Γm and Γk ;
(iv) Classification of real and complex hyperbolic cases;
(v) Applications to other problems.



Thank you !


