Stability of elliptic Lagrangian solutions of the classical three body problem via index theory

Yiming Long
Chern Institute of Mathematics
Nankai University

at BIRS, Banff
January 18th, 2013

Contents

1. A brief introduction on the Lagrangian solution and studies on its linear stability;
2. New results and main ideas in the proof.
3. Open problems

Based on the recent joint work of:
Xijun Hu, Yiming Long and Shanzhong Sun:
Linear stability of elliptic Lagrangian solutions of the classical planar three-body problem via index theory. arXiv: 1206:6162v1, 2012

We consider the classical planar three-body problem in celestial mechanics. Denote by $q_{1}, q_{2}, q_{3} \in \mathbf{R}^{2}$ the position vectors of three particles with masses $m=\left(m_{1}, m_{2}, m_{3}\right) \in\left(\mathbf{R}^{+}\right)^{3}$ respectively. By Newton's second law and the law of universal gravitation, the system of equations for this problem is

$$
\begin{equation*}
m_{i} \ddot{q}_{i}=\frac{\partial U(q)}{\partial q_{i}}, \quad \text { for } \quad i=1,2,3 \tag{1}
\end{equation*}
$$

where

$$
U(q)=U\left(q_{1}, q_{2}, q_{3}\right)=\sum_{1 \leq i<j \leq 3} \frac{m_{i} m_{j}}{\left|q_{i}-q_{j}\right|}
$$

is the potential function by using the standard norm $|\cdot|$ of vector in \mathbf{R}^{2}.

For periodic solutions with period $\tau>0$, the system is the Euler-Lagrange equation of the action functional

$$
\mathcal{A}_{\tau}(q)=\int_{0}^{\tau}\left[\sum_{i=1}^{3} \frac{m_{i}\left|\dot{q}_{i}(t)\right|^{2}}{2}+U(q(t))\right] d t
$$

defined on the loop space $W^{1,2}(\mathbf{R} / \tau \mathbf{Z}, X)$, where

$$
X \equiv\left\{q=\left(q_{1}, q_{2}, q_{3}\right) \in\left(\mathbf{R}^{2}\right)^{3} \mid \sum_{i=1}^{3} m_{i} q_{i}=0, q_{i} \neq q_{j}, \forall i \neq j\right\}
$$

is the configuration space of the planar three-body problem. Each τ-periodic solution to (1) appears to be a critical point of the action functional \mathcal{A}_{τ}.

In 1772, J. Lagrange discovered his τ-periodic elliptic solutions of the 3-BP (ELS for short): $q(t)=r(t) R(\theta(t)) q(0)$, with $q(0) \in\left(\mathbf{R}^{2}\right)^{3}, r(t)>0$, and $R(\theta)=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ for $\theta \in \mathbf{R}$. Here, $q(0)$ and consequently $q(t)$ always form an equilateral triangle (central configuration), and $(r(t) \cos \theta(t), r(t) \sin \theta(t))$ in \mathbf{R}^{2} describes elliptic curves depending on the period, masses, and eccentricity, which are solutions of the two body Kepler problem, if $q(0)$ is not collinear. Denote these τ-periodic ELS by $q_{m, e}(t)$.

Figure: Sun, Jupiter and Trojan stars

We write the $3-\mathrm{BP}$ system (1) into a Hamiltonian system:

$$
\begin{equation*}
\dot{z}=J H^{\prime}(z), \quad z(\tau)=z(0) . \tag{2}
\end{equation*}
$$

with $z=(p, q)=\left(p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}\right) \in\left(\mathbf{R}^{2}\right)^{6}, p(t)=\bar{M} \dot{q}(t)$, and

$$
H(z)=H(p, q)=\sum_{i=1}^{3} \frac{\left|p_{i}\right|^{2}}{2 m_{i}}-U(q), \quad J=\left(\begin{array}{cc}
0 & -I_{2} \\
l_{2} & 0
\end{array}\right)
$$

with $\bar{M}=\operatorname{diag}\left(m_{1}, m_{1}, m_{2}, m_{2}, m_{3}, m_{3}\right)$. The linearized Hamiltonian system at $z_{m, e}(t)=\left(\bar{M} \dot{q}_{m, e}(t), q_{m, e}(t)\right) \in\left(\mathbf{R}^{2}\right)^{6}$ is given by

$$
\begin{equation*}
\dot{y}(t)=J H^{\prime \prime}\left(z_{m, e}(t)\right) y(t), \quad y(\tau)=y(0) \tag{3}
\end{equation*}
$$

whose fundamental solution $\psi=\psi_{m, e}(t)$ satisfies $\psi(0)=I_{12}$ and $\psi_{m, e}(t) \in \operatorname{Sp}(12)=\left\{M \in \operatorname{GL}\left(\mathbf{R}^{12}\right) \mid M^{T} J M=J\right\}$ for all $t \in[0, \tau]$.

Our main concern is the linear stability of these ELS, which is determined by $\psi_{m, e}(\tau)$ and its eigenvalues. Let $\mathbf{U}=\{z \in \mathbf{C}| | z \mid=1\}$.

Definition:

$M \in \operatorname{Sp}(2 n)$ is spectrally stable, if $\sigma(M) \subset \mathbf{U}$,
$M \in \operatorname{Sp}(2 n)$ is linearly stable,

$$
\text { if } \sigma(M) \subset \mathbf{U} \text { and } M \text { is semi - simple, }
$$

if and only if $\sup _{m>1}\left\|M^{m}\right\|<+\infty$.
$M \in \operatorname{Sp}(2 n)$ is strongly linearly stable,

$$
\begin{aligned}
& \text { if } \exists \epsilon>0 \text { such that } N \text { is linearly stable } \\
& \text { whenever }\|M-N\|<\epsilon .
\end{aligned}
$$

M is semi-simple, if its minimal polynomial is the product of relatively prime irreducible polynomials.

Let $M \in \operatorname{Sp}(2 n)$. Then possible eigenvalue distributions of M are:
1 is of even multiplicities; -1 is of even multiplicities;
$e, \bar{e} \in$
$\mathbf{U} \backslash \mathbf{R}$;
$b, b^{-1} \in \mathbf{R} \backslash\{0, \pm 1\} ;$
$a, a^{-1}, \bar{a}, \bar{a}^{-1} \in \mathbf{C} \backslash(\mathbf{U} \cup \mathbf{R})$.

Thus there are 3 possible ways for eigenvalues to escape from \mathbf{U} as shown in the Figure.

Figure: Circular solution of the 3-body problem with $e=0$
Earlier studies on the linear stability:
M.Gascheau (1843) and E.Routh (1875) for circular orbits, i.e., $e=0$. J.Danby (1964), G.Roberts (2003): for $e \geq 0$ sufficiently small, by perturbation method.

Consider the linearized Hamiltonian system at $z_{m, e}(t)$:

$$
\dot{y}(t)=J H^{\prime \prime}\left(z_{m, e}(t)\right) y(t), \quad y(\tau)=y(0)
$$

with fundamental solution $\psi_{m, e}(t) \in \operatorname{Sp}(12)$ and $\psi_{m, e}(0)=I_{12}$. First integrals of (1):
(i) (Integral of the center of masses)

$$
\sum_{i=1}^{n} m_{i} q_{i}(t)=V_{1} t+V_{2}=0 .(2-\operatorname{dim} .)
$$

(ii) (Integral of the linear momentum) $\sum_{i=1}^{3} m_{i} \dot{q}_{i}(t)=V_{1}=0$. (2-dim.)
(iii) (Integral of the energy) $\frac{1}{2} \sum_{i=1}^{n} m_{i}\left|\dot{q}_{i}(t)\right|^{2}-U(q(t))=h$. (periodic solution) $\ddot{z}(t)=J H^{\prime \prime}(z(t)) \dot{z}(t)$. (in total 2-dim.)
(iv) (Integral of the angular momentum) $\sum_{i=1}^{n} m_{i} q_{i} \times \dot{q}_{i}(t)=0$.
(2-dim.)
Thus $1 \in \sigma\left(\psi_{m, e}(\tau)\right)$ has always algebraic multiplicity at least 8 in total.
K.Meyer and D.Schmidt (2005): Using the central configuration coordinates, they decomposed the linearized Hamiltonian system at ELS into two parts symplectically:

$$
\psi_{m, e}(\tau)=P^{-1}\left[\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right) \diamond\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \diamond\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \diamond /_{2} \diamond M\right] P
$$

(i) the 8 eigenvalue 1 stays always for all $(m, e) \in\left(\mathbf{R}^{+}\right)^{3} \times[0,1)$;
(ii) the other part corresponding to M is the 4-dim. essential part for the linear stability, which can be transformed to a linear system with coefficient matrix:

$$
\bar{B}(\theta)=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 \\
0 & -1 & \frac{2 e \cos \theta-1-\sqrt{9-\beta}}{2(1+e \cos \theta)} & 0 \\
1 & 0 & 0 & \frac{2 e \cos \theta-1+\sqrt{9-\beta}}{2(1+e \cos \theta)}
\end{array}\right)
$$

where $t \in[0, \tau]$ is transformed to the true anomaly $\theta \in[0,2 \pi]$. They studied also the linear stability for $e \geq 0$ small enough.

Rewrite Meyer and Schmidt's essential part (4-dim. linearized Hamiltonian system) for ELS as (use t to replace θ):

$$
\begin{aligned}
& \dot{y}(t)=J B_{\beta, e}(t) y(t), \quad y(2 \pi)=y(0), \\
& B_{\beta, e}(t)=\left(\begin{array}{cc}
I_{2} & -J \\
J & I_{2}-K_{\beta, e}(t)
\end{array}\right),
\end{aligned}
$$

with $K_{\beta, e}(t)=\left(\begin{array}{cc}\frac{3-\sqrt{9-\beta}}{2(1+e \cos t)} & 0 \\ 0 & \frac{3+\sqrt{9-\beta}}{2(1+e \cos t)}\end{array}\right)$, and the mass
parameter β and the eccentricity e satisfy

$$
\beta=\frac{27\left(m_{1} m_{2}+m_{1} m_{3}+m_{2} m_{3}\right)}{\left(m_{1}+m_{2}+m_{3}\right)^{2}} \in[0,9], \quad e \in[0,1)
$$

Denote the fundamental solution of this system by $\gamma_{\beta, e}(t) \in \operatorname{Sp}(4)$, which satisfies $\gamma_{\beta, e}(0)=I_{4}$. The linear stability of $z_{\beta, e} \equiv z_{m, e}(t)$ is determined by $\gamma_{\beta, e}(2 \pi) \in \operatorname{Sp}(4)$.

R.Martínez, A.Samà and C.Simó (2004-2006) Perturbation method for $e \geq 0$ small enough + numerical method:
EE: $\sigma\left(\gamma_{\beta, e}(2 \pi)\right)=\left\{\omega_{1}, \bar{\omega}_{1}, \omega_{2}, \bar{\omega}_{2}\right\}$ with $\omega_{i} \in \mathbf{U} \backslash \mathbf{R}$ for $i=1,2$;
EH: $\sigma\left(\gamma_{\beta, e}(2 \pi)\right)=\left\{\lambda, \lambda^{-1}, \omega, \bar{\omega}\right\}$ for some $-1 \neq \lambda<0$ and
$\omega \in \mathbf{U} \backslash \mathbf{R}$;
HH: $\sigma\left(\gamma_{\beta, e}(2 \pi)\right)=\left\{\lambda_{1}, \lambda_{1}^{-1}, \lambda_{2}, \lambda_{2}^{-1}\right\}$ for some $\lambda_{i} \in \mathbf{R} \backslash\{0, \pm 1\}$ with $i=1,2$;
Complex hyperbolic: $\sigma\left(\gamma_{\beta, e}(2 \pi)\right) \subset \mathbf{C} \backslash(\mathbf{U} \cup \mathbf{R})$.

We are not aware of any rigorous mathematical method on this linear stability problem which works for the full range of parameters $(\beta, e) \in[0,9] \times[0,1)$ before $2010!$

Difficulty: due to the substantial dependence of the coefficients on t when $0<e<1$:

$$
\begin{aligned}
\dot{y}(t) & =J\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 \\
0 & -1 & \frac{2 e \cos (t)-1-\sqrt{9-\beta}}{2(1+e \cos (t))} & 0 \\
1 & 0 & 0 & \frac{2 e \cos (t)-1+\sqrt{9-\beta}}{2(1+e \cos (t))}
\end{array}\right) y(t), \\
y(2 \pi) & =y(0) .
\end{aligned}
$$

Preparations for further results:

W.Gordon (1977) The Kepler elliptic orbit $q=q(t)$ is the solution of the equation

$$
\ddot{q}(t)=-\frac{q(t)}{|q(t)|^{3}} .
$$

The functional

$$
f(q)=\int_{0}^{\tau}\left(\frac{1}{2}|\dot{q}(t)|^{2}+\frac{1}{|q(t)|}\right) d t
$$

attains its minimum in $W^{1,2}\left(\mathbf{R} /(\tau \mathbf{Z}), \mathbf{R}^{2} \backslash\{0\}\right)$ on Kepler elliptic orbits.
A.Venturelli (2001), S.Zhang-Q.Zhou (2001) ELS is a global minimizer of the action $\mathcal{A}(q)$ on the loops in the non-trivial homology class of $W^{1,2}(\mathbf{R} / \tau \mathbf{Z}, X)$. Specially its Morse index satisfies

$$
i_{1}(\mathrm{ELS})=0 .
$$

For any $M, N \in \operatorname{Sp}(2 n)$, we write $M \approx N$ if $\exists P \in \operatorname{Sp}(2 n)$ s.t. $M=P^{-1} N P$ holds.

$$
\begin{aligned}
& D(\lambda)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right), \quad R(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right), \\
& N_{1}(\lambda, a)=\left(\begin{array}{cc}
\lambda & a \\
0 & \lambda
\end{array}\right), \quad N_{2}\left(e^{\sqrt{-1} \theta}, b\right)=\left(\begin{array}{ccc}
R(\theta) & b \\
0 & R(\theta)
\end{array}\right), \\
& N_{2}(-1, c)=\left(\begin{array}{cccc}
-1 & 1 & c_{1} & 0 \\
0 & -1 & c_{2} & c_{2} \\
0 & 0 & -1 & 0 \\
0 & 0 & -1 & -1
\end{array}\right),
\end{aligned}
$$

where $b=\left(\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right)$, and $\lambda, a, \theta, b_{i}, c_{i} \in \mathbf{R}$.

Theorem. (X.Hu and S.Sun, 2010, Advances in Math.)

(I) $2 \leq i_{1}\left(z_{\beta, e}^{2}\right) \leq 4$ holds always;

Suppose $\gamma_{\beta, e}(2 \pi)^{2}$ is non-degenerate, i.e., $1 \notin \sigma\left(\gamma_{\beta, e}(2 \pi)^{2}\right)$. Then (II-1) If $i_{1}\left(z_{\beta, e}^{2}\right)=4$, then $\gamma_{\beta, e}(2 \pi) \approx R\left(\theta_{1}\right) \diamond R\left(\theta_{2}\right)$ holds for some θ_{1} and $\theta_{2} \in(\pi, 2 \pi)$, and ELS is linearly stable;
(II-2) If $i_{1}\left(z_{\beta, e}^{2}\right)=3$, then $\gamma_{\beta, e}(2 \pi) \approx D(\lambda) \diamond R(\theta)$ for some $-1 \neq \lambda<0$ and $\theta \in(\pi, 2 \pi)$, and ELS is linearly unstable;
(II-3) If $i_{1}\left(z_{\beta, e}^{2}\right)=2$ and $\exists k \geq 3$ such that $i_{1}\left(z_{\beta, e}^{k}\right)>2(k-1)$, then $\gamma_{\beta, e}(2 \pi) \approx R\left(2 \pi-\theta_{1}\right) \diamond R\left(\theta_{2}\right)$ holds with $0<\theta_{1}<\theta_{2}<\pi$, and ELS is linearly stable;
(II-4) If $i_{1}\left(z_{\beta, e}^{k}\right)=2(k-1)$ for all $k \in \mathbf{N}$, then $\gamma_{\beta, e}(2 \pi)$ and $E L S$ are hyperbolic or spectrally stable and linearly unstable.

As usual, $z_{\beta, e}^{k}(t)=z_{\beta, e}(k t)$ is used for all $k \in \mathbf{N}$.

Advantage of Hu-Sun's Theorem:

$\langle 1\rangle$ The first method which works for the full range of parameters $(\beta, e) \in[0,9] \times[0,1)$;
<2 Based on different iterated Morse indices of regions, some regions of linear stability are given (not all).

Further understanding needed after Hu-Sun's Theorem:
$\langle 1\rangle$ The non-degeneracy assumption (on $\gamma_{\beta, e}(2 \pi)^{2}$) needs to be understood.
<2 \rangle The classification is based on the values of iterated Morse indices, but is not directly related to the two parameters;
$\langle 3\rangle$ No information is given on properties of the shape of the curves which separate the linear stability regions and their behaviors in the rectangle $(\beta, e) \in[0,9] \times[0,1)$.
$\langle 4\rangle$ The (II-4) case is not clear.

A brief introduction on ω-index theory of symplectic matrix paths starting from the identity matrix /
Let $M \in \operatorname{Sp}(2)$, Then we have:

$$
M=\left(\begin{array}{cc}
r & z \\
z & \frac{1+z^{2}}{r}
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \leftrightarrow(r, \theta, z) \in \mathbf{R}^{3} \backslash\{z-\text { axis }\}
$$

$$
1 \in \sigma(M) \Leftrightarrow \operatorname{det}(M-I)=0 \Leftrightarrow\left(r^{2}+z^{2}+1\right) \cos \theta=2 r .
$$

$$
\begin{aligned}
\operatorname{Sp}(2)_{1}^{0}= & \{M \in \operatorname{Sp}(2) \mid 1 \in \sigma(M)\} \\
& =\left\{(r, \theta, z) \in \mathbf{R}^{3} \backslash\{z-\text { axis }\} \mid\left(r^{2}+z^{2}+1\right) \cos \theta=2 r\right\}
\end{aligned}
$$

Figure: Graph of $\mathrm{Sp}(2)_{1}^{0}$

Figure: Graph of $\mathrm{Sp}(2)_{1}^{0}$ when $z=0$

For $\gamma \in C([0, \tau], \operatorname{Sp}(2 n))$ with $\gamma(0)=I$, we define

$$
\begin{aligned}
\nu_{1}(\gamma)= & \operatorname{dim} \operatorname{ker}(\gamma(\tau)-I), \\
i_{1}(\gamma)= & {\left[\gamma * \xi: \operatorname{Sp}(2 n)_{1}^{0}\right], \quad \text { if } \nu_{1}(\gamma)=0, } \\
i_{1}(\gamma)= & \min \left\{i_{1}(\phi) \mid \nu_{1}(\phi)=0 \text { and } \phi \text { is suff. close to } \gamma\right\}, \\
& \text { if } \nu_{1}(\gamma)>0 .
\end{aligned}
$$

Similarly, for every $\omega \in \mathbf{U}$ we define

$$
\begin{aligned}
\nu_{\omega}(\gamma)= & \operatorname{dim}_{\mathbf{C}} \operatorname{ker}_{\mathbf{C}}(\gamma(\tau)-\omega l), \\
i_{\omega}(\gamma)= & {\left[\gamma * \xi: \operatorname{Sp}(2 n)_{\omega}^{0}\right], \quad \text { if } \nu_{\omega}(\gamma)=0, } \\
i_{\omega}(\gamma)= & \min \left\{i_{1}(\phi) \mid \nu_{\omega}(\phi)=0 \text { and } \phi \text { is suff. close to } \gamma\right\}, \\
& \text { if } \nu_{\omega}(\gamma)>0 .
\end{aligned}
$$

$$
\left(i_{\omega}(\gamma), \nu_{\omega}(\gamma)\right) \in \mathbf{Z} \times\{0,1, \ldots, 2 n\}, \quad \forall \omega \in \mathbf{U}
$$

Figure: Graph of $\operatorname{Sp}(2)_{\omega}^{0}$ when $z=0$

For second order Hamiltonian system, the following theorem on the relation of the Morse index $i_{\omega}\left(q_{m, e}, \mathcal{A}_{\tau}\right)$ and nullity $\nu_{\omega}\left(q_{m, e}, \mathcal{A}_{\tau}\right)$ of \mathcal{A}_{τ} at $q_{m, e}$ and the ω-index $i_{\omega}\left(\psi_{m, e}\right)$ and ω-nullity $\nu_{\omega}\left(\psi_{m, e}\right)$ of $\psi_{m, e}$) hold:
Theorem. ([Viterbo,1990], [An-Long, 1998], [Long-An,1998]) For every $\omega \in \mathbf{U}$, there hold

$$
i_{\omega}\left(q_{m, e}, \mathcal{A}_{\tau}\right)=i_{\omega}\left(\psi_{m, e}\right), \quad \nu_{\omega}\left(q_{m, e}, \mathcal{A}_{\tau}\right)=\nu_{\omega}\left(\psi_{m, e}\right)
$$

Lemma. ([Hu-Sun,2010]) For every $\omega \in \mathbf{U}$, there hold

$$
\begin{aligned}
& i_{\omega}\left(\gamma_{\beta, e}\right)=i_{\omega}\left(\psi_{m, e}\right)=i_{\omega}\left(q_{m, e}, \mathcal{A}_{\tau}\right) \\
& \nu_{\omega}\left(\gamma_{\beta, e}\right)=\nu_{\omega}\left(\psi_{m, e}\right)=\nu_{\omega}\left(q_{m, e}, \mathcal{A}_{\tau}\right)
\end{aligned}
$$

Specially

$$
i_{1}\left(\gamma_{\beta, e}\right)=i_{1}\left(\psi_{m, e}\right)=i_{1}\left(q_{m, e}, \mathcal{A}_{\tau}\right)=0, \quad \forall(\beta, e) \in[0,9] \times[0,1)
$$

Such index theories were defined by

1984, C. Conley-E. Zehnder: for any path γ in $\operatorname{Sp}(2 n)$ with $n \geq 2$ and γ being 1-non-degenerate, i.e., $\left(i_{1}(\gamma), \nu_{1}(\gamma)\right)$ with $\nu_{1}(\gamma)=0$;
1990, Y. Long-E. Zehnder: for any path γ in $\operatorname{Sp}(2)$ and γ being 1-non-degenerate, i.e., $\left(i_{1}(\gamma), \nu_{1}(\gamma)\right)$ with $\nu_{1}(\gamma)=0$;
1990, Y. Long, C. Viterbo (independently): for any path γ in $\operatorname{Sp}(2 n)$ and γ may be 1-degenerate, i.e., $\left(i_{1}(\gamma), \nu_{1}(\gamma)\right)$ with $\nu_{1}(\gamma) \geq 0$;

1999, Y. Long: for any path γ in $\operatorname{Sp}(2 n)$ with respect to every $\omega \in \mathbf{U}$, i.e., $\left(i_{\omega}(\gamma), \nu_{\omega}(\gamma)\right)$ with $\nu_{\omega}(\gamma) \geq 0$.

Important observation:

ω-index change implies the existence of some eigenvalue ω

$$
i_{\omega}(\xi)-i_{\omega}(\gamma) \neq 0 \Rightarrow \omega \in \sigma\left(\gamma_{\beta, e}(2 \pi)\right)
$$

for some point (β, e), where $M=\gamma_{\beta, e}(2 \pi)$.

Main results of Hu-Long-Sun, 2012:

Main Theorem 1. (X. Hu-Y. Long-S. Sun) The ELS is
1 -nondegenerate when $(\beta, e) \in(0,9] \times[0,1)$. Specially we have
$i_{1}\left(\gamma_{\beta, e}\right)=0 \quad$ and $\quad \nu_{1}\left(\gamma_{\beta, e}\right)=\left\{\begin{array}{l}3, \\ 0,\end{array} \quad\right.$ if $\beta \in(0,9], \quad e \in[0,1)$.
Thus no eigenvalues of $\gamma_{\beta . e}(2 \pi)$ can escape from \mathbf{U} at 1 as $\beta>0$!

Main results of Hu-Long-Sun, 2012:

Main Theorem 2. (X. Hu-Y. Long-S. Sun) In the (β, e) rectangle $(0,9] \times[0,1)$ there exist three distinct continuous curves from left to right: two -1-degeneracy curves Γ_{s} and Γ_{m} going up from $(3 / 4,0)$ with tangents $-\sqrt{33} / 4$ and $\sqrt{33} / 4$ respectively and converges to $(0,1)$, and the Krein collision eigenvalue curve Γ_{k} going up from $(1,0)$ and converges to $(0,1)$ as e increases from 0 to 1 ; each of them intersects every horizontal segment $e=$ constant $\in[0,1)$ only once.

Moreover the linear stability pattern of $\gamma_{\beta, e}(2 \pi)$ as well as that of the $E L S z_{\beta, e}$ changes if and only if (β, e) passes through one of these three curves Γ_{s}, Γ_{m} and Γ_{k}.

Three separating curves and linear stability subregions

New observations and ideas (I) Reduction to a 2nd order OD operator.
Let

$$
\xi_{\beta, e}(t)=\left(\begin{array}{cc}
R(t) & 0 \\
0 & R(t)
\end{array}\right) \gamma_{\beta, e}(t), R(t)=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)
$$

for all $t \in[0,2 \pi]$. Then $\xi_{\beta, e}(2 \pi)=\gamma_{\beta, e}(2 \pi), \xi_{\beta, e} \sim \gamma_{\beta, e}$, and it is the fundamental solution of:

$$
\begin{array}{ll}
& \dot{y}(t)=J \bar{B}_{\beta, e}(t) y(t), \\
\text { with } & \bar{B}_{\beta, e}(t)=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & I_{2}-R(t) K_{\beta, e}(t) R(t)^{T}
\end{array}\right), \\
& \\
\text { ll : } & B_{\beta, e}(t)=\left(\begin{array}{cc}
I_{2} & -J \\
J & I_{2}-K_{\beta, e}(t)
\end{array}\right) .
\end{array}
$$

Recall :

For $\omega \in \mathbf{U}, \bar{B}_{\beta, e}$ corresponds to a self-adjoint linear operator:

$$
\begin{aligned}
& A(\beta, e)=-\frac{d^{2}}{d t^{2}} l_{2}-I_{2}+R(t) K_{\beta, e}(t) R(t)^{T}, \quad \text { defined on } \\
& \bar{D}(\omega)=\left\{y \in W^{2,2}\left([0,2 \pi], \mathbf{C}^{2}\right) \mid y(2 \pi)=\omega y(0), \dot{y}(2 \pi)=\omega \dot{y}(0)\right\} .
\end{aligned}
$$

New observations and ideas (II) Index monotonicity.
Fix $e \in[0,1)$ and $\omega \in \mathbf{U}$. On $\bar{D}(\omega)$ we have:

$$
\begin{aligned}
A(\beta, e) & =-\frac{d^{2}}{d t^{2}} I_{2}-I_{2}+R(t) K_{\beta, e}(t) R(t)^{T} \\
& =-\frac{d^{2}}{d t^{2}} I_{2}-I_{2}+\frac{1}{2(1+e \cos t)}\left(3 I_{2}+\sqrt{9-\beta} S(t)\right) \\
& \equiv \sqrt{9-\beta} \hat{A}(\beta, e)
\end{aligned}
$$

where for $\beta \in[0,9)$,

$$
\hat{A}(\beta, e)=\frac{A(9, e)}{\sqrt{9-\beta}}+\frac{S(t)}{2(1+e \cos t)}, S(t)=\left(\begin{array}{cc}
\cos 2 t & \sin 2 t \\
\sin 2 t & -\cos 2 t
\end{array}\right) .
$$

New observations and ideas (II) Index monotonicity.
Main Lemma 1. For β near β_{0}, the eigenvalues $\lambda(\beta)$ near $\lambda\left(\beta_{0}\right)=0$ of $\hat{A}(\beta, e)$ satisfies

$$
\left.\frac{d}{d \beta} \lambda(\beta)\right|_{\beta=\beta_{0}}>0
$$

In fact, we have

$$
\lambda(\beta)=\lambda(\beta) \xi(\beta) \cdot \xi(\beta)=\hat{A}(\beta, e) \xi(\beta) \cdot \xi(\beta)
$$

Differentiating both sides yields

$$
\begin{aligned}
\left.\frac{d}{d \beta} \lambda(\beta)\right|_{\beta=\beta_{0}}= & \left.\left(\frac{\partial}{\partial \beta} \hat{A}(\beta, e)\right) \xi(\beta) \cdot \xi(\beta)\right|_{\beta=\beta_{0}} \\
& \quad+\left.2 \hat{A}(\beta, e) \xi(\beta) \cdot\left(\frac{d}{d \beta} \xi(\beta)\right)\right|_{\beta=\beta_{0}} \\
= & \left.\frac{A(9, e) \xi(\beta) \cdot \xi(\beta)}{2(9-\beta)^{3 / 2}}\right|_{\beta=\beta_{0}}>0
\end{aligned}
$$

Main Lemma 2. Fix $e \in[0,1)$. For any $\omega \in \mathbf{U}$, when β increases in $(0,9]$, the index $i_{\omega}\left(\gamma_{\beta, e}\right)$ is non-increasing, i.e.,
\# $\{$ negative eigenvalues of $A(\beta, e)\}$ is non - increasing.

Here $i_{\omega}\left(\gamma_{\beta, e}\right)=i_{\omega}(A(\beta, e))=i_{\omega}(\hat{A}(\beta, e))$
$=\#\left\{\right.$ negative eigenvalues of $\left.\left.\hat{A}(\beta, e)\right|_{\bar{D}(\omega)}\right\}$.

New observations and ideas (III) Studies on the three boundary segments of $[0,9] \times[0,1)$

On the boundary segment $\{0\} \times[0,1)$
For every $e \in[0,1)$, we have

$$
\begin{aligned}
& \gamma_{0, e}(2 \pi) \approx I_{2} \diamond\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \\
& i_{\omega}\left(\gamma_{0, e}\right)=\left\{\begin{array}{l}
0, \\
2,
\end{array} \nu_{\omega}\left(\gamma_{0, e}\right)=\left\{\begin{array}{l}
3, \\
0,
\end{array} \quad \text { when } \omega \in \mathbf{U} \backslash\{1\} .\right.\right.
\end{aligned}
$$

On the boundary segment $\{9\} \times[0,1)$
For every $e \in[0,1)$, we have

$$
\begin{aligned}
& \gamma_{9, e}(2 \pi) \approx D(\lambda) \diamond D(\lambda) \quad \text { with some } 0<\lambda \neq 1, \\
& i_{\omega}\left(\gamma_{9, e}\right)=0, \quad \nu_{\omega}\left(\gamma_{9, e}\right)=0, \quad \forall \omega \in \mathbf{U} .
\end{aligned}
$$

On the boundary segment $(0,9] \times\{0\}$
We have

$$
\begin{aligned}
& \text { For } 0<\beta<3 / 4: \gamma_{\beta, 0}(2 \pi) \approx R\left(\theta_{1}\right) \diamond R\left(\theta_{2}\right) \text { with } \theta_{1}, \theta_{2} \in(\pi, 2 \pi), \\
& \\
& \quad i_{1}\left(\gamma_{\beta, 0}\right)=0, i_{-1}\left(\gamma_{\beta, 0}\right)=2, \nu_{ \pm 1}\left(\gamma_{\beta, 0}\right)=0 \\
& \text { For } \beta=3 / 4: \gamma_{3 / 4,0}(2 \pi) \approx-I_{2} \diamond R\left(\theta_{2}\right) \text { with } \theta_{2} \in(\pi, 2 \pi), \\
& \\
& \quad i_{ \pm 1}\left(\gamma_{3 / 4,0}\right)=0, \nu_{1}\left(\gamma_{3 / 4,0}\right)=0, \nu_{-1}\left(\gamma_{3 / 4,0}\right)=3 \\
& \text { For } 3 / 4<\beta \leq 1: \sigma\left(\gamma_{\beta, 0}(2 \pi)\right) \subset \mathbf{U} \backslash\{ \pm 1\}, \\
& \\
& \quad i_{ \pm 1}\left(\gamma_{\beta, 0}\right)=0, \nu_{ \pm 1}\left(\gamma_{\beta, 0}\right)=0 ; \\
& \text { For } 1<\beta \leq 9: \quad \sigma\left(\gamma_{\beta, 0}(2 \pi)\right) \cap \mathbf{U}=\emptyset \\
& \\
& \quad i_{ \pm 1}\left(\gamma_{\beta, 0}\right)=0, \nu_{ \pm 1}\left(\gamma_{\beta, 0}\right)=0
\end{aligned}
$$

Main new results

Main Theorem 1 (Hu-Long-Sun, 2012).

$$
\begin{aligned}
& i_{1}\left(\gamma_{\beta, e}\right)=0, \quad \forall(\beta, e) \in[0,9] \times[0,1) \\
& \nu_{1}\left(\gamma_{\beta, e}\right)=\left\{\begin{array}{lc}
3, & \text { if } \beta=0, \\
0, & \text { if } \beta \in(0,9],
\end{array} \quad e \in[0,1) .\right.
\end{aligned}
$$

That is, the ELS is non-degenerate when $\beta>0$.

Main new results

Main Theorem 1 (Hu-Long-Sun, 2012).

$$
\begin{aligned}
& i_{1}\left(\gamma_{\beta, e}\right)=0, \quad \forall(\beta, e) \in[0,9] \times[0,1) \\
& \nu_{1}\left(\gamma_{\beta, e}\right)=\left\{\begin{array}{lc}
3, & \text { if } \beta=0, \\
0, & \text { if } \beta \in(0,9],
\end{array} \quad e \in[0,1)\right.
\end{aligned}
$$

That is, the ELS is non-degenerate when $\beta>0$.
Idea of the proof.
(1) Fix $e \in[0,1)$. By The Main Lemma 2 and our computations of $i_{1}\left(\gamma_{\beta, e}\right)$ on the two boundaries $\{\beta=0\}$ and $\{\beta=9\}$, we obtain

$$
\begin{array}{ll}
& 0=i_{1}\left(\gamma_{0, e}\right) \geq i_{1}\left(\gamma_{\beta, e}\right) \geq i_{1}\left(\gamma_{9, e}\right)=0 \\
\text { then } \quad 0=i_{1}\left(\gamma_{\beta, e}\right)=i_{1}(A(\beta, e))=i_{1}(\hat{A}(\beta, e)) \quad \forall \beta \in[0,9] .
\end{array}
$$

(2) If $\hat{A}\left(\beta_{0}, e\right)$ has an eigenvalue $\lambda\left(\beta_{0}\right)=0$ for some $\beta_{0} \in(0,9)$, then Main Lemma 1 implies $\frac{d}{d \beta} \lambda\left(\beta_{0}\right)>0$, and thus $i_{1}(\hat{A}(\beta, e))>0$ for some $\beta<\beta_{0}$ close to β_{0}. Contradiction!

Because $1 \notin \sigma\left(\gamma_{\beta, e}(2 \pi)\right)$ for $\beta>0$, there are only 2 possible ways for eigenvalues to escape from \mathbf{U} as shown in the Figure, i.e., from -1 or from Krein collision eigenvalues.

Theorem 3 (Hu-Long-Sun, 2012). For every e $\in[0,1$), the -1 index $i_{-1}\left(\gamma_{\beta, e}\right)$ is non-increasing, and strictly decreasing precisely on two values of $\beta=\beta_{1}(e)$ and $\beta=\beta_{2}(e) \in(0,9)$, at which $-1 \in \sigma\left(\gamma_{\beta, e}(2 \pi)\right)$ holds. For $e \in[0,1)$, define

$$
\begin{aligned}
& \beta_{s}(e)=\min \left\{\beta_{1}(e), \beta_{2}(e)\right\} \text { and } \beta_{m}(e)=\max \left\{\beta_{1}(e), \beta_{2}(e)\right\}, \\
& \Gamma_{s}=\left\{\left(\beta_{s}(e), e\right) \mid e \in[0,1)\right\} \text { and } \Gamma_{m}=\left\{\left(\beta_{m}(e), e\right) \mid e \in[0,1)\right\} .
\end{aligned}
$$

They form the two -1-degeneracy curves in $[0,9] \times[0,1)$.

Idea of the proof.

Because $i_{-1}\left(\gamma_{0, e}\right)=2$ and $i_{-1}\left(\gamma_{9, e}\right)=0$, there exist two $\beta_{1}(e)$ and $\beta_{2}(e)$ such that $i_{-1}\left(\gamma_{\beta, e}\right)$ strictly decreases by 1 when β passes $\beta_{i}(e)$. Here it is possible that $\beta_{1}(e)=\beta_{2}(e)$ and $i_{-1}\left(\gamma_{\beta, e}\right)$ strictly decreases by 2 when β passes $\beta_{1}(e)$.
Specially $-1 \in \sigma\left(\gamma_{\beta_{i}(e), e}(2 \pi)\right)$ holds for $i=1$ and 2 .

Idea of the proof (continued): Let

$$
B(e, \omega)=A(9, e)^{-\frac{1}{2}} \frac{1}{2(1+e \cos (t))} S(t) A(9, e)^{-\frac{1}{2}}
$$

Here $B(e, \omega)$ depends on ω, because $A(9, e)$ is defined on $\bar{D}(\omega, 2 \pi)$.
Lemma. For any ω boundary condition and $e \in(0,9), A(\beta, e)$ is ω degenerate if and only if $\lambda(e, \beta, \omega)=\frac{-1}{\sqrt{9-\beta}} \in \sigma_{p}(B(e, \omega))$. Here $B(\beta, e)$ depends on e analytically. Thus $\lambda(e, \beta, \omega)$ depends on e analytically by Operator Theory ([Kato]). Thus the above Lemma yields the analyticity of $\beta_{i}(e)$ in $e \in(-1,1)$, and then Γ_{s} and Γ_{m} are well defined and have at most isolated intersection points.

Theorem 4-(I) (Hu-Long-Sun, 2012). Let $e \in[0,1)$. We have
(i) $\quad i_{-1}\left(\gamma_{\beta, e}\right)=\left\{\begin{array}{lc}2, & \text { if } 0 \leq \beta<\beta_{s}(e), \\ 1, & \text { if } \beta_{s}(e) \leq \beta<\beta_{m}(e), \\ 0, & \text { if } \beta_{m}(e) \leq \beta \leq 9,\end{array}\right.$
(ii) $\gamma_{\beta, e}(2 \pi) \approx R\left(\theta_{1}\right) \diamond R\left(\theta_{2}\right)$ for some θ_{1} and $\theta_{2} \in(\pi, 2 \pi)$, and thus is strongly linearly stable, when $0<\beta<\beta_{s}(e)$;
(iii) $\left.\gamma_{\beta, e}(2 \pi) \approx D(\lambda) \diamond R(\theta)\right)$ for some $0>\lambda \neq-1$ and $\theta \in(\pi, 2 \pi)$, and it is hyperbolic-elliptic and thus linearly unstable, when $\beta_{s}(e)<\beta<\beta_{m}(e)$.

Idea of the proof Theorem 4-(I)-(ii). When $0<\beta<\beta_{s}(e)$, let $M=\gamma_{\beta, e}(2 \pi)$. Because $\sigma(M) \subset \mathbf{U} \backslash \mathbf{R}$ when $0<\beta<\beta_{s}(e)$ (no eigenvalues ± 1 and hyperbolic ones), we obtain

$$
\begin{aligned}
2 & =i_{-1}\left(\gamma_{\beta, e}\right) \\
& =i_{1}\left(\gamma_{\beta, e}\right)+S_{M}^{+}(1)+\sum_{i=1}^{2}\left(-S_{M}^{-}\left(\omega_{i}\right)+S_{M}^{+}\left(\omega_{i}\right)\right)-S_{M}^{-}(-1) \\
& =\sum_{i=1}^{2}\left(-S_{M}^{-}\left(\omega_{i}\right)+S_{M}^{+}\left(\omega_{i}\right)\right) \leq \sum_{i=1}^{2} S_{M}^{+}\left(\omega_{i}\right) \leq 2 .
\end{aligned}
$$

Then we get $2=S_{M}^{+}\left(\omega_{1}\right)+S_{M}^{+}\left(\omega_{2}\right)$. It implies

$$
\gamma_{\beta, e}(2 \pi) \approx R\left(\theta_{1}\right) \diamond R\left(\theta_{2}\right) \text { for some } \theta_{1} \text { and } \theta_{2} \in(\pi, 2 \pi),
$$

and thus is strongly linearly stable.

Theorem 5 (Hu-Long-Sun, 2012). For every e $\in[0,1$) we define

$$
\begin{aligned}
\beta_{k}(e) & =\inf \left\{\beta \in[0,9] \mid \sigma\left(\gamma_{\beta, e}(2 \pi)\right) \cap \mathbf{U}=\emptyset\right\}, \\
\Gamma_{k} & =\left\{\left(\beta_{k}(e), e\right) \in[0,9] \times[0,1) \mid e \in[0,1)\right\} .
\end{aligned}
$$

Then (i) $\beta_{s}(e) \leq \beta_{m}(e) \leq \beta_{k}(e)<9$ holds for all $e \in[0,1)$;
(ii) Γ_{k} is the boundary curve of the hyperbolic region of $\gamma_{\beta, e}(2 \pi)$ in the (β, e) rectangle $[0,9] \times[0,1)$;
(iii) Γ_{k} is continuous in $e \in[0,1)$, starts from $(1,0)$ and goes up, $\lim _{e \rightarrow 1} \beta_{k}(e)=0$, and Γ_{k} is distinct from Γ_{m}.

Idea of the proof. (A)
$\gamma_{\beta_{1}, e}(2 \pi)$ is hyperbolic $\Rightarrow i_{-1}\left(\gamma_{\beta_{1}, e}\right)=0$ by Theorem 4-(I).
Similarly $i_{\omega}\left(\gamma_{\beta_{1}, e}\right)=0 \forall \omega \in \mathbf{U}$
Main Lemma $2 \Rightarrow i_{\omega}\left(\gamma_{\beta, e}\right)=0 \forall \omega \in \mathbf{U}$ and $\beta \in\left(\beta_{1}, 9\right]$
Main Lemma $1 \Rightarrow \nu_{\omega}\left(\gamma_{\beta, e}(2 \pi)\right)=0 \forall \omega \in \mathbf{U}$ and $\beta \in\left(\beta_{1}, 9\right.$],
i.e., $\gamma_{\beta, e}(2 \pi)$ is hyperbolic,
i.e., the hyperbolic subregion of $\gamma_{\beta, e}(2 \pi)$ is connected. Then Γ_{k} is well-defined and contains one point on each $\{e=$ const. $\}$.
(B) Other hard parts: to prove the continuity of Γ_{k}, and $\beta_{k}(e) \rightarrow 0$ as $e \rightarrow 1$.

Theorem 4-(II) (Hu-Long-Sun, 2012). Let $e \in[0,1)$. We have (iv) $\gamma_{\beta, e}(2 \pi) \approx R\left(\theta_{1}\right) \diamond R\left(\theta_{2}\right)$ for some $\theta_{1} \in(0, \pi)$ and $\theta_{2} \in(\pi, 2 \pi)$ with $2 \pi-\theta_{2}<\theta_{1}$, and thus is strongly linearly stable, when $\beta_{m}(e)<\beta<\beta_{k}(e)$.

Theorem 6 (Hu-Long-Sun, 2012). Let $e \in[0,1$).
(i) If $\beta_{s}(e)<\beta_{m}(e), \gamma_{\beta_{s}(e), e}(2 \pi) \approx N_{1}(-1,1) \diamond R(\theta)$ for some $\theta \in(\pi, 2 \pi)$, and is spectrally stable and linearly unstable;
(ii) If $\beta_{s}(e)=\beta_{m}(e)<\beta_{k}(e), \gamma_{\beta_{s}(e), e}(2 \pi) \approx-I_{2} \diamond R(\theta)$ for some $\theta \in(\pi, 2 \pi)$, and is inearly stable, but not strongly linearly stable;
(iii) If $\beta_{s}(e)<\beta_{m}(e)<\beta_{k}(e), \gamma_{\beta_{m}(e), e}(2 \pi) \approx N_{1}(-1,-1) \diamond R(\theta)$ for some $\theta \in(\pi, 2 \pi)$, and is spectrally stable and linearly unstable; (iv) If $\beta_{s}(e) \leq \beta_{m}(e)<\beta_{k}(e), \gamma_{\beta_{k}(e), e}(2 \pi) \approx N_{2}\left(e^{\sqrt{-1} \theta}, b\right)$ for some $\theta \in(0, \pi)$ and $\left(b_{2}-b_{3}\right) \sin \theta>0$, and is spectrally stable and linearly unstable;
(v) If $\beta_{s}(e)<\beta_{m}(e)=\beta_{k}(e)$, either
$\gamma_{\beta_{k}(e), e}(2 \pi) \approx N_{1}(-1,1) \diamond D(\lambda)$ for some $-1 \neq \lambda<0$ and is linearly unstable; or $\gamma_{\beta_{k}(e), e}(2 \pi) \approx N_{2}(-1, c)$ with $c_{1}, c_{2} \in \mathbf{R}$ and $c_{2} \neq 0$, and is spectrally stable and linearly unstable;
(vi) If $\beta_{s}(e)=\beta_{m}(e)=\beta_{k}(e)$, either $\gamma_{\beta_{k}(e), e}(2 \pi) \approx M_{2}(-1, c)$ with $c_{1} \in \mathbf{R}$ and $c_{2}=0$ which possesses basic normal form $N_{1}(-1,1) \diamond N_{1}(-1,1)$, or $\gamma_{\beta_{k}(e), e}(2 \pi) \approx N_{1}(-1,1) \diamond N_{1}(-1,1)$; and thus is spectrally stable and linearly unstable.

New estimate of Yuwei Ou, 2012:
Theorem. (Y. Ou, 2012) $\gamma_{\beta, e}(2 \pi)$ is hyperbolic for all (β, e) in rectangle $(8,9] \times[0,1)$, i.e.,

$$
\sigma\left(\gamma_{\beta, e}(2 \pi)\right) \subset \mathbf{C} \backslash \mathbf{U}, \quad \forall(\beta, e) \in(8,9] \times[0,1)
$$

Further open problems
(i) Precise locations of the three curves Γ_{s}, Γ_{m} and Γ_{k};
(ii) No intersection of Γ_{s} and Γ_{m};
(iii) The coincidence part of Γ_{m} and Γ_{k};
(iv) Classification of real and complex hyperbolic cases;
(v) Applications to other problems.

Thank you!

