Embeddings of non-orientable surfaces

Adam Levine ${ }^{1}$ Daniel Ruberman ${ }^{1}$ Sašo Strle ${ }^{2}$
${ }^{1}$ Department of Mathematics
Brandeis University
${ }^{2}$ Faculty of Mathematics and Physics
University of Ljubljana

Banff, March 2013

Introduction

Basic theme in 3 and 4-manifold theory:
Constraints on genus of embedded orientable surface

$$
\Sigma_{g} \subset M^{3 \text { or } 4}
$$

Thurston norm in dimension 3; adjunction inequalities.
Usually assume M orientable and $[\Sigma]=\alpha \neq 0 \in H_{2}(M ; \mathbb{Z})$.
Define

$$
g_{M}(\alpha)=\min \left\{g \mid \Sigma_{g} \subset M,\left[\Sigma_{g}\right]=\alpha\right\} .
$$

Embeddings of genus hon-orientable surface

$$
F_{h}=\#_{h} \mathbb{R} \mathbb{P}^{2} \subset M
$$

Dimension 3: $[F]$ must be $\neq 0 \in H_{2}\left(M ; \mathbb{Z}_{2}\right)$.
Example: All $L(2 k, q)$ contain non-orientable surfaces generating $H_{2}\left(L(2 k, q) ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$.

- $\mathbb{R P}^{2} \subset \mathbb{R P}^{3}=L(2,1)$.
- Klein bottle $=F_{2} \subset L(4,1)$

fill in over α disk

Klein bottle in $\mathrm{L}(4,1)$

Dimension 4:

$\mathbb{R P}^{2} \subset S^{4}$ with normal Euler number ± 2.
So we'll assume $[F] \neq 0 \in H_{2}\left(M ; \mathbb{Z}_{2}\right)$; say F is essential.
For $F_{h} \subset M^{4}$, let n be its normal Euler number $F \cdot F$.
Definition: $h_{M}(\alpha)=\min \left\{h \mid F_{h} \subset M,\left[F_{h}\right]=\alpha\right\}$.
Concentrate on special case: $M=Y^{3} \times I$ with $H_{2}\left(Y ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$, particularly $M=L(2 k, q) \times I$.
Remark: For $M=Y^{3} \times I$, the Euler number n is even.

Remark:

In orientable case, Gabai showed for $\alpha \neq 0 \in H_{2}(Y ; \mathbb{Z})$

$$
g_{Y}(\alpha)=\min \left\{g \mid f: \Sigma_{g} \rightarrow Y, f_{*}[\Sigma]=\alpha\right\}
$$

So $g_{Y}(\alpha)=g_{Y \times 1}(\alpha)$.
Proof uses taut foliations; doesn't work in non-orientable case: for any k and q there's an essential map $f: \mathbb{R P}^{2} \rightarrow L(2 k, q)$.
Nevertheless, we conjecture (a precise version of)

$$
h_{L(2 k, q) \times I}=h_{L(2 k, q)} .
$$

Non-orientable genus bound

Lemma 1 (Cf. B.-H. Li, M. Mahowald)
For essential $F_{h} \subset L(2 k, q) \times I$, we have the congruence
$n \equiv 2 k-2 h+2(\bmod 4)$.
Remark: Connect sum with $\mathbb{R}^{2} \subset S^{4}$ gives $F_{h+1} \subset M$ in same homology class with Euler number $=n \pm 2$.
Theorem 2 (Levine-R.-Strle 2013)
Let $h \leq 5$. If $F_{h} \subset L(2 k, q) \times I$ is an essential embedding with normal Euler number n, then there is an i, $(1 \leq i \leq h)$ with $|n| \leq 2 h-2 i$ and an embedding $F_{i} \subset L(2 k, q)$.

Conjecture: Theorem 2 holds for all h.

What does this mean? Let's see for small h.
$\underline{h=1}$. If $\mathbb{R} \mathbb{P}^{2} \subset L(2 k, q) \times I$ then $i=1$ only choice. So $n=0$ and there's an embedding of \mathbb{R}^{2} in $L(2 k, q)$.
Easy to see this means $L(2 k, q)=L(2,1) \cong \mathbb{R} \mathbb{P}^{3}$.
$h=2$. If Klein bottle $\subset L(2 k, q) \times I$ then either

- $i=2$ and $n=0$, and F_{2} embeds in $L(2 k, q)$.
(Bredon-Wood: $\Leftrightarrow k$ even, $q=k \pm 1$)
- $i=1$ and $n= \pm 2$ and F_{1} embeds in $L(2 k, q)$. So
$L(2 k, q)=L(2,1)$.

Remark: Theorem 2 for h implies same statement for h - 1 . So it suffices to prove Theorem 2 for h odd (assume from now on).

Surfaces in lens spaces

Work of Bredon-Wood (1969) calculates $h_{L(2 k, q)}:=N(2 k, q)$ defined recursively for $1 \leq q<k$:

- $N(2,1)=1$
- $N(2 k, q)=N\left(2(k-q), q^{\prime}\right)+1$ where $1 \leq q^{\prime}<k-q$ and $q^{\prime}= \pm q(\bmod 2(k-q))$.

Realizing lower bound done by technique for $L(4,1)$ from earlier.

Embedding obstructions from d-invariants

If Y is a $\mathbb{Q H} S^{3}, d$-invariants for $\mathfrak{s} \in \operatorname{Spin}^{c}(Y)$ defined by

$$
\min \left\{\operatorname{gr}(x) \mid 0 \neq x \in \operatorname{Image}\left(U^{m}\right), \forall m \geq 0\right\}
$$

where U acts on the Heegaard-Floer homology $\operatorname{HF}^{+}(Y, \mathfrak{s})$.
Useful fact: (Ni-Wu; Gessel) For $k \in H_{1}(L(2 k, q))$ order 2:

$$
N(2 k, q)=2 \max _{\mathfrak{s} \in \operatorname{Sin}^{c}(L(2 k, q))}\{d(L(2 k, q), \mathfrak{s}+k)-d(L(2 k, q), \mathfrak{s})\}
$$

For torsion Spin^{c} structure \mathfrak{s} on Y non- $\mathbb{Q} H S^{3}$ with standard $\mathrm{HF}^{\infty}(Y, \mathfrak{s})$, there are two d-invariants $d_{\mathrm{bot}}(Y, \mathfrak{s})$ and $d_{\mathrm{top}}(Y, \mathfrak{s})$ corresponding to the kernel and cokernel of the action of $H_{1}(Y)$.
We're interested in $Q_{h, n}=$ the non-orientable S^{1} bundle of
Euler class n over F_{h}.

- Recall n even
- $H_{1}\left(Q_{h, n}\right) \cong \mathbb{Z}^{h-1} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ so not a $\mathbb{Q H} S^{3}$ for $h>1$.
- Two torsion Spin^{c} structures extend over D^{2} bundle.
- Two torsion Spin ${ }^{c}$ structures don't extend over D^{2} bundle.
- These are the twisted Spin^{c} structures.

The invariants $d_{\text {bot }}$ and $d_{\text {top }}$ yield bounds on $h_{L \times I}$ for L oriented with $H_{1}(L)=\mathbb{Z}_{2 k}$.

Lemma 3
Suppose $F_{h} \subset L \times I$ with normal Euler number n, and exterior $V=L \times I-\nu\left(F_{h}\right)$. For any $\mathfrak{s} \in \operatorname{Spin}^{c}(L)$, there is a unique Spin c structure $\tilde{\mathfrak{s}}$ on V that restricts to \mathfrak{s} on L_{0} and does not extend over $L \times I$.

Let $\mathfrak{t}_{\mathfrak{s}} \in \operatorname{Spin}^{c}\left(Q_{h, n}\right)$ be the restriction of $\tilde{\mathfrak{s}}$ to $Q_{h, n}$; this is one of the twisted Spin^{c} structures. The restriction of $\tilde{\mathfrak{s}}$ to L_{1} is $\mathfrak{s}+k$.

Main result

Theorem 4 (Levine-R.-Strle 2013)
Suppose $F_{h} \subset L \times I$ with normal Euler number n. For each $\mathfrak{s} \in \operatorname{Spin}^{c}(L)$, we have

$$
\begin{aligned}
d_{\mathrm{top}}\left(Q_{h, n}, \mathrm{t}_{\mathfrak{s}}\right)-\frac{h-1}{2} & \leq d(L, \mathfrak{s}+k)-d(L, \mathfrak{s}) \\
& \leq d_{\mathrm{bot}}\left(Q_{h, n}, \mathfrak{t}_{\mathfrak{s}}\right)+\frac{h-1}{2}
\end{aligned}
$$

Get the strongest results by varying $\mathfrak{s} \in \operatorname{Spin}^{C}(L)$ to maximize or minimize $d(L, \mathfrak{s}+k)-d(L, \mathfrak{s})$.

Computing $d\left(Q_{h, n}, \mathfrak{t}\right)$

We've verified the following conjecture for $h=1,3,5$ by one method, $h=2$ by another.

Conjecture 5
For odd genus h there are two twisted spin structures \mathfrak{t}_{1} and t_{2} such that

$$
d_{b o t}\left(Q_{h, n}, \mathfrak{t}_{1}\right)=d_{t o p}\left(Q_{h, n}, \mathfrak{t}_{1}\right)=\frac{n+2}{4}
$$

and

$$
d_{b o t}\left(Q_{h, n}, t_{2}\right)=d_{t o p}\left(Q_{h, n}, t_{2}\right)=\frac{n-2}{4}
$$

Similar statement for even genus.
The d-invariant seems to depend only on the Euler class n (i.e., is independent of h).

Surgery picture for $Q_{h, n}$

Can't apply surgery formula to surgery on α since it is of infinite order in $H_{1}\left(\#^{2 g+1} S^{1} \times S^{2}\right)$.

Better idea: integer surgery formula, based on the following surgery diagram for $Q_{h, n}$.

$Q_{2 g+1, n}$ as surgery on rationally null-homologous knot β in $M_{g, n+2} \# Q_{1,-2}$.

Second idea: surgery exact sequence, relating $Q_{2 g+1, n}$ to the orientable circle bundles $M_{g, n \pm 2}$.

For $n \neq 2, \gamma$ rationally null-homologous; surgery produces

- $M_{g, n-2}$ for coefficient $c=\infty$;
- $Q_{2 g+1, n}$ for $c=0$;
- $M_{g, n+2}$ for $c=-1$.

