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Introduction

We define the C*-algebra C7;(A) of a higher rank graph A twisted by a
2-cocycle ¢ which takes values in T and derive some basic properties.
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Introduction

We define the C*-algebra C7;(A) of a higher rank graph A twisted by a
2-cocycle ¢ which takes values in T and derive some basic properties.

Examples of this construction include all noncommutative tori, crossed
products of Cuntz algebras by quasifree automorphisms and Heegaard
quantum 3-spheres (see [BHMS]).

We also discuss the cohomology theory, where the twisting cocycle ¢
resides, and the homology theory on which it is based.

Our definition of the homology of a k-graph A is modeled on the cubical
singular homology of a topological space (see [Mas91, §VIL.2]).

It agrees with the homology of the associated cubical set (see [Gr05]).

This talk is based on joint work with David Pask and Aidan Sims of the
University of Wollongong.
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Preliminaries

Introduction

We define the C*-algebra C7;(A) of a higher rank graph A twisted by a
2-cocycle ¢ which takes values in T and derive some basic properties.

Examples of this construction include all noncommutative tori, crossed
products of Cuntz algebras by quasifree automorphisms and Heegaard
quantum 3-spheres (see [BHMS]).

We also discuss the cohomology theory, where the twisting cocycle ¢
resides, and the homology theory on which it is based.

Our definition of the homology of a k-graph A is modeled on the cubical
singular homology of a topological space (see [Mas91, §VIL.2]).

It agrees with the homology of the associated cubical set (see [Gr05]).
This talk is based on joint work with David Pask and Aidan Sims of the

University of Wollongong. Many of the the results discussed here were
obtained while I was also employed there. ¥

Kumjian, Pask, Sims Twisted Higher Rank Grap



Preliminaries

Definition (see [KP0O])

Let A be a countable small category and let d : A — N* be a functor. Then
(A, d) is a k-graph if it satisfies the factorization property:
For every A € A and m,n € N¥ such that

dA)=m+n
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Let A be a countable small category and let d : A — N* be a functor. Then
(A, d) is a k-graph if it satisfies the factorization property:
For every A € A and m,n € N¥ such that

dA)=m+n

there exist unique p, v € A satisfying:
o d(u) =mand d(v) = n,
o \=pv.
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Definition (see [KP0O])

Let A be a countable small category and let d : A — N* be a functor. Then
(A, d) is a k-graph if it satisfies the factorization property:
For every A € A and m,n € N¥ such that

dA)=m+n

there exist unique p, v € A satisfying:
o d(u) =mand d(v) = n,
o \=pv.

Set A" := d~!(n) and identify A° = Obj (A), the set of vertices.
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Preliminaries

Definition (see [KP0O])

Let A be a countable small category and let d : A — N* be a functor. Then
(A, d) is a k-graph if it satisfies the factorization property:
For every A € A and m,n € N¥ such that

dA)=m+n

there exist unique p, v € A satisfying:

o d(u) =mand d(v) = n,

o \=pv.
Set A" := d~!(n) and identify A° = Obj (A), the set of vertices.
An element A € A% is called an edge.

Kumjian, Pask, Sims Twisted Higher Rank Grap|



Preliminaries

Remarks and Examples

Let A be a k-graph.
o If k = 0, then d is trivial and A is just a set.
o If k = 1, then A is the path category of a directed graph.

o If k > 2, think of A as generated by k graphs of different colors that
share the same set of vertices A°.
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o If k = 1, then A is the path category of a directed graph.
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share the same set of vertices A°.

Commuting squares form an essential piece of structure for k > 2.
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o If k = 0, then d is trivial and A is just a set.
o If k = 1, then A is the path category of a directed graph.
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o If k = 0, then d is trivial and A is just a set.
o If k = 1, then A is the path category of a directed graph.
o If k > 2, think of A as generated by k graphs of different colors that
share the same set of vertices A°.
Commuting squares form an essential piece of structure for k > 2.
Let C,, denote the directed cycle with m vertices viewed as a 1-graph.
Example of a 2-graph A: Only the edges, A°* and A“, are shown.
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Preliminaries

Remarks and Examples

Let A be a k-graph.
o If k = 0, then d is trivial and A is just a set.
o If k = 1, then A is the path category of a directed graph.
o If k > 2, think of A as generated by k graphs of different colors that
share the same set of vertices A°.
Commuting squares form an essential piece of structure for k > 2.
Let C,, denote the directed cycle with m vertices viewed as a 1-graph.
Example of a 2-graph A: Only the edges, A°* and A“, are shown.

Note that A = C, x C;.
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More examples

The k-graph T := N* is regarded as the k-graph analog of a torus.
Here is a simple k-graph with an infinite number of vertices:
Ay = {(m,n) € Z¥ x Z* | m < n}

with structure maps
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Preliminaries

More examples

The k-graph T := N* is regarded as the k-graph analog of a torus.

Here is a simple k-graph with an infinite number of vertices:
Ay = {(m,n) € Z¥ x Z* | m < n}

with structure maps
m,n) =n
r(myn) =m
mn) =n—m

)

= (¢,m)(m,n).
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Homology and Cohomology

Cubes and Faces

Let A be a k-graph. For 0 < n < k an element A € A with
d(A\) =e;,+---+e, where i <---<i,

is called an n-cube. Let Q,(A) denote the set of n-cubes.
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Let A be a k-graph. For 0 < n < k an element A € A with
d(A\) =e;,+---+e, where i <---<i,

is called an n-cube. Let Q,(A) denote the set of n-cubes.
Note that 0-cubes are vertices and 1-cubes are edges.
Forn < 0 or n > k, we have Q,(A) = 0.
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Homology and Cohomology

Cubes and Faces

Let A be a k-graph. For 0 < n < k an element A € A with
d(A\) =e;,+---+e, where i <---<i,

is called an n-cube. Let Q,(A) denote the set of n-cubes.
Note that 0-cubes are vertices and 1-cubes are edges.
Forn < 0 or n > k, we have Q,(A) = 0.

Let A € Q,(A). We define the faces F{(X), F} (X) € Q,—1(A), where
1 <j < n, to be the unique elements such that

A=F/(MXo = MF/(\)

where d()\;) = e; for £ = 0, 1.
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Homology and Cohomology

Cubes and Faces

Let A be a k-graph. For 0 < n < k an element A € A with
d(A\) =e;,+---+e, where i <---<i,

is called an n-cube. Let Q,(A) denote the set of n-cubes.
Note that 0-cubes are vertices and 1-cubes are edges.
Forn < 0 or n > k, we have Q,(A) = 0.

Let A € Q,(A). We define the faces F{(X), F} (X) € Q,—1(A), where
1 <j < n, to be the unique elements such that

A=F/(MXo = MF/(\)

where d()\;) = e; for £ = 0, 1.
Fact: If i < j, then F{ o F' = F" o F{.
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Homology and Cohomology

Homology complex

For 1 < n < k define 9, : ZQ,(A) — ZQ,—1(A) such that for A € 0,(A)

i )J—i—é FZ

j=1 £=0

n
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Homology and Cohomology

Homology complex

For 1 < n < k define 9, : ZQ,(A) — ZQ,—1(A) such that for A € 0,(A)

i )J—i—é FZ

j=1 £=0

n

It is straightforward to show that 0,y o 9, = 0.
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Homology complex

For 1 < n < k define 9, : ZQ,(A) — ZQ,—1(A) such that for A € 0,(A)

i )J—i—é FZ

j=1 £=0

n

It is straightforward to show that 0,y o 9, = 0.
Hence, (ZQ.(A), 0,) is a complex and we define the homology of A by

H,(A) =kerd,/Im Op41.
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For 1 < n < k define 9, : ZQ,(A) — ZQ,—1(A) such that for A € 0,(A)

i )J—i—é FZ

j=1 £=0

n

It is straightforward to show that 0,y o 9, = 0.
Hence, (ZQ.(A), 0,) is a complex and we define the homology of A by

H,(A) =kerd,/Im Op41.

The assignment A — H,(A) is a covariant functor.
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Homology and Cohomology

Homology complex

For 1 < n < k define 9, : ZQ,(A) — ZQ,—1(A) such that for A € 0,(A)

i )J—i—f FZ

j=1 £=0

n

It is straightforward to show that 0,y o 9, = 0.
Hence, (ZQ.(A), 0,) is a complex and we define the homology of A by

H,(A) =kerd,/Im Op41.

The assignment A — H,(A) is a covariant functor.

Example: Recall that C,, is a cycle with m vertices. One may check that

Z ifn=0,1
0  otherwise. ¥
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Homology and Cohomology

The Kiinneth Theorem

Using basic homological algebra one may prove:

Theorem (Kiinneth Formula)

Let A; be a ki-graph for i = 1,2. For n > 0 there is an exact sequence:

0= > Huy (A1) ® Hup(A2) 25 Ha(Ar x Ag) D

my+my=n

S Tor(H, (A1), Huy(A2)) — 0.

my+my=n—1
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The Kiinneth Theorem

Using basic homological algebra one may prove:

Theorem (Kiinneth Formula)

Let A; be a ki-graph for i = 1,2. For n > 0 there is an exact sequence:

0= > Huy (A1) ® Hup(A2) 25 Ha(Ar x Ag) D

my+my=n

S Tor(H, (A1), Huy(A2)) — 0.

my+my=n—1

Let A be the 2-graph example above and recall that A = C; x Cj.
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Homology and Cohomology

The Kiinneth Theorem

Using basic homological algebra one may prove:

Theorem (Kiinneth Formula)

Let A; be a ki-graph for i = 1,2. For n > 0 there is an exact sequence:

0= > Huy (A1) ® Hup(A2) 25 Ha(Ar x Ag) D

my+my=n

S Tor(H, (A1), Huy(A2)) — 0.

my+my=n—1

Let A be the 2-graph example above and recall that A = C; x Cj.
By the Kiinneth Theorem we have
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Homology and Cohomology

Acyclic k-graphs and free actions

A k-graph A is said to be acyclic it H*(A) = Z and H"(A) = 0 for n > 0.
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Homology and Cohomology

Acyclic k-graphs and free actions

A k-graph A is said to be acyclic it H*(A) = Z and H"(A) = 0 for n > 0.

Theorem

Let A be an acyclic k-graph and suppose that there is a free action of the
group G on A. Then for each n > 0 there is an isomorphism:

H,(A/G) = H,(G).
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Homology and Cohomology

Acyclic k-graphs and free actions

A k-graph A is said to be acyclic it H*(A) = Z and H"(A) = 0 for n > 0.

Theorem

Let A be an acyclic k-graph and suppose that there is a free action of the
group G on A. Then for each n > 0 there is an isomorphism:

H,(A/G) = H,(G).

Example. Take A = A, and let G = Z* act on A by translation.
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Homology and Cohomology

Acyclic k-graphs and free actions

A k-graph A is said to be acyclic it H*(A) = Z and H"(A) = 0 for n > 0.

Theorem

Let A be an acyclic k-graph and suppose that there is a free action of the
group G on A. Then for each n > 0 there is an isomorphism:

H,(A/G) = H,(G).

Example. Take A = A, and let G = Z* act on A by translation.
It is easy to show that Ay is acyclic.
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Homology and Cohomology

Acyclic k-graphs and free actions

A k-graph A is said to be acyclic it H*(A) = Z and H"(A) = 0 for n > 0.

Theorem

Let A be an acyclic k-graph and suppose that there is a free action of the
group G on A. Then for each n > 0 there is an isomorphism:

H,(A/G) = H,(G).

Example. Take A = A, and let G = Z* act on A by translation.
It is easy to show that A; is acyclic. We have A /Z* = T; and so

k

H,(T}) = H,(Z") = Z().
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Homology and Cohomology

Acyclic k-graphs and free actions

A k-graph A is said to be acyclic it H*(A) = Z and H"(A) = 0 for n > 0.

Theorem

Let A be an acyclic k-graph and suppose that there is a free action of the
group G on A. Then for each n > 0 there is an isomorphism:

H,(A/G) = H,(G).

Example. Take A = A, and let G = Z* act on A by translation.

It is easy to show that A; is acyclic. We have A /Z* = T; and so
k

H,(T}) = H,(Z") = Z().

If E is a connected 1-graph with finitely many vertices and edges, then

H,(E) = 7" where b = |E'| — |E°| + 1 (i.e. the first Betti number of E). ¥

Kumjian, Pask, Sims Twisted Higher Rank Grap



Homology and Cohomology

Cohomology

Let A be a k-graph and let A be an abelian group. For n € N set

C"(A,A) = Hom(ZQ,(A), A)
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Homology and Cohomology

Cohomology

Let A be a k-graph and let A be an abelian group. For n € N set
C"(A,A) = Hom(ZQ,(A),A)
and define

5 C'(AA) - CFUAA) by 8(0) = 90 D
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Homology and Cohomology

Cohomology

Let A be a k-graph and let A be an abelian group. For n € N set
C"(A,A) = Hom(ZQ,(A),A)
and define
8" CY(AA) — C"TH(ALA) by (@) = 0 0 Optr-

It is straightforward to show that (C*(A,A), 6*) is a complex.
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Homology and Cohomology

Cohomology

Let A be a k-graph and let A be an abelian group. For n € N set
C"(A,A) = Hom(ZQ,(A),A)
and define
8" CY(AA) — C"TH(ALA) by (@) = 0 0 Optr-

It is straightforward to show that (C*(A,A), 6*) is a complex.
We define the cohomology of A by

H"(AA) :=Z"(A,A)/B"(AA),

where Z"(A,A) := ker §" and B"(A,A) := Im 5"~ 1.
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Homology and Cohomology

Cohomology

Let A be a k-graph and let A be an abelian group. For n € N set
C"(A,A) = Hom(ZQ,(A),A)
and define
8" CY(AA) — C"TH(ALA) by (@) = 0 0 Optr-

It is straightforward to show that (C*(A,A), 6*) is a complex.
We define the cohomology of A by

H"(AA) :=Z"(A,A)/B"(AA),

where Z"(A,A) := ker §" and B"(A,A) := Im 5"~ 1.
Note A — H*(A,A) is a contravariant functor (it is covariant in A).
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Homology and Cohomology

The UCT and a long exact sequence.

Theorem (Universal Coefficient Theorem)

Let A be a k-graph and let A be an abelian group. Then for n > 0, there is a
short exact sequence

0 — Ext(H,—1(A),A) — H"(A,A) — Hom(H,(A),A) — 0.
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Homology and Cohomology

The UCT and a long exact sequence.

Theorem (Universal Coefficient Theorem)

Let A be a k-graph and let A be an abelian group. Then for n > 0, there is a
short exact sequence

0 — Ext(H,—1(A),A) — H"(A,A) — Hom(H,(A),A) — 0.
By a standard argument, a short exact sequence of coefficient groups

0>A—>B—->C—0

gives rise to a long exact sequence

0 — H°(A,A) — H°(A,B) — H°(A,C) — H'(AA) — - -~
- H" (A, C) — H"(A,A) — H"(A,B) — H"(A,C) — -
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The twisted C* -algebra

The C*-algebra C;,(A)

Suppose that A satisfies (x): For all v € A, n € NF, vA" is finite and
nonempty where vA" := r~!(v) N A"
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The twisted C* -algebra

The C*-algebra C;,(A)

Suppose that A satisfies (x): For all v € A, n € NF, vA" is finite and
nonempty where vA" := r~!(v) N A"

Definition

Let ¢ € Z*(A, T). Define C;,(A) to be the universal C*-algebra generated
by a family of operators {z) : A € A% 1 < i < k} and a family of orthogonal
projections {p, : v € A%} satisfying:

@ For A € A%, 1"ty = Ds(\)-
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The twisted C* -algebra

The C*-algebra C;,(A)

Suppose that A satisfies (x): For all v € A, n € NF, vA" is finite and
nonempty where vA" := r~!(v) N A"

Definition

Let ¢ € Z*(A, T). Define C;,(A) to be the universal C*-algebra generated
by a family of operators {z) : A € A% 1 < i < k} and a family of orthogonal
projections {p, : v € A%} satisfying:
@ For A € A%, 1"ty = Ds(\)-
@ Suppose pv = v/ where d(p) = d(p') = e;, d(v) = d(v') = ¢; and
i <j. Then
tyrty = @(uv)t,t,.

@ Forve Aandi=1,...,k,

Pv = Z B
ACVAC | ¢ |
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Definition

The twisted C*

Main Results

Fact: The isomorphism class of C};(A) only depends on [¢] € H*(A, T).




The twisted C* -algebra

Main Results

Fact: The isomorphism class of C};(A) only depends on [¢] € H*(A, T).
There is a gauge action y of T on Cy(A):
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The twisted C* -algebra

Main Results

Fact: The isomorphism class of C};(A) only depends on [¢] € H*(A, T).
There is a gauge action y of T on C;(A): Forall z € T*

Y (pv) = pv for all v € A°,
Y. (1) = zita forall A € A% i=1,... k.
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The twisted C* -algebra

Main Results

Fact: The isomorphism class of C};(A) only depends on [¢] € H*(A, T).
There is a gauge action y of T on C;(A): Forall z € T*

Y (pv) = pv for all v € A°,
Y. (1) = zita forall A € A% i=1,... k.

Moreover, the fixed point algebra C7;,(A)” is AF (cf. [KPOO]).
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The twisted C* -algebra

Main Results

Fact: The isomorphism class of C};(A) only depends on [¢] € H*(A, T).
There is a gauge action y of T on C;(A): Forall z € T*

Y (pv) = pv for all v € A°,
Y. (1) = zita forall A € A% i=1,... k.

Moreover, the fixed point algebra C7;,(A)” is AF (cf. [KPOO]).

Theorem (Gauge Invariant Uniqueness Theorem)

Let 7 : C(A) — B be an equivariant x-homomorphism. Then T is injective

iff w(p,) # 0 forallv € A°.
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The twisted C* -algebra

Main Results

Fact: The isomorphism class of C};(A) only depends on [¢] € H*(A, T).
There is a gauge action y of T on C;(A): Forall z € T*

Y (pv) = pv for all v € A°,
Y. (1) = zita forall A € A% i=1,... k.

Moreover, the fixed point algebra C7;,(A)” is AF (cf. [KPOO]).

Theorem (Gauge Invariant Uniqueness Theorem)

Let 7 : C(A) — B be an equivariant x-homomorphism. Then T is injective

iff w(p,) # 0 forallv € A°.

Theorem

There is a T-valued groupoid 2-cocycle o, on Gp such that

C,(A) = C*(Ga,0,)- ¥
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The twisted C* -algebra

Rotation algebras

Recall that T}, = NF.
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Rotation algebras

Recall that T}, = NF.

There is precisely one 2-cube in T,, namely (1, 1).




The twisted C* -algebra

Rotation algebras

Recall that T}, = NF.

There is precisely one 2-cube in T,, namely (1, 1).

Fix § € [0,1). Let ¢ € Z*(T», T) be given by ¢(1,1) = ™.
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The twisted C* -algebra

Rotation algebras

Recall that T}, = NF.

There is precisely one 2-cube in T,, namely (1, 1).

Fix 0 € [0,1). Let ¢ € Z*(T,, T) be given by ¢(1,1) = >™.

Then C7,(T>) is the universal C*-algebra generated by unitaries 7, and t,,
satisfying

27if

tote, = ™ty t,,.
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The twisted C* -algebra
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That is, C:,(Tg) is the rotation algebra Ag.
When 0 = 0, C5,(T,) = C(T?).

When 6 is irrational, C7;(T) is the well-known irrational rotation algebra.
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The twisted C* -algebra

Rotation algebras

Recall that T}, = NF,
There is precisely one 2-cube in T,, namely (1, 1).
Fix § € [0,1). Let ¢ € Z*(T», T) be given by ¢(1,1) = ™.

Then C7,(T>) is the universal C*-algebra generated by unitaries 7, and t,,

satisfying
fote, = eZm@

torte,-
That is, C:,(Tg) is the rotation algebra Ag.

When 0 = 0, C5,(T,) = C(T?).

When 6 is irrational, C7;(T) is the well-known irrational rotation algebra.

More generally, every noncommutative torus arises as a twisted k-graph
C*-algebra C,(Ty).
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The twisted C* -algebra

Crossed products of Cuntz algebras

Let A = B, x Cy where B; is the 1-graph with one vertex and two edges.
Note that C*(B;) = O,
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Crossed products of Cuntz algebras

Let A = B, x Cy where B; is the 1-graph with one vertex and two edges.
Note that C*(B,) = O, and so C*(A) = O, ® C(T).
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The twisted C* -algebra

Crossed products of Cuntz algebras

Let A = B, x Cy where B; is the 1-graph with one vertex and two edges.
Note that C*(B,) = O, and so C*(A) = O, ® C(T).

a; There are two 2-cubes in A, a;b forj = 1,2.
The boundary maps are trivial; so we have

v )b Z2(A,T) = H2(A,T) 2 T2 where

a OA Z2(A,T) 3 ¢ = (p(arb), p(azb))
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The twisted C* -algebra

Crossed products of Cuntz algebras

Let A = B, x Cy where B; is the 1-graph with one vertex and two edges.
Note that C*(B,) = O, and so C*(A) = O, ® C(T).

a; There are two 2-cubes in A, a;b forj = 1,2.
The boundary maps are trivial; so we have

v )b Z2(A,T) = H2(A,T) 2 T2 where

a OA Z2(A,T) 3 ¢ = (p(arb), p(azb))

Fix p € Z2(A, T), say ¢(a;b) = z;. C(A) is isomorphic to the universal
C*-algebra generated by two isometries, s;, 52, and a unitary u such that

s151" + 528" =1 and  us; = zjsju.
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The twisted C* -algebra

Crossed products of Cuntz algebras

Let A = B, x Cy where B; is the 1-graph with one vertex and two edges.
Note that C*(B,) = O, and so C*(A) = O, ® C(T).

a; There are two 2-cubes in A, a;b forj = 1,2.
The boundary maps are trivial; so we have

v )b Z2(A,T) = H2(A,T) 2 T2 where

a OA Z2(A,T) 3 ¢ = (p(arb), p(azb))

Fix p € Z2(A, T), say ¢(a;b) = z;. C(A) is isomorphic to the universal
C*-algebra generated by two isometries, s;, 52, and a unitary u such that

s151" + 528" =1 and  us; = zjsju.

So C3,(A) = Oy x4 Z where a(S;) = zS;.
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The twisted C* -algebra

Crossed products of Cuntz algebras

Let A = B, x Cy where B; is the 1-graph with one vertex and two edges.
Note that C*(B,) = O, and so C*(A) = O, ® C(T).

a; There are two 2-cubes in A, a;b forj = 1,2.
The boundary maps are trivial; so we have

v )b Z2(A,T) = H2(A,T) 2 T2 where

a OA Z2(A,T) 3 ¢ = (p(arb), p(azb))

Fix p € Z2(A, T), say ¢(a;b) = z;. C(A) is isomorphic to the universal
C*-algebra generated by two isometries, s;, 52, and a unitary u such that

s151" + 528" =1 and  us; = zjsju.

So C,(A) = Oy X, Z where a(S;) = z;S;. Hence, every crossed product of
O, by a quasifree automorphism is isomorphic to one of the form C:;(A). 12}
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The twisted C* -algebra

Heegaard quantum 3-spheres

The quantum 3-sphere Sg .0 Where p,q, 6 €10, 1) is defined in [BHMS].
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The authors prove that S> ; = 57,

Kumjian, Pask, Sims Twisted Higher Rank Grap



The twisted C* -algebra

Heegaard quantum 3-spheres

The quantum 3-sphere Sg .0 Where p,q, 6 €10, 1) is defined in [BHMS].
The authors prove that S> ; = 57,
Note 5(3)00 is the universal C*-algebra generated by S and 7 satisfying
(1 —85)(1 —TT*) =0, ST = *™Ts,
$*S =TT =1, ST* = ¢~ 2™i0T*S.
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The quantum 3-sphere Sg .0 Where p,q, 6 €10, 1) is defined in [BHMS].
The authors prove that S> ; = 57,

Note 5(3)00 is the universal C*-algebra generated by S and 7 satisfying
(1 —85)(1 —TT*) =0, ST = *™Ts,
$*S =TT =1, ST* = ¢~ 2™i0T*S.
It was known that S, is isomorphic to C*(A) where A is the 2-graph
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The twisted C* -algebra

Heegaard quantum 3-spheres

The quantum 3-sphere Sg .0 Where p,q, 6 €10, 1) is defined in [BHMS].
The authors prove that S> ; = 57,

Note 5(3)00 is the universal C*-algebra generated by S and 7 satisfying
(1 —85)(1 —TT*) =0, ST = *™Ts,
$*S =TT =1, ST* = ¢~ 2™i0T*S.
It was known that S, is isomorphic to C*(A) where A is the 2-graph

a

3
But what about Sg,,?
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The twisted C* -algebra

Quantum spheres are twisted 2-graph C*-algebras

The degree map gives a homomorphism f : A — T, and the induced map
f* : H(T,,T) — H*(A,T).

is an isomorphism.
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The degree map gives a homomorphism f : A — T, and the induced map
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is an isomorphism.
There are three 2-cubes o = ah = hb, f = cg = fc and 7 = af = fa.
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The twisted C* -algebra

Quantum spheres are twisted 2-graph C*-algebras

The degree map gives a homomorphism f : A — T, and the induced map
f* : H(T,,T) — H*(A,T).

is an isomorphism.
There are three 2-cubes o = ah = hb, f = cg = fc and 7 = af = fa.

Fix 6 € [0, 1). The 2-cocycle on T, determined by (1, 1) — e~2™ pulls
back to a 2-cocycle o on A satisfying
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The twisted C* -algebra

Quantum spheres are twisted 2-graph C*-algebras

The degree map gives a homomorphism f : A — T, and the induced map
f* : H(T,,T) — H*(A,T).

is an isomorphism.
There are three 2-cubes o = ah = hb, f = cg = fc and 7 = af = fa.

Fix 6 € [0, 1). The 2-cocycle on T, determined by (1, 1) — e~2™ pulls
back to a 2-cocycle o on A satisfying

Let {ty : A € A% 1 <i <k} and {p, : v € A’} be the generators of C;(A).

By the universal property there is a unique map W : 5(3)00 - Cj; (A) such that
U(S) =t + 1y + 1, and W(T) = ty + 1, + 1.
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The twisted C* -algebra

Quantum spheres are twisted 2-graph C*-algebras

The degree map gives a homomorphism f : A — T, and the induced map
f* : H(T,,T) — H*(A,T).

is an isomorphism.
There are three 2-cubes o = ah = hb, f = cg = fc and 7 = af = fa.

Fix 6 € [0, 1). The 2-cocycle on T, determined by (1, 1) — e~2™ pulls
back to a 2-cocycle o on A satisfying

Let {ty : A € A% 1 <i <k} and {p, : v € A’} be the generators of C;(A).

By the universal property there is a unique map W : 5(3)00 — C5, (A) such that
V(S)=t,+t,+t.and U(T) =ty + 1, + t).
Moreover, ¥ is an isomorphism. 0 )
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More Stuff

Categorical cocycle cohomology

The categorical cocycle cohomology, HZ, (A, A), is just the usual cocycle
cohomology for groupoids (see [Ren80]) extended to small categories.
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More Stuff

Categorical cocycle cohomology

The categorical cocycle cohomology, HZ, (A, A), is just the usual cocycle
cohomology for groupoids (see [Ren80]) extended to small categories.

We have proven that forn = 0, 1,2

H'(A,A) 2 H'.(A, A).
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More Stuff

Categorical cocycle cohomology

The categorical cocycle cohomology, HZ, (A, A), is just the usual cocycle
cohomology for groupoids (see [Ren80]) extended to small categories.

We have proven that forn = 0, 1,2
H"(AA) =2 HL(AA).

A map c: Ax A — Ais a categorical 2-cocycle if for any composable triple
()\1 y )\27 )\3) we have

(A1, A2) + c(AiA2, A3) = c(A1, AaAsz) + (A2, Az)
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More Stuff

Categorical cocycle cohomology

The categorical cocycle cohomology, HZ, (A, A), is just the usual cocycle
cohomology for groupoids (see [Ren80]) extended to small categories.

We have proven that forn = 0, 1,2
H"(AA) =2 HL(AA).

A map c: Ax A — Ais a categorical 2-cocycle if for any composable triple
()\1 y )\27 )\3) we have

C()\l, )\2) + C()\1>\2, )\3) = C()\], )\2)\3) + C()\z7 )\3)
and c is a categorical 2-coboundary if there is b : A — A such that

C(/\l, )\2) = b()\l) — b()\]/\g) + b()\z)
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More Stuff

Categorical cocycle cohomology

The categorical cocycle cohomology, HZ, (A, A), is just the usual cocycle
cohomology for groupoids (see [Ren80]) extended to small categories.

We have proven that forn = 0, 1,2
H"(AA) =2 HL(AA).

A map c: Ax A — Ais a categorical 2-cocycle if for any composable triple
()\1 y )\27 )\3) we have

C()\l, )\2) + C()\1>\2, )\3) = C()\], )\2)\3) + C()\z7 )\3)
and c is a categorical 2-coboundary if there is b : A — A such that
C(/\l, )\2) = b()\l) — b()\]/\g) + b()\z)

H?.(A,A) is the quotient group (2-cocycles modulo 2-coboundaries). ¥
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The C*-algebra C*(A, ¢)

Suppose A satisfies (x) and let ¢ be a T-valued categorical 2-cocycle.




More Stuff

The C*-algebra C*(A, ¢)

Suppose A satisfies (x) and let ¢ be a T-valued categorical 2-cocycle.

Definition (see [KPS])

Let C*(A, ¢) be the universal C*-algebra generated by the set {£) : A € A}
satisfying:

@ {t,: v € A} is a family of orthogonal projections.
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The C*-algebra C*(A, ¢)

Suppose A satisfies (x) and let ¢ be a T-valued categorical 2-cocycle.

Definition (see [KPS])

Let C*(A, ¢) be the universal C*-algebra generated by the set {£) : A € A}
satisfying:

@ {t,: v € A} is a family of orthogonal projections.
@ For )\ € A, Is(y) = 1SN
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More Stuff

The C*-algebra C*(A, ¢)

Suppose A satisfies (x) and let ¢ be a T-valued categorical 2-cocycle.

Definition (see [KPS])

Let C*(A, ¢) be the universal C*-algebra generated by the set {£) : A € A}
satisfying:

@ {t,: v € A} is a family of orthogonal projections.
@ For )\ € A, Is(y) = 1SN
Q Ifs(\) = r(u), then £yt = c(A, w)tx,.
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More Stuff

The C*-algebra C*(A, ¢)

Suppose A satisfies (x) and let ¢ be a T-valued categorical 2-cocycle.

Definition (see [KPS])

Let C*(A, ¢) be the universal C*-algebra generated by the set {£) : A € A}
satisfying:

@ {t,: v € A} is a family of orthogonal projections.
@ For A € A, t5) = tA"ta.
Q Ifs(\) = r(u), then £yt = c(A, w)tx,.
Q Forve A% ne N
=Y hn"

AEVAr
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More Stuff

The C*-algebra C*(A, ¢)

Suppose A satisfies (x) and let ¢ be a T-valued categorical 2-cocycle.

Definition (see [KPS])

Let C*(A, ¢) be the universal C*-algebra generated by the set {£) : A € A}
satisfying:

@ {t,: v € A} is a family of orthogonal projections.
@ For A € A, t5) = tA"ta.
Q Ifs(\) = r(u), then £yt = c(A, w)tx,.
Q Forve A% ne N
=Y hn"

AEVAr
If [p] is mapped to [c] in the identification H*>(A, T) = H> (A, T), then
C(A) = C* (A o).
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More Stuff

Topological realizations

One may construct the topological realization X of a k-graph A (see
[KKQS]) by analogy with the geometric realization of a simplicial set.
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More Stuff

Topological realizations

One may construct the topological realization X of a k-graph A (see
[KKQS]) by analogy with the geometric realization of a simplicial set.

Let/ = [0,1]. Fori =1,...,nand £ = 0, 1 define ¢ : I""! — I" by

Ef(.xl, ce ,)Cnfl) = (xl, N ,xi,l,ﬁ,xi, ce ,xn,l).
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More Stuff

Topological realizations

One may construct the topological realization X of a k-graph A (see
[KKQS]) by analogy with the geometric realization of a simplicial set.

Let/ = [0,1]. Fori =1,...,nand £ = 0, 1 define ¢ : I""! — I" by
Ef(xl,...,x,,,l) = (xl,.. .,xi,l,ﬁ,xi,...,xn,l).

Then the topological realization is the quotient of
k
| | () x 1"
n=0

by the equivalence relation generated by (X, ef(x)) ~ (Ff()),x) where
A€ Qu(A)andx € "1,
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More Stuff

Topological realizations

One may construct the topological realization X of a k-graph A (see
[KKQS]) by analogy with the geometric realization of a simplicial set.

Let/ = [0,1]. Fori =1,...,nand £ = 0, 1 define ¢ : I""! — I" by
Ef(xl,...,x,,,l) = (xl,.. .,xi,l,ﬁ,xi,...,xn,l).

Then the topological realization is the quotient of
k
| | () x 1"
n=0

by the equivalence relation generated by (X, ef(x)) ~ (Ff()),x) where
A€ Qu(A)andx € "1,

We prove that there is a natural isomorphism H,, (A) = H,(Xy).
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