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Finite density transport
If the total momentum (or any other operator 
that overlaps with the total current) is conserved, 
the d.c. conductivity is infinite.

The optical conductivity of a perfect metal:

Only alternative to breaking momentum 
conservation is to dilute the charge carriers. Makes 
spectral weight of delta function small:

If the total momentum (or any other operator 
that overlaps with the total current) is 
conserved, the d.c. conductivity is infinite.

The optical conductivity of a perfect metal:
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Observed behaviors

Conventional metals
(sharp Drude peak)

Insulators
(vanishing dc 
conductivity)

           Strange
metals

(unconventional
scalings)

             Bad
          metals
(no Drude peak,
violate MIR
bound) 
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A conventional metal

Optical conductivity in graphene by
Li et al. 0807.3780
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Metal-insulator transitions
Dramatic spectral weight transfer from Drude peak 

to interband scales: Itinerant to localized charge 

Uchida et al. ’91
Nicoletti et al ’11
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Gapless insulators
Quantum spin liquid candidates show a power law    

‘soft’ gap in the optical conductivity 

Elsässer et al. 1208.1664

Herbertsmithite
by Pilon et al 1301.3501
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A bad metal

La1.9Sr0.1CuO4 by Takenaka et al.’03,
from Hussey et al. ’04
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Theory of sharp Drude peaks
Sharp Drude peak
     ⇔  Momentum relaxation rate ! small

Can treat momentum-nonconserving operators 
(remnant of UV lattice) as perturbations of a 
translationally invariant effective IR theory.

E.g. Umklapp scattering in a Fermi liquid:

In holographic models, often least irrelevant 
operator is: 
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Theory of sharp Drude peaks
Framework to treat ! perturbatively:
     Memory matrix formalism.  (cf. Rosch and Andrei, 1+1)

For case of scattering by a lattice
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Semi-local criticality

Common in holography that IR geometries have z = ∞ 
(with or without ground state entropy).

Scaling of time but not space ⇒ efficient low energy 
dissipation in momentum-violating processes.

Find e.g. dc resistivity 

(Hartnoll and Hofman, 1201.3917)

(cf. Iqbal, Liu, Mezei)

(Confirmed numerically by Horowitz, Santos, Tong)

Theories with z < ∞ do not dissipate efficiently in 
momentum-violating processes.

r(T ) ⇠ T 2�(kL)
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Making the lattice relevant
Claim: (at least some) metal-insulator transitions are 
described by momentum-nonconserving operators 
becoming relevant in the effective low energy theory.

We found a holographic realization of this mechanism.

Simple theory

(cf. Emery, Luther, Peschel, 1+1)

(Donos and Hartnoll, 1212.2998)
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(Chern-Simons term not essential but 
helps to find the IR geometries)
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RG flow scenarios
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The theory has (T=0) IR geometries both with 
and without translation invariance

(Donos and Hartnoll, 1212.2998)
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To capture the physics without solving PDEs we use 
a lattice that breaks translation invariance while 
retaining homogeneity:

Beyond a simplification, realization of smectic metal 
phases due to strong yet anisotropic lattice scattering 
in the IR.

A technical simplification

(Invariant under Bianchi VII0  algebra,
cf. Nakamura-Ooguri-Park, Donos-Gauntlett, Kachru-Trivedi-....)

B(0) = �!2

!2 + i!3 = e

ipx1 (dx2 + idx3)

(cf. Emery, Fradkin, Kivelson, Lubensky;
Vishwanath, Carpentier)
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Metal-insulator transition

The metallic and insulating IR geometries are:
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(Donos and Hartnoll, 1212.2998)
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Spectral weight transfer
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Metal Insulator

�(!) ⇠ !4/3 at T = 0

(Donos and Hartnoll, 1212.2998)
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Can compute d.c. conductivities analytically:

In between the metallic and insulating phases 
we found bad metals with no Drude peak and 
large resistivities.

‘Mid-infrared peak’ in insulating phase.

Further comments

metal: �(T ) ⇠ T�2�(kL) ,
insulator: �(T ) ⇠ T 4/3 .
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Objective: non-quasiparticle language for transport.

Good metal: Effective low energy theory translation 
invariant up to perturbative effects of momentum-
nonconserving operators.

Effects become relevant: metal-insulator transition.

Holography precisely realizes this scenario.

Simple model exhibits experimental features that 
are difficult to otherwise describe in a controlled 
way: major spectral weight transfer, bad metals, 
insulators with power law gaps.

Take home messages
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