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Population Cycles
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Outline

Biotic Factors & Disease Transmission
◮ Tri-trophic interactions & induced-plant defenses
◮ The experimental system – gypsy moth
◮ Red oaks – their tannins, gypsy moth, & disease transmission
◮ Short-term gypsy moth dynamics (within season)
◮ Long-term gypsy moth dynamics (between seasons)

Abiotic Factors & Disease Transmission
◮ Global warming & species interactions
◮ The experimental system – fall armyworm
◮ Disease transmission under a warmer climate

Conclusions
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Biotic Factors

Induced defenses & Baculoviruses – Tri-trophic interactions

Primary Producer

Pathogen

Host/Herbivore

Occulsion Bodies

Gypsy moth larva

Red Oaks (Tannins)

Consumes both leaf and virus at the same time.
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Host-Pathogen Interaction

0.5 μ

Cross-Section of an Occlusion Body

(a multicapsid nucleopolyhedrovirus )

Uninfected larva

feeding on leaf and 

the virus
Liquefaction of

infected larva

Infected larva

continuing to feed 

UV-light degrades

virus over time
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Laboratory vs. Field experiments

Conundrum

Lab Experiments – as gypsy moth density ⇑, infection ⇓.

Field Experiments – as gypsy moth density ⇑, infection ⇑.
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Laboratory vs. Field experiments

Conundrum

Lab Experiments – as gypsy moth density ⇑, infection ⇓.

Field Experiments – as gypsy moth density ⇑, infection ⇑.

Reconciliation

Variability in transmission rate changes with induction.

Short-term (within-season) dynamics.

Long-term (between-season) dynamics.
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Gypsy moth long-term dynamics
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Gypsy moth long-term dynamics

Elderd (LSU) Disease Transmission 8 / 40



Gypsy moth life cycle
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The Experiments - Induction

Stimulate tannin induction

Jasmonic acid/control solution
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The Experiments - Induction

Stimulate tannin induction

Jasmonic acid/control solution

72 branches on 16 red oak trees
◮ 8 control trees
◮ 8 experimental trees w/ non-induced

and induced branches

Sprayed every other day for 3 weeks
◮ Collect leaf samples prior to spraying

and at 3 weeks

Coincides with 3rd instar of gypsy moth
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The Experiments - Induction

Within Season
Same level as natural defoliation
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The Experiments - Lab

Dose-Response Experiments

Feed leaf disk with varying
amounts of virus

Need to eat all of the leaf disk -
full dose of virus & tannins

Place on individual diet cups

Rear for 3 weeks

Record mortality & cause
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The Experiments - Field

Infect 1st Instars
◮ 0, 10, and 40 infected 1st

instars
◮ 40 red oak (Quercus rubra)

leaves

Healthy 3rd Instars
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The Experiments - Field
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The Experiments - Field
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Fitting Models to Data - within seasons

Dose-Response Experiments (Laboratory Results)

Treatment log10LD50 (95% CI)

Non-induced 3.04 (2.24, 3.84)
Induced 3.89 (3.77, 4.03)

Lab Experiments – as gypsy moth density ⇑, infection ⇓.
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Fitting Models to Data - within seasons

Dose-Response Experiments (Laboratory Results)

Treatment log10LD50 (95% CI) CV (95% CI)

Non-induced 3.04 (2.24, 3.84) 0.204 (0.173, 0.235)
Induced 3.89 (3.77, 4.03) 0.058 (0.038, 0.079)
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Within Season Models

Standard Model

Susceptible
dS

dt
= −νSP

Latent
dE1

dt
= νSP −mδE1

dEi

dt
= mδEi−1 −mδEi , i = 2, . . .m

Pathogen
dP

dt
= mδEm − µP
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Within Season Models

Heterogenous Model

Susceptible
dS

dt
= −ν̄SP

[

S(t)

S(0)

]C
2

Latent
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dt
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S(0)

]C
2

−mδE1

dEi

dt
= mδEi−1 −mδEi , i = 2, . . .m

Pathogen
dP

dt
= mδEm − µP

Elderd (LSU) Disease Transmission 15 / 40



Within Season Models

Standard Model (ν)

Heterogenous Model (ν & CV)

Increasing 
 CV

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

T
ra

ns
m

is
si

on

Cadaver density

Elderd (LSU) Disease Transmission 16 / 40



Fitting Models to Data - within seasons

Transmission Experiments (Field Results)

Non-induced Branches Induced Branches
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Fitting Models to Data - within seasons

Transmission Experiments (Field Results)

Variability in Transmission Infection Risk

Field Experiments – as gypsy moth density ⇑, infection ⇑.
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Between Seasons Model

Host NT+1 = λNT (1− i(NT ,ZT ,DT ))

(

1−
2abNT

(b2 + N2
T
)

)

Cadavers ZT+1 = φNT i(NT ,ZT ,DT ) + γZT

Tannins DT+1 = αNT

DT

β + DT
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Fitting Models to Data - between seasons

Transmission Experiments (Field Results)
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Fitting Models to Data - between seasons

Transmission Experiments (Field Results)
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Defoliation
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The Spatial Model

Grid of forest cells

Strongly or weakly
induced trees

Seed population

Ballooning or car
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The Spatial Model

Grid of forest cells
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Oak Hickory Forest
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Oak Pine Forest
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Forest Composition and Outbreak Cycles
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Biotic Factors Conclusions

Influence top-down &
bottom-up important for other
systems

Forest diversity affects
population cycles

Influence use of baculoviruses as
bioinsecticides
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Biotic Factors Conclusions

Influence top-down &
bottom-up important for other
systems

Forest diversity affects
population cycles

Influence use of baculoviruses as
bioinsecticides

Induction decreases variability in
transmission rate

Interaction between tannins &
OB in mid-gut

Occurs in both lab & field
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Outline

Biotic Factors & Disease Transmission
◮ Tri-trophic interactions & induced-plant defenses
◮ The experimental system – gypsy moth
◮ Red oaks – their tannins, gypsy moth, & disease transmission
◮ Short-term gypsy moth dynamics (within season)
◮ Long-term gypsy moth dynamics (between seasons)

Abiotic Factors & Disease Transmission
◮ Global warming & species interactions
◮ The experimental system – fall armyworm
◮ Field & lab experiments
◮ Disease transmission under a warmer climate

Conclusions
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Abiotic Factors – Global Warming

Ensembled average of A2 emissions scenario
Projection for 2050

(Data: TNC & WCRP CMIP3)

Shift in species ranges.

Emerging importance of species interactions.
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Species Interactions & Global Warming

Weak interactions typified by generalists

Strong interactions typified by specialists
◮ Plant–Pollinator
◮ Predator–Prey
◮ Host–Pathogen

Photo:Cane
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Disease Models

0 20 40 60 80 100

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

T
ra

n
s
m

is
s
io

n

Virus density

Elderd (LSU) Disease Transmission 29 / 40



Disease Models
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Disease Models

Standard Model (ν)

Heterogenous Model (ν & CV)

Increasing 
 CV
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Host-Pathogen interactions: The fall armyworm

The fall armyworm
◮ Six larval instars
◮ Multivoltine

Fall armyworm
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Host-Pathogen interactions: The fall armyworm

The fall armyworm
◮ Six larval instars
◮ Multivoltine

Baculovirus
◮ SfNPV
◮ Species-specific
◮ Occlusion bodies with multiple virions

Fall armyworm

Virus
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Host-Pathogen Interaction

0.5 μ

Cross-Section of an Occlusion Body

(a multicapsid nucleopolyhedrovirus )

Uninfected larva

feeding on leaf and 

the virus
Liquefaction of

infected larva

Infected larva

continuing to feed 

UV-light degrades

virus over time
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Short-term dynamics & Long-term consequences

Standard Model (ν)

Heterogenous Model (ν & CV)

Increasing 
 CV
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Short-term dynamics & Long-term consequences

June 1999 December 1999 June 2000 December 2000
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Field Experiment

Control or 4-sided
◮ Open-top chambers

iButtons in selected plots

5 tri-foliate soybean leaves
(Glycine max)

Infect 1st instars
◮ 0, 15, 30, and 60
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Field Experiment

Control or 4-sided
◮ Open-top chambers

iButtons in selected plots

5 tri-foliate soybean leaves
(Glycine max)

Infect 1st instars
◮ 0, 15, 30, and 60

Healthy 4th Instars

Feed for two to four days

Place on individual diet cups

Rear until pupation or death

Conducted three times
◮ October 2010, July 2011,

September 2011
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Temperature Differences
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Temperature Differences
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Field Experimental Results
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Field Experimental Results

Average Daytime Temperature (°C)
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Field Experimental Results
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Lab Experiment - Feeding Rates

Current Projected0.
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Abiotic Conclusions

Disease Transmission
◮ Increased transmission under warmer conditions
◮ Epizootic intensity increases
◮ Due to a decrease in population heterogeneity
◮ Behavior or physiology
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Abiotic Conclusions

Disease Transmission
◮ Increased transmission under warmer conditions
◮ Epizootic intensity increases
◮ Due to a decrease in population heterogeneity
◮ Behavior or physiology

Long-term dynamics

Effects of other climatic factors

Both ecological and economic consequences

Importance of considering tightly-linked species interactions
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Conclusions

Disease Transmission
◮ Importance of Biotic and Abiotic Interactions
◮ Plant Defenses
◮ Changes in Temperature
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Conclusions

Disease Transmission
◮ Importance of Biotic and Abiotic Interactions
◮ Plant Defenses
◮ Changes in Temperature

Deconstructing the mechanisms

Future Work
◮ Climate Change

• Long-term dynamics

◮ Plant defenses

• Fall armyworm and Soybean
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Within Season Dynamics Solution

Standard
dS

dt
= −νSP0

⇓

−ln

(

S(T )

S(0)

)

= νSP0T

Heterogeneous
dS

dt
= −ν̄SP

[

S(t)

S(0)

]C2

⇓

−ln

(

S(T )

S(0)

)

=
1

C 2
ln(1 + ν̄C 2SP0T )

Expt’l outcome Expt’l treatment

Note: As K → ∞, the heterogeneous model becomes the standard model
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