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Theorem 1

Theorem (with Y. Liokumovich)

If γ1 and γ2 are simple, then for each ε > 0, there exists a
homotopy H̃ from γ1 to γ2 that is composed of simple curves of
length no more than L + ε.
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Graph Structure

A Complicated Curve

Lemma (Key Lemma)

The first and last vertices have odd degree, and the rest have even
degree.

Lemma (Handshaking Lemma)

For any finite indirected graph, the number of vertices with odd
degree must be even.
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Orientation

If we orient our initial and final curves, then what can be said
about the corresponding orientations in the new homotopy?

If the initial curve is non-contractible, then the orientations
are preserved.

If the initial curve is contractible, then the orientation of the
final curve may change.

Theorem (R. Baer, 1920s)

Given non-contractible simple closed curves γ1 and γ2, if they are
homotopic, then they are also isotopic.
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Theorem (with Y. Liokumovich)

Let γ be a closed curve on an orientable (M, g). If we can contract
2γ through curves of length at most L, then for any ε > 0 we can
contract γ through curves of length at most L + ε.

Some remarks:

This can be seen as a quantitative version of the statement
that π1(M) has no elements of order 2 for an orientable
2-dimensional manifold M.

This theorem is not true if M is of dimension ≥ 4 (embedded
projective space).
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Theorem 3

Theorem (with R. Rotman)

Let (M, g) be a Riemannian disc with the property that ∂M can
be contracted through curves of length no more than L. Then, for
any ε > 0 and for any p ∈ ∂M, there is a contraction of M
through loops based at p of length no more than L + 2D + ε.
Here, D is the diameter of the disc.



Monotone Homotopy Lemma

Lemma

If we can contract ∂M through loops of length at most L, then we
can contract it through a monotone sequence of curves of length
no more that L + ε.

A monotone
homotopy.

The red curve is a
minimal geodesic.
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Difficulties

How do we make this homotopy monotone?



Proof of Monotone Lemma

By local considerations, we can find a sequence

0 = t0 < t1 < · · · < tn−1 < tn = 1

and monotone homotopies H1, . . . ,Hn such that the following
properties are true:

Hi is defined on [ti−1, ti ].

H0(0) is ∂M.

Hn(1) is a point.
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Hi (ti ) lies in the closure of the interior of Hi+1(ti ).
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Proof of Monotone Lemma - Continued

We employ a technique that will allow us to glue Hi and Hi+1 into
a single monotone homotopy defined on [ti−1, ti+1] which is still
nested with respect to the rest of the Hj .

The red curve is the smallest non-contractible curve.

Fixing Hi . Fixing Hi+1.
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Proof of Monotone Lemma - Continued

The two homotopies can now be glued together.

Successively applying this method allows us to glue all of the
monotone homotopies into a single monotone homotopy,
concluding the proof.
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Remarks

In general, the Monotone Lemma is false for contractible
simple closed curves on (S2, g).

By modifying these methods we can prove Theorem 3 for
contractible simple closed curves on any 2-dimensional
Riemannian manifold. In this case the based loops have length
at most 3L + 2D + ε.
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Conclusions

Self intersections can be removed using graph theoretic
observations.

If a double curve can be contracted through short curves, then
a single one can also be contracted through short curves.

Free loop homotopies can be replaced by based loop
homotopies by adding two diameters.

Thanks for your attention!
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