Stability of elliptic Lagrangian solutions of the classical three body problem via index theory

> Yiming Long Chern Institute of Mathematics Nankai University

> > at BIRS, Banff January 18th, 2013

Contents

1. A brief introduction on the Lagrangian solution and studies on its linear stability;

- 2. New results and main ideas in the proof.
- 3. Open problems

Based on the recent joint work of:

Xijun Hu, Yiming Long and Shanzhong Sun:

Linear stability of elliptic Lagrangian solutions of the classical planar three-body problem via index theory. arXiv: 1206:6162v1, 2012

We consider the classical planar three-body problem in celestial mechanics. Denote by $q_1, q_2, q_3 \in \mathbf{R}^2$ the position vectors of three particles with masses $m = (m_1, m_2, m_3) \in (\mathbf{R}^+)^3$ respectively. By Newton's second law and the law of universal gravitation, the system of equations for this problem is

$$m_i \ddot{q}_i = \frac{\partial U(q)}{\partial q_i}, \quad \text{for} \quad i = 1, 2, 3,$$
 (1)

where

$$U(q) = U(q_1, q_2, q_3) = \sum_{1 \leq i < j \leq 3} rac{m_i m_j}{|q_i - q_j|}$$

is the potential function by using the standard norm $|\cdot|$ of vector in ${\bf R}^2.$

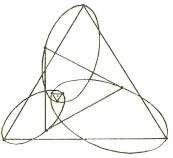
For periodic solutions with period $\tau > 0$, the system is the Euler-Lagrange equation of the action functional

$$\mathcal{A}_{ au}(q) = \int_0^ au \left[\sum_{i=1}^3 rac{m_i |\dot{q}_i(t)|^2}{2} + U(q(t))
ight] dt$$

defined on the loop space $W^{1,2}(\mathbf{R}/\tau\mathbf{Z},X)$, where

$$X \equiv \left\{ q = (q_1, q_2, q_3) \in (\mathbf{R}^2)^3 \ \left| \ \sum_{i=1}^3 m_i q_i = 0, \ q_i \neq q_j, \ \forall i \neq j
ight\}$$

is the configuration space of the planar three-body problem. Each τ -periodic solution to (1) appears to be a critical point of the action functional A_{τ} .



In 1772, J. Lagrange discovered his τ -periodic elliptic solutions of the 3-BP (ELS for short): $q(t) = r(t)R(\theta(t))q(0)$, with $q(0) \in (\mathbb{R}^2)^3$, r(t) > 0, and $R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ for $\theta \in \mathbb{R}$. Here, q(0) and consequently q(t) always form an equilateral triangle (central configuration), and $(r(t)\cos\theta(t), r(t)\sin\theta(t))$ in \mathbb{R}^2 describes elliptic curves depending on the period, masses, and eccentricity, which are solutions of the two body Kepler problem, if q(0) is not collinear. Denote these τ -periodic ELS by $q_{m,e}(t)$.

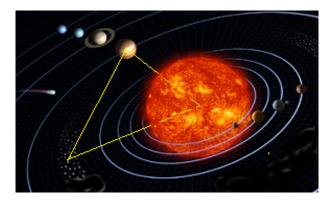


Figure: Sun, Jupiter and Trojan stars

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

We write the 3-BP system (1) into a Hamiltonian system:

$$\dot{z} = JH'(z), \quad z(\tau) = z(0).$$
 (2)

with $z = (p, q) = (p_1, p_2, p_3, q_1, q_2, q_3) \in (\mathbf{R}^2)^6$, $p(t) = \overline{M}\dot{q}(t)$, and

$$H(z) = H(p,q) = \sum_{i=1}^{3} \frac{|p_i|^2}{2m_i} - U(q), \quad J = \begin{pmatrix} 0 & -l_2 \\ l_2 & 0 \end{pmatrix},$$

with $\overline{M} = \text{diag}(m_1, m_1, m_2, m_2, m_3, m_3)$. The linearized Hamiltonian system at $z_{m,e}(t) = (\overline{M}\dot{q}_{m,e}(t), q_{m,e}(t)) \in (\mathbb{R}^2)^6$ is given by

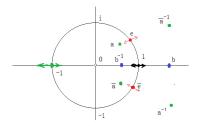
$$\dot{y}(t) = JH''(z_{m,e}(t))y(t), \quad y(\tau) = y(0),$$
 (3)

whose fundamental solution $\psi = \psi_{m,e}(t)$ satisfies $\psi(0) = I_{12}$ and $\psi_{m,e}(t) \in \text{Sp}(12) = \{M \in \text{GL}(\mathbb{R}^{12}) \mid M^T J M = J\}$ for all $t \in [0, \tau]$.

Our main concern is the linear stability of these ELS, which is determined by $\psi_{m,e}(\tau)$ and its eigenvalues. Let $\mathbf{U} = \{z \in \mathbf{C} \mid |z| = 1\}.$ Definition:

> $M \in \operatorname{Sp}(2n)$ is spectrally stable, if $\sigma(M) \subset \mathbf{U}$, $M \in \operatorname{Sp}(2n)$ is linearly stable, if $\sigma(M) \subset \mathbf{U}$ and M is semi – simple, if and only if $\sup_{m \geq 1} ||M^m|| < +\infty$. $M \in \operatorname{Sp}(2n)$ is strongly linearly stable, if $\exists \epsilon > 0$ such that N is linearly stable whenever $||M - N|| < \epsilon$.

M is *semi-simple*, if its minimal polynomial is the product of relatively prime irreducible polynomials.



Let $M \in \text{Sp}(2n)$. Then possible eigenvalue distributions of M are:

1 is of even multiplicities; -1 is of even multiplicities; e, $\overline{e} \in \mathbf{U} \setminus \mathbf{R}$; b, $b^{-1} \in \mathbf{R} \setminus \{0, \pm 1\}$; a, a^{-1} , \overline{a} , $\overline{a}^{-1} \in \mathbf{C} \setminus (\mathbf{U} \cup \mathbf{R})$.

Thus there are 3 possible ways for eigenvalues to escape from **U** as shown in the Figure.

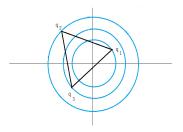


Figure: Circular solution of the 3-body problem with e = 0 **Earlier studies on the linear stability**: M.Gascheau (1843) and E.Routh (1875) for circular orbits, i.e., e = 0. J.Danby (1964), G.Roberts (2003): for $e \ge 0$ sufficiently small, by perturbation method. Consider the linearized Hamiltonian system at $z_{m,e}(t)$:

$$\dot{y}(t)=JH''(z_{m,e}(t))y(t),\quad y(au)=y(0),$$

with fundamental solution $\psi_{m,e}(t) \in \text{Sp}(12)$ and $\psi_{m,e}(0) = I_{12}$. First integrals of (1):

(i) (Integral of the center of masses)

$$\sum_{i=1}^{n} m_i q_i(t) = V_1 t + V_2 = 0.$$
 (2-dim.)

(ii) (Integral of the linear momentum) $\sum_{i=1}^{3} m_i \dot{q}_i(t) = V_1 = 0.$ (2-dim.)

(iii) (Integral of the energy) $\frac{1}{2} \sum_{i=1}^{n} m_i |\dot{q}_i(t)|^2 - U(q(t)) = h.$ (periodic solution) $\ddot{z}(t) = JH''(z(t))\dot{z}(t)$. (in total 2-dim.) (iv) (Integral of the angular momentum) $\sum_{i=1}^{n} m_i q_i \times \dot{q}_i(t) = 0.$ (2-dim.)

Thus $1 \in \sigma(\psi_{m,e}(\tau))$ has always algebraic multiplicity at least 8 in total.

K.Meyer and D.Schmidt (2005): Using the central configuration coordinates, they decomposed the linearized Hamiltonian system at ELS into two parts symplectically:

$$\psi_{m,e}(\tau) = P^{-1} \left[\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \diamond \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \diamond \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \diamond \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{array} \right) \diamond I_2 \diamond M \right] P.$$

(i) the 8 eigenvalue 1 stays always for all $(m, e) \in (\mathbf{R}^+)^3 \times [0, 1)$; (ii) the other part corresponding to M is the 4-dim. essential part for the linear stability, which can be transformed to a linear system with coefficient matrix:

$$ar{B}(heta) = egin{pmatrix} 1 & 0 & 0 & 1 \ 0 & 1 & -1 & 0 \ 0 & -1 & rac{2e\cos heta - 1 - \sqrt{9 - eta}}{2(1 + e\cos heta)} & 0 \ 1 & 0 & 0 & rac{2e\cos heta - 1 + \sqrt{9 - eta}}{2(1 + e\cos heta)} \ \end{pmatrix},$$

where $t \in [0, \tau]$ is transformed to the true anomaly $\theta \in [0, 2\pi]$. They studied also the linear stability for $e \ge 0$ small enough.

・ロト・日本・モート モー うへで

Rewrite Meyer and Schmidt's essential part (4-dim. linearized Hamiltonian system) for ELS as (use t to replace θ):

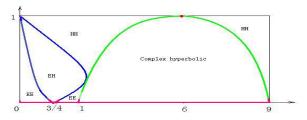
$$\dot{y}(t) = JB_{\beta,e}(t)y(t), \quad y(2\pi) = y(0), \quad (4)$$
$$B_{\beta,e}(t) = \begin{pmatrix} I_2 & -J \\ J & I_2 - K_{\beta,e}(t) \end{pmatrix},$$

with
$$\mathcal{K}_{\beta,e}(t) = \begin{pmatrix} \frac{3-\sqrt{9-\beta}}{2(1+e\cos t)} & 0\\ 0 & \frac{3+\sqrt{9-\beta}}{2(1+e\cos t)} \end{pmatrix}$$
, and the mass

parameter β and the eccentricity e satisfy

$$eta = rac{27(m_1m_2+m_1m_3+m_2m_3)}{(m_1+m_2+m_3)^2} \in [0,9], \quad e \in [0,1).$$

Denote the fundamental solution of this system by $\gamma_{\beta,e}(t) \in \operatorname{Sp}(4)$, which satisfies $\gamma_{\beta,e}(0) = I_4$. The linear stability of $z_{\beta,e} \equiv z_{m,e}(t)$ is determined by $\gamma_{\beta,e}(2\pi) \in \operatorname{Sp}(4)$.



R.Martínez, A.Samà and C.Simó (2004-2006) Perturbation method for $e \ge 0$ small enough + numerical method:

EE: $\sigma(\gamma_{\beta,e}(2\pi)) = \{\omega_1, \overline{\omega}_1, \omega_2, \overline{\omega}_2\}$ with $\omega_i \in \mathbf{U} \setminus \mathbf{R}$ for i = 1, 2; **EH**: $\sigma(\gamma_{\beta,e}(2\pi)) = \{\lambda, \lambda^{-1}, \omega, \overline{\omega}\}$ for some $-1 \neq \lambda < 0$ and $\omega \in \mathbf{U} \setminus \mathbf{R}$; **HH**: $\sigma(\gamma_{\beta,e}(2\pi)) = \{\lambda_1, \lambda_1^{-1}, \lambda_2, \lambda_2^{-1}\}$ for some $\lambda_i \in \mathbf{R} \setminus \{0, \pm 1\}$ with i = 1, 2;

Complex hyperbolic: $\sigma(\gamma_{\beta,e}(2\pi)) \subset \mathbf{C} \setminus (\mathbf{U} \cup \mathbf{R}).$

We are not aware of any rigorous mathematical method on this linear stability problem which works for the full range of parameters $(\beta, e) \in [0, 9] \times [0, 1)$ before 2010 !

Difficulty: due to the substantial dependence of the coefficients on *t* when 0 < e < 1:

$$\dot{y}(t) = J \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & \frac{2e\cos(t)-1-\sqrt{9-\beta}}{2(1+e\cos(t))} & 0 \\ 1 & 0 & 0 & \frac{2e\cos(t)-1+\sqrt{9-\beta}}{2(1+e\cos(t))} \end{pmatrix} y(t),$$

$$y(2\pi) = y(0).$$

Preparations for further results: W.Gordon (1977) The Kepler elliptic orbit q = q(t) is the solution of the equation

$$\ddot{q}(t)=-rac{q(t)}{|q(t)|^3}.$$

The functional

$$f(q) = \int_0^ au \left(rac{1}{2} |\dot{q}(t)|^2 + rac{1}{|q(t)|}
ight) dt$$

attains its minimum in $W^{1,2}(\mathbf{R}/(\tau \mathbf{Z}), \mathbf{R}^2 \setminus \{0\})$ on Kepler elliptic orbits.

A.Venturelli (2001), S.Zhang-Q.Zhou (2001) ELS is a global minimizer of the action $\mathcal{A}(q)$ on the loops in the non-trivial homology class of $W^{1,2}(\mathbf{R}/\tau\mathbf{Z}, X)$. Specially its Morse index satisfies

 $i_1(\text{ELS}) = 0.$

For any $M, N \in \text{Sp}(2n)$, we write $M \approx N$ if $\exists P \in \text{Sp}(2n)$ s.t. $M = P^{-1}NP$ holds.

$$D(\lambda) = \begin{pmatrix} \lambda & 0\\ 0 & \lambda^{-1} \end{pmatrix}, \quad R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta\\ \sin \theta & \cos \theta \end{pmatrix},$$
$$N_1(\lambda, a) = \begin{pmatrix} \lambda & a\\ 0 & \lambda \end{pmatrix}, \quad N_2(e^{\sqrt{-1}\theta}, b) = \begin{pmatrix} R(\theta) & b\\ 0 & R(\theta) \end{pmatrix},$$
$$N_2(-1, c) = \begin{pmatrix} -1 & 1 & c_1 & 0\\ 0 & -1 & c_2 & c_2\\ 0 & 0 & -1 & 0\\ 0 & 0 & -1 & -1 \end{pmatrix},$$
where $b = \begin{pmatrix} b_1 & b_2\\ b_3 & b_4 \end{pmatrix}$, and $\lambda, a, \theta, b_i, c_i \in \mathbf{R}$.

Theorem. (X.Hu and S.Sun, 2010, Advances in Math.) (I) $2 \le i_1(z_{\beta,e}^2) \le 4$ holds always;

Suppose $\gamma_{\beta,e}(2\pi)^2$ is non-degenerate, i.e., $1 \notin \sigma(\gamma_{\beta,e}(2\pi)^2)$. Then (II-1) If $i_1(z_{\beta,e}^2) = 4$, then $\gamma_{\beta,e}(2\pi) \approx R(\theta_1) \diamond R(\theta_2)$ holds for some θ_1 and $\theta_2 \in (\pi, 2\pi)$, and ELS is linearly stable;

(II-2) If $i_1(z_{\beta,e}^2) = 3$, then $\gamma_{\beta,e}(2\pi) \approx D(\lambda) \diamond R(\theta)$ for some $-1 \neq \lambda < 0$ and $\theta \in (\pi, 2\pi)$, and ELS is linearly unstable;

(II-3) If $i_1(z_{\beta,e}^2) = 2$ and $\exists k \geq 3$ such that $i_1(z_{\beta,e}^k) > 2(k-1)$, then $\gamma_{\beta,e}(2\pi) \approx R(2\pi - \theta_1) \diamond R(\theta_2)$ holds with $0 < \theta_1 < \theta_2 < \pi$, and ELS is linearly stable;

(II-4) If $i_1(z_{\beta,e}^k) = 2(k-1)$ for all $k \in \mathbb{N}$, then $\gamma_{\beta,e}(2\pi)$ and ELS are hyperbolic or spectrally stable and linearly unstable.

As usual, $z_{\beta,e}^k(t) = z_{\beta,e}(kt)$ is used for all $k \in \mathbb{N}$.

Advantage of Hu-Sun's Theorem:

 $\langle 1 \rangle$ The first method which works for the full range of parameters $(\beta, e) \in [0, 9] \times [0, 1);$

 $\langle 2 \rangle$ Based on different iterated Morse indices of regions, some regions of linear stability are given (not all).

Further understanding needed after Hu-Sun's Theorem:

 $\langle 1 \rangle$ The non-degeneracy assumption (on $\gamma_{\beta,e}(2\pi)^2$) needs to be understood.

 $\langle 2 \rangle$ The classification is based on the values of iterated Morse indices, but is not directly related to the two parameters; $\langle 3 \rangle$ No information is given on properties of the shape of the curves which separate the linear stability regions and their behaviors in the rectangle $(\beta, e) \in [0, 9] \times [0, 1)$. $\langle 4 \rangle$ The (II-4) case is not clear.

A brief introduction on ω -index theory of symplectic matrix paths starting from the identity matrix / Let $M \in Sp(2)$, Then we have:

$$M = \begin{pmatrix} r & z \\ z & \frac{1+z^2}{r} \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \iff (r,\theta,z) \in \mathbf{R}^3 \setminus \{z - \mathrm{axis}\}.$$

$$1 \in \sigma(M) \Leftrightarrow \det(M-I) = 0 \Leftrightarrow (r^2 + z^2 + 1) \cos \theta = 2r.$$

$$\begin{aligned} \operatorname{Sp}(2)_1^0 &= \{ M \in \operatorname{Sp}(2) \mid 1 \in \sigma(M) \} \\ &= \{ (r, \theta, z) \in \mathbf{R}^3 \setminus \{ z - \operatorname{axis} \} \mid (r^2 + z^2 + 1) \cos \theta = 2r \}. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

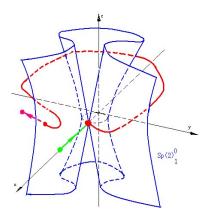


Figure: Graph of $Sp(2)_1^0$

・ロ・・聞・・ ほ・・ きょう

æ

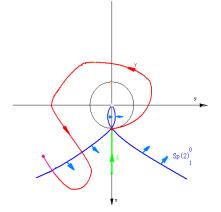


Figure: Graph of $Sp(2)_1^0$ when z = 0

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

For $\gamma \in C([0, \tau], \operatorname{Sp}(2n))$ with $\gamma(0) = I$, we define

$$\begin{split} \nu_1(\gamma) &= \dim \ker(\gamma(\tau) - I), \\ i_1(\gamma) &= [\gamma * \xi : \operatorname{Sp}(2n)_1^0], & \text{if } \nu_1(\gamma) = 0, \\ i_1(\gamma) &= \min\{i_1(\phi) \mid \nu_1(\phi) = 0 \text{ and } \phi \text{ is suff. close to } \gamma\}, \\ & \text{if } \nu_1(\gamma) > 0. \end{split}$$

Similarly, for every $\omega \in \mathbf{U}$ we define

$$\begin{split} \nu_{\omega}(\gamma) &= \dim_{\mathbf{C}} \ker_{\mathbf{C}}(\gamma(\tau) - \omega I), \\ i_{\omega}(\gamma) &= [\gamma * \xi : \operatorname{Sp}(2n)_{\omega}^{0}], \quad \text{if } \nu_{\omega}(\gamma) = 0, \\ i_{\omega}(\gamma) &= \min\{i_{1}(\phi) \mid \nu_{\omega}(\phi) = 0 \text{ and } \phi \text{ is suff. close to } \gamma\}, \\ & \text{if } \nu_{\omega}(\gamma) > 0. \end{split}$$

$$(i_{\omega}(\gamma),\nu_{\omega}(\gamma))\in \mathsf{Z}\times\{0,1,\ldots,2n\},\qquad \forall \ \omega\in\mathsf{U}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

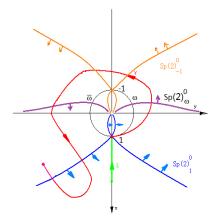


Figure: Graph of $\operatorname{Sp}(2)^0_{\omega}$ when z = 0

・ロト ・聞ト ・ヨト ・ヨト

æ

For second order Hamiltonian system, the following theorem on the relation of the Morse index $i_{\omega}(q_{m,e}, A_{\tau})$ and nullity $\nu_{\omega}(q_{m,e}, A_{\tau})$ of A_{τ} at $q_{m,e}$ and the ω -index $i_{\omega}(\psi_{m,e})$ and ω -nullity $\nu_{\omega}(\psi_{m,e})$ of $\psi_{m,e}$) hold:

Theorem. ([Viterbo,1990], [An-Long, 1998], [Long-An,1998]) For every $\omega \in \mathbf{U}$, there hold

$$i_{\omega}(q_{m,e},\mathcal{A}_{\tau})=i_{\omega}(\psi_{m,e}), \quad \nu_{\omega}(q_{m,e},\mathcal{A}_{\tau})=\nu_{\omega}(\psi_{m,e}).$$

Lemma. ([Hu-Sun,2010]) For every $\omega \in \mathbf{U}$, there hold

$$\begin{split} i_{\omega}(\gamma_{\beta,e}) &= i_{\omega}(\psi_{m,e}) = i_{\omega}(q_{m,e},\mathcal{A}_{\tau}), \\ \nu_{\omega}(\gamma_{\beta,e}) &= \nu_{\omega}(\psi_{m,e}) = \nu_{\omega}(q_{m,e},\mathcal{A}_{\tau}). \end{split}$$

Specially

$$i_1(\gamma_{\beta,e})=i_1(\psi_{m,e})=i_1(q_{m,e},\mathcal{A}_{\tau})=0,\quad\forall\,(\beta,e)\in[0,9]\times[0,1).$$

Such index theories were defined by

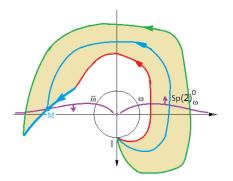
1984, C. Conley-E. Zehnder: for any path γ in Sp(2*n*) with $n \ge 2$ and γ being 1-non-degenerate, i.e., $(i_1(\gamma), \nu_1(\gamma))$ with $\nu_1(\gamma) = 0$;

1990, Y. Long-E. Zehnder: for any path γ in Sp(2) and γ being 1-non-degenerate, i.e., $(i_1(\gamma), \nu_1(\gamma))$ with $\nu_1(\gamma) = 0$;

1990, Y. Long, C. Viterbo (independently): for any path γ in Sp(2*n*) and γ may be 1-degenerate, i.e., $(i_1(\gamma), \nu_1(\gamma))$ with $\nu_1(\gamma) \ge 0$;

1999, Y. Long: for any path γ in Sp(2n) with respect to every $\omega \in \mathbf{U}$, i.e., $(i_{\omega}(\gamma), \nu_{\omega}(\gamma))$ with $\nu_{\omega}(\gamma) \ge 0$.

Important observation:



 $\omega\text{-index}$ change implies the existence of some eigenvalue ω

$$i_{\omega}(\xi) - i_{\omega}(\gamma) \neq 0 \implies \omega \in \sigma(\gamma_{\beta,e}(2\pi))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

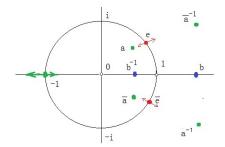
for some point (β, e) , where $M = \gamma_{\beta, e}(2\pi)$.

Main results of Hu-Long-Sun, 2012

Main Theorem 1. (X. Hu-Y. Long-S. Sun) The ELS is 1-nondegenerate when $(\beta, e) \in (0, 9] \times [0, 1)$. Specially we have

$$i_1(\gamma_{eta,e})=0 \quad and \quad
u_1(\gamma_{eta,e})=\left\{egin{array}{ccc} 3, & ext{if} & eta=0, \ 0, & ext{if} & eta\in(0,9], \end{array}
ight.
ight.$$

Thus no eigenvalues of $\gamma_{\beta,e}(2\pi)$ can escape from **U** at 1 as $\beta > 0$!

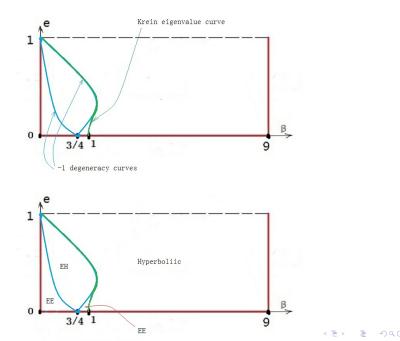


Main results of Hu-Long-Sun, 2012:

Main Theorem 2. (X. Hu-Y. Long-S. Sun) In the (β, e) rectangle $(0,9] \times [0,1)$ there exist three distinct continuous curves from left to right: two -1-degeneracy curves Γ_s and Γ_m going up from (3/4,0) with tangents $-\sqrt{33}/4$ and $\sqrt{33}/4$ respectively and converges to (0,1), and the Krein collision eigenvalue curve Γ_k going up from (1,0) and converges to (0,1) as e increases from 0 to 1; each of them intersects every horizontal segment $e = \text{constant} \in [0,1)$ only once.

Moreover the linear stability pattern of $\gamma_{\beta,e}(2\pi)$ as well as that of the ELS $z_{\beta,e}$ changes if and only if (β, e) passes through one of these three curves Γ_s , Γ_m and Γ_k .

Three separating curves and linear stability subregions



New observations and ideas (I) Reduction to a 2nd order OD operator.

Let

$$\xi_{\beta,e}(t) = \begin{pmatrix} R(t) & 0 \\ 0 & R(t) \end{pmatrix} \gamma_{\beta,e}(t), \ R(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix},$$

for all $t \in [0, 2\pi]$. Then $\xi_{\beta,e}(2\pi) = \gamma_{\beta,e}(2\pi)$, $\xi_{\beta,e} \sim \gamma_{\beta,e}$, and it is the fundamental solution of:

$$\begin{split} \dot{y}(t) &= J\overline{B}_{\beta,e}(t)y(t), \quad y(2\pi) = y(0), \\ \text{with} \qquad \overline{B}_{\beta,e}(t) &= \begin{pmatrix} I_2 & 0 \\ 0 & I_2 - R(t)K_{\beta,e}(t)R(t)^T \end{pmatrix}, \\ \text{Recall}: \qquad B_{\beta,e}(t) &= \begin{pmatrix} I_2 & -J \\ J & I_2 - K_{\beta,e}(t) \end{pmatrix}. \end{split}$$

For $\omega \in \mathbf{U}$, $\overline{B}_{\beta,e}$ corresponds to a self-adjoint linear operator:

 $\begin{aligned} \mathcal{A}(\beta, e) &= -\frac{d^2}{dt^2} I_2 - I_2 + \mathcal{R}(t) \mathcal{K}_{\beta, e}(t) \mathcal{R}(t)^T, & \text{defined on} \\ \overline{D}(\omega) &= \{ y \in W^{2,2}([0, 2\pi], \mathbf{C}^2) \mid y(2\pi) = \omega y(0), \ \dot{y}(2\pi) = \omega \dot{y}(0) \}. \end{aligned}$

New observations and ideas (II) Index monotonicity. Fix $e \in [0, 1)$ and $\omega \in \mathbf{U}$. On $\overline{D}(\omega)$ we have:

$$\begin{aligned} A(\beta, e) &= -\frac{d^2}{dt^2} I_2 - I_2 + R(t) K_{\beta, e}(t) R(t)^T \\ &= -\frac{d^2}{dt^2} I_2 - I_2 + \frac{1}{2(1 + e\cos t)} (3I_2 + \sqrt{9 - \beta} S(t)) \\ &\equiv \sqrt{9 - \beta} \hat{A}(\beta, e), \end{aligned}$$

where for $\beta \in [0,9)$,

$$\hat{A}(\beta, e) = \frac{A(9, e)}{\sqrt{9-\beta}} + \frac{S(t)}{2(1+e\cos t)}, \ S(t) = \begin{pmatrix} \cos 2t & \sin 2t \\ \sin 2t & -\cos 2t \end{pmatrix}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

New observations and ideas (II) Index monotonicity. Main Lemma 1. For β near β_0 , the eigenvalues $\lambda(\beta)$ near $\lambda(\beta_0) = 0$ of $\hat{A}(\beta, e)$ satisfies

$$rac{d}{deta}\lambda(eta)|_{eta=eta_0}>0.$$

In fact, we have

$$\lambda(\beta) = \lambda(\beta)\xi(\beta) \cdot \xi(\beta) = \hat{A}(\beta, e)\xi(\beta) \cdot \xi(\beta).$$

Differentiating both sides yields

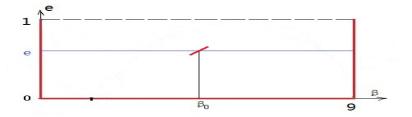
$$egin{array}{rcl} \displaystylerac{d}{deta}\lambda(eta)ert_{eta=eta_0}&=&(rac{\partial}{\partialeta}\hat{A}(eta,e))\xi(eta)\cdot\xi(eta)ert_{eta=eta_0}\ &+&2\hat{A}(eta,e)\xi(eta)\cdot(rac{d}{deta}\xi(eta))ert_{eta=eta_0}\ &=&rac{A(9,e)\xi(eta)\cdot\xi(eta)}{2(9-eta)^{3/2}}ert_{eta=eta_0}>0. \end{array}$$

Main Lemma 2. Fix $e \in [0, 1)$. For any $\omega \in \mathbf{U}$, when β increases in (0, 9], the index $i_{\omega}(\gamma_{\beta, e})$ is non-increasing, i.e.,

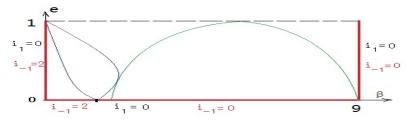
[#]{negative eigenvalues of $A(\beta, e)$ } is non – increasing.

Here
$$i_{\omega}(\gamma_{\beta,e}) = i_{\omega}(A(\beta,e)) = i_{\omega}(\hat{A}(\beta,e))$$

= $\#$ {negative eigenvalues of $\hat{A}(\beta,e)|_{\overline{D}(\omega)}$ }.



New observations and ideas (III) Studies on the three boundary segments of $[0,9] \times [0,1)$



On the boundary segment $\{0\} \times [0, 1)$ For every $e \in [0, 1)$, we have

$$\gamma_{0,e}(2\pi) \approx l_2 \diamond \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

$$i_{\omega}(\gamma_{0,e}) = \begin{cases} 0, & \nu_{\omega}(\gamma_{0,e}) = \begin{cases} 3, & \text{when } \omega = 1, \\ 0, & \text{when } \omega \in \mathbf{U} \setminus \{1\}. \end{cases}$$

On the boundary segment $\{9\} \times [0,1)$ For every $e \in [0,1)$, we have

$$egin{aligned} &\gamma_{9,e}(2\pi) pprox D(\lambda) \diamond D(\lambda) & ext{with some } 0 < \lambda
eq 1, \ &i_{\omega}(\gamma_{9,e}) = 0, \quad &
u_{\omega}(\gamma_{9,e}) = 0, \quad & orall \ & \omega \in \mathbf{U}. \end{aligned}$$

On the boundary segment $(0,9] \times \{0\}$ We have

For $0 < \beta < 3/4$: $\gamma_{\beta,0}(2\pi) \approx R(\theta_1) \diamond R(\theta_2)$ with $\theta_1, \theta_2 \in (\pi, 2\pi)$, $i_1(\gamma_{\beta,0}) = 0, \ i_{-1}(\gamma_{\beta,0}) = 2, \ \nu_{\pm 1}(\gamma_{\beta,0}) = 0$, For $\beta = 3/4$: $\gamma_{3/4,0}(2\pi) \approx -l_2 \diamond R(\theta_2)$ with $\theta_2 \in (\pi, 2\pi)$, $i_{\pm 1}(\gamma_{3/4,0}) = 0, \ \nu_1(\gamma_{3/4,0}) = 0, \ \nu_{-1}(\gamma_{3/4,0}) = 3$, For $3/4 < \beta \le 1$: $\sigma(\gamma_{\beta,0}(2\pi)) \subset \mathbf{U} \setminus \{\pm 1\}$, $i_{\pm 1}(\gamma_{\beta,0}) = 0, \ \nu_{\pm 1}(\gamma_{\beta,0}) = 0$; For $1 < \beta \le 9$: $\sigma(\gamma_{\beta,0}(2\pi)) \cap \mathbf{U} = \emptyset$, $i_{\pm 1}(\gamma_{\beta,0}) = 0, \ \nu_{\pm 1}(\gamma_{\beta,0}) = 0$.

Main new results Main Theorem 1 (Hu-Long-Sun, 2012).

$$egin{aligned} &i_1(\gamma_{eta,e})=0, & orall \left(eta,e
ight)\in [0,9] imes [0,1), \ &
u_1(\gamma_{eta,e})=\left\{egin{aligned} &3, & ext{if} \ \ eta=0, \ &0, & ext{if} \ \ eta\in (0,9], \end{aligned}
ight. e\in [0,1). \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

That is, the ELS is non-degenerate when $\beta > 0$.

Main new results Main Theorem 1 (Hu-Long-Sun, 2012).

That is, the ELS is non-degenerate when $\beta > 0$. Idea of the proof.

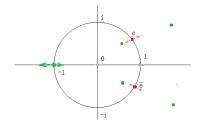
(1) Fix $e \in [0, 1)$. By The Main Lemma 2 and our computations of $i_1(\gamma_{\beta,e})$ on the two boundaries $\{\beta = 0\}$ and $\{\beta = 9\}$, we obtain

$$0 = i_1(\gamma_{0,e}) \ge i_1(\gamma_{\beta,e}) \ge i_1(\gamma_{9,e}) = 0,$$

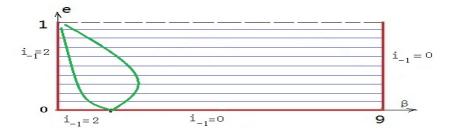
then
$$0 = i_1(\gamma_{\beta,e}) = i_1(A(\beta,e)) = i_1(\hat{A}(\beta,e)) \quad \forall \beta \in [0,9].$$

2) If $\hat{A}(\beta_0,e)$ has an eigenvalue $\lambda(\beta_0) = 0$ for some $\beta_0 \in (0,9),$

then Main Lemma 1 implies $\frac{d}{d\beta}\lambda(\beta_0) > 0$, and thus $i_1(\hat{A}(\beta, e)) > 0$ for some $\beta < \beta_0$ close to β_0 . Contradiction !



Because $1 \notin \sigma(\gamma_{\beta,e}(2\pi))$ for $\beta > 0$, there are only 2 possible ways for eigenvalues to escape from **U** as shown in the Figure, i.e., from -1 or from Krein collision eigenvalues.



Theorem 3 (Hu-Long-Sun, 2012). For every $e \in [0, 1)$, the -1 index $i_{-1}(\gamma_{\beta,e})$ is non-increasing, and strictly decreasing precisely on two values of $\beta = \beta_1(e)$ and $\beta = \beta_2(e) \in (0,9)$, at which $-1 \in \sigma(\gamma_{\beta,e}(2\pi))$ holds. For $e \in [0, 1)$, define

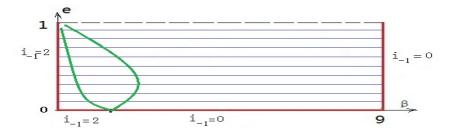
 $\beta_{s}(e) = \min\{\beta_{1}(e), \beta_{2}(e)\} \text{ and } \beta_{m}(e) = \max\{\beta_{1}(e), \beta_{2}(e)\},\$ $\Gamma_{s} = \{(\beta_{s}(e), e) \mid e \in [0, 1)\} \text{ and } \Gamma_{m} = \{(\beta_{m}(e), e) \mid e \in [0, 1)\}.$

They form the two -1-degeneracy curves in $[0,9] \times [0,1)$.

Idea of the proof.

Because $i_{-1}(\gamma_{0,e}) = 2$ and $i_{-1}(\gamma_{9,e}) = 0$, there exist two $\beta_1(e)$ and $\beta_2(e)$ such that $i_{-1}(\gamma_{\beta,e})$ strictly decreases by 1 when β passes $\beta_i(e)$. Here it is possible that $\beta_1(e) = \beta_2(e)$ and $i_{-1}(\gamma_{\beta,e})$ strictly decreases by 2 when β passes $\beta_1(e)$.

Specially $-1 \in \sigma(\gamma_{\beta_i(e),e}(2\pi))$ holds for i = 1 and 2.



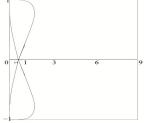
Idea of the proof (continued): Let

$$B(e,\omega) = A(9,e)^{-\frac{1}{2}} \frac{1}{2(1+e\cos(t))} S(t)A(9,e)^{-\frac{1}{2}}.$$

Here $B(e, \omega)$ depends on ω , because A(9, e) is defined on $\overline{D}(\omega, 2\pi)$.

Lemma. For any ω boundary condition and $e \in (0,9)$, $A(\beta, e)$ is ω degenerate if and only if $\lambda(e, \beta, \omega) = \frac{-1}{\sqrt{9-\beta}} \in \sigma_p(B(e, \omega))$.

Here $B(\beta, e)$ depends on e analytically. Thus $\lambda(e, \beta, \omega)$ depends on e analytically by Operator Theory ([Kato]). Thus the above Lemma yields the analyticity of $\beta_i(e)$ in $e \in (-1, 1)$, and then Γ_s and Γ_m are well defined and have at most isolated intersection points.

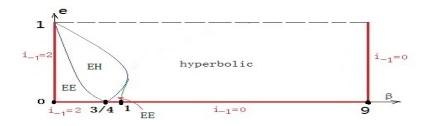


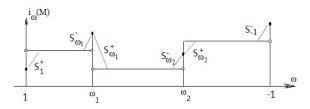
ロ ト 4 戸 ト 4 三 ト 4 三 ト つ 9 0

Theorem 4-(I) (Hu-Long-Sun, 2012). Let $e \in [0,1)$. We have

(i)
$$i_{-1}(\gamma_{\beta,e}) = \begin{cases} 2, & \text{if } 0 \leq \beta < \beta_s(e), \\ 1, & \text{if } \beta_s(e) \leq \beta < \beta_m(e), \\ 0, & \text{if } \beta_m(e) \leq \beta \leq 9, \end{cases}$$

(ii) $\gamma_{\beta,e}(2\pi) \approx R(\theta_1) \diamond R(\theta_2)$ for some θ_1 and $\theta_2 \in (\pi, 2\pi)$, and thus is strongly linearly stable, when $0 < \beta < \beta_s(e)$; (iii) $\gamma_{\beta,e}(2\pi) \approx D(\lambda) \diamond R(\theta)$ for some $0 > \lambda \neq -1$ and $\theta \in (\pi, 2\pi)$, and it is hyperbolic-elliptic and thus linearly unstable, when $\beta_s(e) < \beta < \beta_m(e)$.





Idea of the proof Theorem 4-(I)-(ii). When $0 < \beta < \beta_s(e)$, let $M = \gamma_{\beta,e}(2\pi)$. Because $\sigma(M) \subset \mathbf{U} \setminus \mathbf{R}$ when $0 < \beta < \beta_s(e)$ (no eigenvalues ± 1 and hyperbolic ones), we obtain

$$2 = i_{-1}(\gamma_{\beta,e})$$

= $i_{1}(\gamma_{\beta,e}) + S_{M}^{+}(1) + \sum_{i=1}^{2} (-S_{M}^{-}(\omega_{i}) + S_{M}^{+}(\omega_{i})) - S_{M}^{-}(-1)$
= $\sum_{i=1}^{2} (-S_{M}^{-}(\omega_{i}) + S_{M}^{+}(\omega_{i})) \le \sum_{i=1}^{2} S_{M}^{+}(\omega_{i}) \le 2.$
hen we get $2 = S_{M}^{+}(\omega_{1}) + S_{M}^{+}(\omega_{2})$. It implies
 $\gamma_{\beta,e}(2\pi) \approx R(\theta_{1}) \diamond R(\theta_{2})$ for some θ_{1} and $\theta_{2} \in (\pi, 2\pi)$.

→ ∃ →

э

(日)

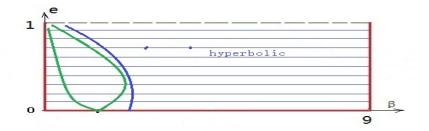
and thus is strongly linearly stable.

Т

Theorem 5 (Hu-Long-Sun, 2012). For every $e \in [0, 1)$ we define

$$\beta_k(e) = \inf \{ \beta \in [0,9] \mid \sigma(\gamma_{\beta,e}(2\pi)) \cap \mathbf{U} = \emptyset \}, \\ \Gamma_k = \{ (\beta_k(e), e) \in [0,9] \times [0,1) \mid e \in [0,1) \}$$

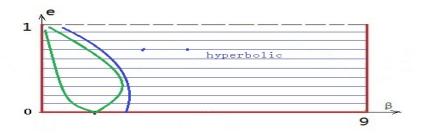
Then (i) $\beta_s(e) \leq \beta_m(e) \leq \beta_k(e) < 9$ holds for all $e \in [0, 1)$; (ii) Γ_k is the boundary curve of the hyperbolic region of $\gamma_{\beta,e}(2\pi)$ in the (β, e) rectangle $[0, 9] \times [0, 1)$; (iii) Γ_k is continuous in $e \in [0, 1)$, starts from (1, 0) and goes up, $\lim_{e \to 1} \beta_k(e) = 0$, and Γ_k is distinct from Γ_m .



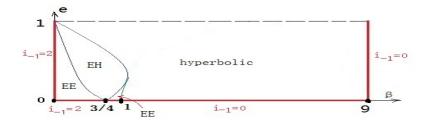
Idea of the proof. (A) $\gamma_{\beta_1,e}(2\pi)$ is hyperbolic $\Rightarrow i_{-1}(\gamma_{\beta_1,e}) = 0$ by Theorem 4-(I). Similarly $i_{\omega}(\gamma_{\beta_1,e}) = 0 \ \forall \omega \in \mathbf{U}$ Main Lemma $2 \Rightarrow i_{\omega}(\gamma_{\beta,e}) = 0 \ \forall \omega \in \mathbf{U}$ and $\beta \in (\beta_1, 9]$ Main Lemma $1 \Rightarrow \nu_{\omega}(\gamma_{\beta,e}(2\pi)) = 0 \ \forall \omega \in \mathbf{U}$ and $\beta \in (\beta_1, 9]$, i.e., $\gamma_{\beta,e}(2\pi)$ is hyperbolic,

i.e., the hyperbolic subregion of $\gamma_{\beta,e}(2\pi)$ is connected. Then Γ_k is well-defined and contains one point on each $\{e = \text{const.}\}$.

(B) Other hard parts: to prove the continuity of Γ_k , and $\beta_k(e) \to 0$ as $e \to 1$.



Theorem 4-(II) (Hu-Long-Sun, 2012). Let $e \in [0, 1)$. We have (iv) $\gamma_{\beta,e}(2\pi) \approx R(\theta_1) \diamond R(\theta_2)$ for some $\theta_1 \in (0, \pi)$ and $\theta_2 \in (\pi, 2\pi)$ with $2\pi - \theta_2 < \theta_1$, and thus is strongly linearly stable, when $\beta_m(e) < \beta < \beta_k(e)$.



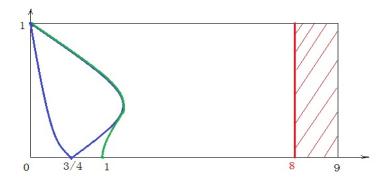
Theorem 6 (Hu-Long-Sun, 2012). Let $e \in [0, 1)$. (i) If $\beta_s(e) < \beta_m(e)$, $\gamma_{\beta_s(e),e}(2\pi) \approx N_1(-1,1) \diamond R(\theta)$ for some $\theta \in (\pi, 2\pi)$, and is spectrally stable and linearly unstable; (ii) If $\beta_s(e) = \beta_m(e) < \beta_k(e)$, $\gamma_{\beta_s(e),e}(2\pi) \approx -I_2 \diamond R(\theta)$ for some $\theta \in (\pi, 2\pi)$, and is inearly stable, but not strongly linearly stable; (iii) If $\beta_s(e) < \beta_m(e) < \beta_k(e)$, $\gamma_{\beta_m(e),e}(2\pi) \approx N_1(-1,-1) \diamond R(\theta)$ for some $\theta \in (\pi, 2\pi)$, and is spectrally stable and linearly unstable; (iv) If $\beta_s(e) \leq \beta_m(e) < \beta_k(e)$, $\gamma_{\beta_k(e),e}(2\pi) \approx N_2(e^{\sqrt{-1}\theta}, b)$ for some $\theta \in (0, \pi)$ and $(b_2 - b_3) \sin \theta > 0$, and is spectrally stable and linearly unstable;

(v) If $\beta_s(e) < \beta_m(e) = \beta_k(e)$, either $\gamma_{\beta_k(e),e}(2\pi) \approx N_1(-1,1) \diamond D(\lambda)$ for some $-1 \neq \lambda < 0$ and is linearly unstable; or $\gamma_{\beta_k(e),e}(2\pi) \approx N_2(-1,c)$ with $c_1, c_2 \in \mathbf{R}$ and $c_2 \neq 0$, and is spectrally stable and linearly unstable; (vi) If $\beta_s(e) = \beta_m(e) = \beta_k(e)$, either $\gamma_{\beta_k(e),e}(2\pi) \approx M_2(-1,c)$ with $c_1 \in \mathbf{R}$ and $c_2 = 0$ which possesses basic normal form $N_1(-1,1) \diamond N_1(-1,1)$, or $\gamma_{\beta_k(e),e}(2\pi) \approx N_1(-1,1) \diamond N_1(-1,1)$; and thus is spectrally stable and linearly unstable.

New estimate of Yuwei Ou, 2012:

Theorem. (Y. Ou, 2012) $\gamma_{\beta,e}(2\pi)$ is hyperbolic for all (β, e) in rectangle $(8, 9] \times [0, 1)$, *i.e.*,

 $\sigma(\gamma_{\beta,e}(2\pi)) \subset \mathbf{C} \setminus \mathbf{U}, \qquad \forall \ (\beta,e) \in (8,9] \times [0,1).$



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Further open problems

- (i) Precise locations of the three curves Γ_s , Γ_m and Γ_k ;
- (ii) No intersection of Γ_s and Γ_m ;
- (iii) The coincidence part of Γ_m and Γ_k ;
- (iv) Classification of real and complex hyperbolic cases;

(v) Applications to other problems.

Thank you !