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A complex number a is called algebraic if there

exists a nonzero polynomial p(X) ∈ Q[X] such

that p(a) = 0. The polynomial is unique if we

require that it be irreducible and monic. We

say that a is an algebraic integer if the unique

irreducible, monic polynomial which it satisfies

has integer coefficients. We know that the set

Q of all algebraic numbers is a field, and the

algebraic integers form a ring. For an algebraic

number a, the set K of all f(a), with f(X) ∈
Q[X] is a field, called an algebraic number field.

If all the roots of the polynomial p(X) are in

K, then K is called Galois over Q.

QUESTION. Which invariants of a number field

characterize it up to isomorphism?



The absolute Galois group of a number field

K is the group GK = Gal(Q/K) consisting of

all automorphisms σ of Q such that σ(a) = a

for all a ∈ K. Let f(X) ∈ K[X] be irreducible,

and let Zf be the set of its roots. The group

of permutations of Zf is a finite group, which

is given the discrete topology. Then GK acts

on Zf . We put a topology on GK, so that the

homomorphism of GK to the group of permu-

tations of Zf is continuous for every such f(X).

Then GK is a topological group; it is compact

and totally disconnected.

THEOREM. [Uchida, 1976] Number fields E

and F are isomorphic as fields if and only if GE
and GF are isomorphic as topological groups.

The absolute Galois group is not well under-

stood at all (it is considered an anabelian ob-

ject). What we do understand well are abelian



Galois groups. For a number field K we de-

note by Kab the maximal abelian extension of

K. This is the maximal extension which is Ga-

lois (i.e., any irreducible polynomial which has

a root in Kab has all its roots in it), and such

that the Galois group of Kab over K is abelian.

For example, the theorem of Kronecker and

Weber says that Qab is the field generated by

all the numbers exp(2πi
n ), i.e., by all roots of

unity. Unfortunately,

EXAMPLE. The abelianized Galois groups of

Q(
√
−2) and Q(

√
−3) are isomorphic.



THEOREM. [Cornelissen and Marcolli, to ap-

pear] Let E and F be number fields. Then, E

and F are isomorphic if and only if there exists

an isomorphism of topological groups

ψ : Gab
E → Gab

F

such that for every character χ of Gab
F we have

LF,χ = LE,ψ◦χ, where LF,χ denotes the L-function

associated with ψ .

Cornelissen and Marcolli make use of our work

on multivariable dynamics, i.e., the concept of

piecewise conjugacy and the fact that piece-

wise conjugacy is an invariant for isomorphisms

between certain operator algebras associated

with multivariable dynamical systems.



(X,σ) a topological dynamical system, i.e.,

• X locally compact Hausdorff space

• σ : X → X proper continuous map.

Similarly

(A,α) a C*-dynamical system, i.e.,

• A is a C*-algebra

• σ : A→ A non-degenerate ∗-endomorphism.



Multivariably...

(X,σ) is a multivariable dynamical system:

X locally compact Hausdorff

σ = (σ1, σ2, . . . , σn), where σi : X → X, 1 ≤ i ≤
n, are continuous (proper) maps.

and a similar definition for a multivariable C∗-
dynamical system (A,α).



We want an operator algebra A that encodes

(X,σ):

A contains C0(X) and S1, . . . , Sn satisfying co-

variance relations:

fSi = Si(f ◦ σi)

for 1 ≤ i ≤ n and f ∈ C0(X)

F+
n is the free semigroup on n letters.

For w ∈ F+
n , say w = ik . . . i1, write Sw =

Sik . . . Si1.

The covariance algebra is

A0 =
{ ∑

finite

Swfw : fw ∈ C0(X)
}
.

This is an algebra since:

(Sv)(fSwg) = Svw(f ◦ σw)g

where σw = σik ◦ · · · ◦ σi1.



We need a norm condition in order to complete

A0.

Given the choices:

(1) Contractive: ‖Si‖ ≤ 1 for 1 ≤ i ≤ n

(2) Row Contractive:
∥∥∥ [S1 S2 . . . Sn

] ∥∥∥ ≤ 1.

we get:

Completing A0 using (1) yields the semicrossed

product C0(X)×σ F+
n .

Completing A0 using (2) yields the tensor al-

gebra T+(X,σ).



The semicrossed product C0(X)×σ Z+.

It was introduced by Arveson (1967), Arveson

and Josephson (1969) and formalized by Pe-

ters (1985).

For each x ∈ X, f ∈ C0(X) define

πx(f)ξ = (f(x)ξ0, (f◦η)(x)ξ1, (f◦η(2))(x)ξ2, . . . ).

Let Sx be the forward shift

Sxξ = (0, ξ0, ξ1, ξ2, . . . ).

It turns out that C0(X)×σ Z+ the norm closed

operator algebra acting on H ≡ ⊕x∈XHx and

generated by the operators π(f) ≡ ⊕x∈Xπx(f),

f ∈ C0(X), and S ≡ ⊕x∈XSx.



The classification problem

Classify the semicrossed products C0(X)×σZ+

as algebras.

A sufficient condition: Assume that σ1 and σ2

are topologicaly conjugate, i.e., there exists a

homeomorphism

γ : X1 → X2

so that

γ ◦ σ1 = σ2 ◦ γ.

Then the semicrossed products C0(X1)×σ1 Z+

and C0(X2)×σ2 Z+ are isomorphic as algebras.



Necessity:

• Arveson and Josephson (1969). Xi com-

pact, σi no fixed points, plus some extra

conditions

• Peters (1985). Xi compact, σi no fixed

points.

• Hadwin and Hoover (1988). Xi compact,

the set

{x ∈ Xi | σ1(x) 6= x, σ
(2)
1 (x) = σ1(x)}

has empty interior.

• Power (1992). Xi locally compact, σi home-

omorphisms



THEOREM. (Davidson and Katsoulis, 2008)

Let Xi be a locally compact Hausdorff space

and let σi a proper continuous map on Xi,

for i = 1,2. Then the dynamical systems

(X1, σ1) and (X2, σ2) are conjugate if and only

if the semicrossed products C0(X1)×σ1Z+ and

C0(X2)×σ2 Z+ are isomorphic as algebras.



Piecewise conjugate multisystems

Two multivariable dynamical systems (X,σ) and

(Y, τ) are said to be conjugate if there exists

a homeomorphism γ of X onto Y and a per-

mutation α ∈ Sn so that τi = γσα(i)γ
−1 for

1 ≤ i ≤ n.

DEFINITION. We say that two multivariable

dynamical systems (X,σ) and (Y, τ) are piece-

wise conjugate if there is a homeomorphism γ

of X onto Y and an open cover {Uα : α ∈ Sn}
of X so that for each α ∈ Sn,

γ−1τiγ|Uα = σα(i)|Uα.

The difference in the two concepts of conju-

gacy lies on the fact that the permutations

depend on the particular open set. As we shall

see, a single permutation generally will not suf-

fice.



PROPOSITION. Let (X,σ) and (Y, τ) be piece-

wise conjugate multivariable dynamical systems.

Assume that X is connected and that

E := {x ∈ X : σi(x) = σj(x), for some i 6= j}

has empty interior. Then (X,σ) and (Y, τ) are

conjugate.

For n = 2, we can be more definitive.

PROPOSITION. Let X be connected and let

σ = (σ1, σ2); and let E as above. Then piece-

wise conjugacy coincides with conjugacy if and

only if X\E is connected.



The multivariable classification problem.

THEOREM. Let (X,σ) and (Y, τ) be two mul-

tivariable dynamical systems. If T+(X,σ) and

T+(Y, τ) or C0(X)×σ F+
n and C0(Y )×τ F+

n are

isomorphic as algebras, then the dynamical sys-

tems (X,σ) and (Y, τ) are piecewise conjugate.



For the tensor algebras, sufficiency holds in the

following cases:

(i) X has covering dimension 0 or 1

(ii) σ consists of no more than 3 maps. (n ≤
3.)



For instance:

THEOREM. Suppose that X is a compact sub-

set of R. Then for two multivariable dynami-

cal systems (X,σ) and (Y, τ), the following are

equivalent:

1. (X,σ) and (Y, τ) are piecewise topologically

conjugate.

2. T+(X,σ) and T+(Y, τ) are isomorphic.

3. T+(X,σ) and T+(Y, τ) are completely iso-

metrically isomorphic.



The analysis of the n = 3 case is the most

demanding and required non-trivial topologi-

cal information about the Lie group SU(3).

The conjectured converse reduces to a ques-

tion about the unitary group U(n).



CONJECTURE. Let Πn be the n!-simplex with
vertices indexed by Sn. Then there should be a
continuous function u of Πn into U(n) so that:

1. each vertex is taken to the corresponding
permutation matrix,

2. for every pair of partitions (A,B) of the
form

{1, . . . , n} = A1∪̇ . . . ∪̇Am = B1∪̇ . . . ∪̇Bm,

where |As| = |Bs|, 1 ≤ s ≤ m, let

P(A,B) = {α ∈ Sn : α(As) = Bs,1 ≤ s ≤ m}.

If x =
∑
α∈P(A,B) xαα, then the non-zero

matrix coefficients of uij(x) are supported
on

⋃m
s=1Bs × As. We call this the block

decomposition condition.

We have established this conjecture for n = 2
and 3 and Chris Ramsey the cases n = 4,5.



Isomorphism invariants for multivariable C*-dynamics.

When one moves away from classical dynami-

cal systems and commutative C∗-algebras, there

is very limited understanding for algebraic iso-

morphism invariants. Instead we investigate

isomorphism invariants for isometric isomor-

phisms.

The C∗-dynamical systems (A, σ) and (B, τ)

are called outer conjugate if there exists a ∗-
isomorphism γ : A → B and a unitary U ∈M(A)

so that

σ(A) = U∗(γ−1 ◦ β ◦ γ(A))U,

for all A ∈ A.



THEOREM (Davidson andKatsoulis 2008). Let

(A, σ) and (B, τ) be unital C∗-dynamical sys-

tems and assume that A is simple and both

σ and τ are automorpisms. Then, the semi-

crossed products A×σ Z+ and B×τ Z+ are iso-

metrically isomorphic if and only if the dynam-

ical systems (A, σ) and (B, τ) are outer conju-

gate.

Recently, Davidson and Kakariadis removed the

requirement that the C*-algebras be simple

from the above result. Therefore semicrossed

products of arbitrary unital C∗-algebras by au-

tomorphism are classified up to isometric iso-

morphism by outer conjugacy.



With Ken Davidson we considered only classi-

cal dynamical systems (dynamical systems over

commutative C∗-algebras) and our notion of

piecewise conjugacy applies exclusively to such

systems. Motivated by the interaction between

number theory and non-selfadjoint operator al-

gebras, one wonders whether a useful analogue

of piecewise conjugacy can be developed for

multivariable systems over arbitrary C∗-algebras.

The goal here is to obtain a natural notion of

piecewise conjugacy that generalizes that of

Davidson and Katsoulis from the commutative

case while remaining an invariant for isomor-

phisms between non-selfadjoint operator alge-

bras associated with such systems.



DEFINITION. Let A be a unital C∗-algebra

and let P (A) be its pure state space equipped

with the w∗-topology. The Fell spectrum Â of

A is the space of unitary equivalence classes

of non-zero irreducible representations of A.

(The usual unitary equivalence of representa-

tions will be denoted as ∼.) The GNS con-

struction provides a surjection P (A) → Â and

Â is given the quotient topology.

Let A be a unital C∗-algebra A and

α = (a1, α2, . . . , αn) be a multivariable system

consisting of unital ∗-epimorphisms. Any such

system (A,α) induces a multivariable dynami-

cal system (Â, α̂) over its Fell spectrum Â.

DEFINITION. Two multivariable systems (A,α)

and (B, β) are said to be piecewise conjugate

on their Fell spectra if the induced systems

(Â, α̂) and (B̂, β̂) are piecewise conjugate, in

the sense of the definition above.



We have the following result with Kakariadis.

THEOREM. Let (A,α) and (B, β) be multivari-

able dynamical systems consisting of

∗-epimorphisms. Assume that either T+(A,α)

and T+(B, β) or A×α F+
nα and B×β F

+
nβ are iso-

metrically isomorphic. Then the multivariable

systems (A,α) and (B, β) are piecewise conju-

gate over their Fell spectra.



PROBLEM. Is there an analogous result for

the Jacobson spectrum?



In particular this implies that when the asso-

ciated operator algebras are isomorphic then

both (A,α) and (B, β) have the same num-

ber of ∗-epimorphisms. (We call this property

invariance of the dimension). In the commu-

tative case, the invariance of the dimension

holds for systems consisting of arbitrary endo-

morphisms. Is it true here?

THEOREM. There exist multivariable systems

(A,α1, α2) and (B, β1, β2, β3) consisting of ∗-
monomorphisms for which T+(A,α1, α2) and

T+(B, β1, β2, β3) are isometrically isomorphic.



PROBLEM. [Invariance of dimension for semi-

crossed products] Let (A,α) and (B, β) be mul-

tivariable dynamical systems consisting of ∗-
endomorphisms. Prove or disprove: if A×αF+

nα

and B×β F
+
nβ are isometrically isomorphic then

nα = nβ.



THEOREM. Let (A,α) and (B, β) be two au-

tomorphic multivariable C∗-dynamical systems

and assume that A is primitive. Then the fol-

lowing are equivalent:

1. A×αF+
nα and B×β F

+
nβ are isometrically iso-

morphic.

2. T +(A,α) and T +(B, β) are isometrically iso-

morphic.

3. (A,α) and (B, β) are outer conjugate.



DEFINITION. We say that two multivariable

C∗-dynamical systems (A,α) and (B, β) are outer

conjugate if they have the same dimension and

there are ∗-isomorphism γ : A→ B, unitary op-

erators Ui ∈ B and π ∈ Sn so that

γ−1αiγ(b) = U∗i βπ(i)(b)Ui.

for all b ∈ B and i.



Assume now that (A,α) and (B, β) are two

multivariable dynamical systems such that

T +(A,α) and T +(B, β) ( or A×αF+
nα and B×β

F+
nβ) are isometrically isomorphic via a map-

ping γ. Since γ is isometric, it follows that

γ|A is a ∗-monomorphism that maps A onto B

(This is the only point where we use that γ is

isometric.) We will be denoting γ|A by γ as

well.



Let Si, i = 1, . . . , nα, (resp. Ti, i = 1,2, . . . , nβ )

be the generators in T +(A,α) (resp. T +(B, β))

and let bij be the Ti-Fourier coefficient of γ(sj),

i.e.,

γ(Sj) = b0j + T1b1j + T2b2j + · · ·+ Tnbnj + Y,

where Y involves Fourier terms of order 2 or

higher.

Since γ is a homomorphism,

γ(a)γ(Sj) = γ(aSj) = γ(Sjαj(a)) = γ(Sj)γαj(a),

for all a ∈ A. Hence, βiγ(a)bij = bijγαj(a),

a ∈ A, and so

βi(b)bij = bijγαjγ
−1(b) = bijα̃j(b),

for all b ∈ B.



From the intertwining equation

βi(b)bij = bijα̃j(b), b ∈ B (∗)

we obtain.

• Since A is primitive, bi,j is either zero or

invertible!

• If bij 6= 0 then βi ∼ α̃j.

Therefore each equivalence class {β1, β2, . . . , βn}
is equivalent to exactly one class {α̃1, α̃2, . . . , α̃m}.

Need to show that m = n. Bwoc let m < n.



Start with an ”arbitrary” n-tuple (y1, y2, . . . , yn).



From the equation

T1y1 + T2y2 + · · ·+ Tnyn = lim
e
γ(xe),

where xe are non-commutative polynomials in

S1, S2, . . . , Sm and remembering that

γ(Sj) = b0j + T1b1j + T2b2j + · · ·+ Tnbnj + Y,

we obtain



y1 = lim
e
b11x

1
e + b12x

2
e + · · ·+ b1mx

m
e ,

y2 = lim
e
b21x

1
e + b22x

2
e + · · ·+ b2mx

m
e ,

...

yn = lim
e
bn1x

1
e + bn2x

2
e + · · ·+ bnmx

m
e .

Perform Gaussian elimination to reduce this

system to

ȳ2 = lim
e
b̄22x

2
e + b̄23x

3
e + · · ·+ b̄2mx

m
e ,

ȳ3 = lim
e
b̄32x

2
e + b̄33x

3
e + · · ·+ b̄3mx

m
e ,

...

ȳn = lim
e
b̄n2x

2
e + b̄n3x

3
e + · · ·+ b̄nmx

m
e ,



We continue this short of “Gaussian elimina-

tion” and we arrive at a system that contains

one column and at least two non-trivial rows

of the form

w1 = lim
e
d1x

m
e

w2 = lim
e
d2x

m
e ,

where the data (w1, w2) is arbitrary. There-

fore d1, d2 are non-zero, hence invertible. By

letting w1 = 1 we obtain that lime xme = d−1
1 .

Therefore, if we let w2 = 0, then we get that

0 = d2d
−1
1 , which is a contradiction.



THEOREM. Let (A,α) and (B, β) be multivari-

able dynamical systems consisting of ∗-epimorphisms.

The tensor algebras T+(A,α) and T+(B, β) are

isometrically isomorphic if and only if the cor-

respondences ((A,α) and (B, β) are unitarily

equivalent.

In light of the above result we ask

PROBLEM. Let (A,α) and (B, β) be multivari-

able dynamical systems consisting of ∗-monomorphisms.

If the tensor algebras T+(A,α) and T+(B, β)

are isometrically isomorphic does it follow that

the correspondences ((A,α) and (B, β) are uni-

tarily equivalent.



Many thanks to Salman Abdulali for explaining

to me the basics of class field theory!


