# Embeddings of non-orientable surfaces

### Adam Levine<sup>1</sup> Daniel Ruberman<sup>1</sup> Sašo Strle<sup>2</sup>

<sup>1</sup>Department of Mathematics Brandeis University

<sup>2</sup>Faculty of Mathematics and Physics University of Ljubljana

Banff, March 2013

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Basic theme in 3 and 4-manifold theory:

Constraints on genus of embedded orientable surface

 $\Sigma_g \subset M^{\,3 \,\, {\rm or} \,\, 4}$ 

Thurston norm in dimension 3; adjunction inequalities.

Usually assume *M* orientable and  $[\Sigma] = \alpha \neq 0 \in H_2(M; \mathbb{Z})$ . Define

$$g_{\mathcal{M}}(\alpha) = \min\{g \mid \Sigma_g \subset \mathcal{M}, \ [\Sigma_g] = \alpha\}.$$

Embeddings of genus h non-orientable surface

$$F_h = \#_h \mathbb{RP}^2 \subset M.$$

**Dimension** 3: [*F*] must be  $\neq 0 \in H_2(M; \mathbb{Z}_2)$ .

**Example:** All L(2k, q) contain non-orientable surfaces generating  $H_2(L(2k, q); \mathbb{Z}_2) \cong \mathbb{Z}_2$ .

$$\blacktriangleright \mathbb{RP}^2 \subset \mathbb{RP}^3 = L(2,1).$$

• Klein bottle =  $F_2 \subset L(4, 1)$ 



band move

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼



second band move



### second handle

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?





fill in over  $\alpha$  disk



### Klein bottle in L(4,1)

◆□ → ◆□ → ◆ □ → ◆ □ → ● □

# **Dimension** 4:

 $\mathbb{RP}^2 \subset S^4$  with normal Euler number  $\pm 2$ . So we'll assume  $[F] \neq 0 \in H_2(M; \mathbb{Z}_2)$ ; say *F* is <u>essential</u>. For  $F_h \subset M^4$ , let *n* be its normal Euler number  $F \cdot F$ .

**Definition:**  $h_M(\alpha) = \min\{h \mid F_h \subset M, [F_h] = \alpha\}.$ 

Concentrate on special case:  $M = Y^3 \times I$  with  $H_2(Y; \mathbb{Z}_2) = \mathbb{Z}_2$ , particularly  $M = L(2k, q) \times I$ .

**Remark:** For  $M = Y^3 \times I$ , the Euler number *n* is even.

# **Remark:**

In orientable case, Gabai showed for  $\alpha \neq 0 \in H_2(Y; \mathbb{Z})$ 

$$g_{\mathsf{Y}}(\alpha) = \min\{g \mid f: \Sigma_g \to \mathsf{Y}, \ f_*[\Sigma] = \alpha\}$$

So  $g_{\mathsf{Y}}(\alpha) = g_{\mathsf{Y} \times I}(\alpha)$ .

Proof uses taut foliations; doesn't work in non-orientable case: for any *k* and *q* there's an essential map  $f : \mathbb{RP}^2 \to L(2k, q)$ . Nevertheless, we conjecture (a precise version of)

$$h_{L(2k,q)\times I}=h_{L(2k,q)}.$$

# Non-orientable genus bound

### Lemma 1 (Cf. B.-H. Li, M. Mahowald)

For essential  $F_h \subset L(2k, q) \times I$ , we have the congruence  $n \equiv 2k - 2h + 2 \pmod{4}$ .

**Remark:** Connect sum with  $\mathbb{RP}^2 \subset S^4$  gives  $F_{h+1} \subset M$  in same homology class with Euler number  $= n \pm 2$ .

### Theorem 2 (Levine-R.-Strle 2013)

Let  $h \le 5$ . If  $F_h \subset L(2k, q) \times I$  is an essential embedding with normal Euler number n, then there is an i,  $(1 \le i \le h)$  with  $|n| \le 2h - 2i$  and an embedding  $F_i \subset L(2k, q)$ .

**Conjecture:** Theorem 2 holds for all *h*.

#### What does this mean? Let's see for small h.

<u>*h*</u> = 1. If  $\mathbb{RP}^2 \subset L(2k, q) \times I$  then i = 1 only choice. So n = 0 and there's an embedding of  $\mathbb{RP}^2$  in L(2k, q).

Easy to see this means  $L(2k, q) = L(2, 1) \cong \mathbb{RP}^3$ .

<u>*h*</u> = 2. If Klein bottle  $\subset$  *L*(2*k*, *q*)  $\times$  *I* then either

▶ i = 2 and n = 0, and  $F_2$  embeds in L(2k, q). (Bredon-Wood:  $\Leftrightarrow k$  even,  $q = k \pm 1$ )

• 
$$i = 1$$
 and  $n = \pm 2$  and  $F_1$  embeds in  $L(2k, q)$ . So  $L(2k, q) = L(2, 1)$ .

**Remark:** Theorem 2 for *h* implies same statement for h - 1. So it suffices to prove Theorem 2 for *h* odd (assume from now on).

Work of Bredon-Wood (1969) calculates  $h_{L(2k,q)} := N(2k,q)$  defined recursively for  $1 \le q < k$ :

Realizing lower bound done by technique for L(4, 1) from earlier.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

## Embedding obstructions from *d*-invariants

If Y is a  $\mathbb{Q}HS^3$ , *d*-invariants for  $\mathfrak{s} \in \operatorname{Spin}^c(Y)$  defined by  $\min\{\operatorname{gr}(x) \mid 0 \neq x \in \operatorname{Image}(U^m), \forall m \ge 0\}$ where *U* acts on the Heegaard-Floer homology HF<sup>+</sup>(Y,  $\mathfrak{s}$ ). Useful fact: (Ni-Wu; Gessel) For  $k \in H_1(L(2k, q))$  order 2:

$$N(2k,q) = 2 \max_{\mathfrak{s} \in \operatorname{Spin}^{c}(L(2k,q))} \{ d(L(2k,q),\mathfrak{s}+k) - d(L(2k,q),\mathfrak{s}) \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

For torsion Spin<sup>*c*</sup> structure  $\mathfrak{s}$  on Y non- $\mathbb{Q}HS^3$  with standard  $HF^{\infty}(Y,\mathfrak{s})$ , there are <u>*two*</u> *d*-invariants  $d_{bot}(Y,\mathfrak{s})$  and  $d_{top}(Y,\mathfrak{s})$  corresponding to the kernel and cokernel of the action of  $H_1(Y)$ .

We're interested in  $Q_{h,n}$  = the non-orientable  $S^1$  bundle of Euler class *n* over  $F_h$ .

- Recall n even
- ►  $H_1(Q_{h,n}) \cong \mathbb{Z}^{h-1} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$  so not a  $\mathbb{Q}HS^3$  for h > 1.
- Two torsion  $\text{Spin}^c$  structures extend over  $D^2$  bundle.
- Two torsion  $\text{Spin}^c$  structures <u>don't</u> extend over  $D^2$  bundle.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

► These are the *twisted* Spin<sup>c</sup> structures.

The invariants  $d_{\text{bot}}$  and  $d_{\text{top}}$  yield bounds on  $h_{L \times I}$  for *L* oriented with  $H_1(L) = \mathbb{Z}_{2k}$ .

#### Lemma 3

Suppose  $F_h \subset L \times I$  with normal Euler number n, and exterior  $V = L \times I - \nu(F_h)$ . For any  $\mathfrak{s} \in \text{Spin}^c(L)$ , there is a unique  $\text{Spin}^c$  structure  $\tilde{\mathfrak{s}}$  on V that restricts to  $\mathfrak{s}$  on  $L_0$  and does not extend over  $L \times I$ .

Let  $\mathfrak{t}_{\mathfrak{s}} \in \operatorname{Spin}^{c}(Q_{h,n})$  be the restriction of  $\tilde{\mathfrak{s}}$  to  $Q_{h,n}$ ; this is one of the twisted  $\operatorname{Spin}^{c}$  structures. The restriction of  $\tilde{\mathfrak{s}}$  to  $L_{1}$  is  $\mathfrak{s} + k$ .

(日) (日) (日) (日) (日) (日) (日) (日)

# Main result

### Theorem 4 (Levine-R.-Strle 2013)

Suppose  $F_h \subset L \times I$  with normal Euler number n. For each  $\mathfrak{s} \in \text{Spin}^c(L)$ , we have

$$egin{aligned} & d_{ ext{top}}(\mathsf{Q}_{h,n},\mathfrak{t}_{\mathfrak{s}}) - rac{h-1}{2} \leq d(L,\mathfrak{s}+k) - d(L,\mathfrak{s}) \ & \leq d_{ ext{bot}}(\mathsf{Q}_{h,n},\mathfrak{t}_{\mathfrak{s}}) + rac{h-1}{2}. \end{aligned}$$

Get the strongest results by varying  $\mathfrak{s} \in \operatorname{Spin}^{c}(L)$  to maximize or minimize  $d(L, \mathfrak{s} + k) - d(L, \mathfrak{s})$ .

# Computing $d(Q_{h,n}, \mathfrak{t})$

We've verified the following conjecture for h = 1, 3, 5 by one method, h = 2 by another.

### **Conjecture 5**

For odd genus h there are two twisted spin structures  $\mathfrak{t}_1$  and  $\mathfrak{t}_2$  such that

$$d_{bot}(\mathsf{Q}_{h,n},\mathfrak{t}_1)=d_{top}(\mathsf{Q}_{h,n},\mathfrak{t}_1)=\frac{n+2}{4}$$

and

$$d_{bot}(\mathsf{Q}_{h,n},\mathfrak{t}_2)=d_{top}(\mathsf{Q}_{h,n},\mathfrak{t}_2)=rac{n-2}{4}.$$

Similar statement for even genus.

The d-invariant seems to depend only on the Euler class n (i.e., is independent of h).

# Surgery picture for $Q_{h,n}$



Can't apply surgery formula to surgery on  $\alpha$  since it is of infinite order in  $H_1(\#^{2g+1}S^1 \times S^2)$ .

Better idea: integer surgery formula, based on the following surgery diagram for  $Q_{h,n}$ .



 ${\sf Q}_{2g+1,n}$  as surgery on rationally null-homologous knot  $\beta$  in  $M_{g,n+2}\#{\sf Q}_{1,-2}.$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Second idea: surgery exact sequence, relating  $Q_{2g+1,n}$  to the orientable circle bundles  $M_{q,n\pm 2}$ .



For  $n \neq 2$ ,  $\gamma$  rationally null-homologous; surgery produces

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

•  $M_{g,n-2}$  for coefficient  $c = \infty$ ;

• 
$$M_{g,n+2}$$
 for  $c = -1$ .