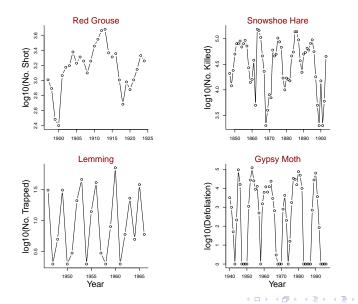
Understanding disease transmission in a changing environment: Biotic and abiotic effects


Bret D. Elderd

Department of Biological Sciences, Louisiana State University

November 2013

→ E → < E →</p>

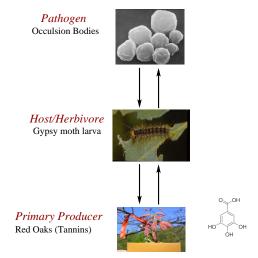
Population Cycles

Elderd (LSU)

2 / 40

3

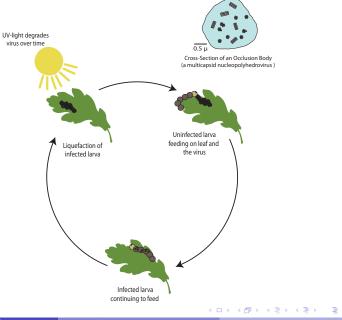
Outline


• Biotic Factors & Disease Transmission

- Tri-trophic interactions & induced-plant defenses
- The experimental system gypsy moth
- Red oaks their tannins, gypsy moth, & disease transmission
- Short-term gypsy moth dynamics (within season)
- Long-term gypsy moth dynamics (between seasons)
- Abiotic Factors & Disease Transmission
 - Global warming & species interactions
 - The experimental system fall armyworm
 - Disease transmission under a warmer climate
- Conclusions

• • = • • = •

Biotic Factors

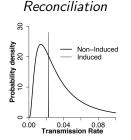

Induced defenses & Baculoviruses - Tri-trophic interactions

Consumes both leaf and virus at the same time.

Elderd (LSU)

Host-Pathogen Interaction

Laboratory vs. Field experiments

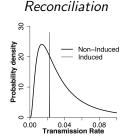

Conundrum

- Lab Experiments as gypsy moth density \uparrow , infection \Downarrow .
- Field Experiments as gypsy moth density \uparrow , infection \uparrow .

Laboratory vs. Field experiments

Conundrum

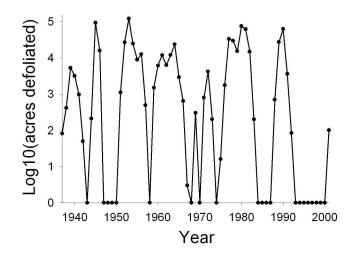
- Lab Experiments as gypsy moth density \uparrow , infection \Downarrow .
- Field Experiments as gypsy moth density ↑, infection ↑.


• Variability in transmission rate changes with induction.

.

Laboratory vs. Field experiments

Conundrum


- Lab Experiments as gypsy moth density ↑, infection ↓.
- Field Experiments as gypsy moth density ↑, infection ↑.

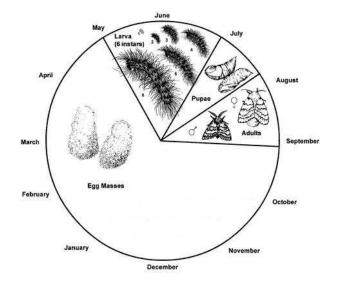
- Variability in transmission rate changes with induction.
- Short-term (within-season) dynamics.
- Long-term (between-season) dynamics.

Elderd (LSU)

Gypsy moth long-term dynamics

7 / 40

э


A B K A B K

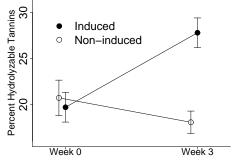
Gypsy moth long-term dynamics

ヘロト 人間ト 人間ト 人間ト

Gypsy moth life cycle

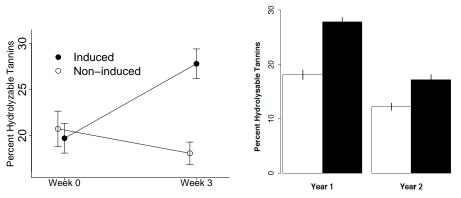
(日) (圖) (E) (E) (E)

- Stimulate tannin induction
- Jasmonic acid/control solution



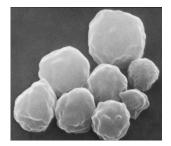
• • = • • = •

- Stimulate tannin induction
- Jasmonic acid/control solution
- 72 branches on 16 red oak trees
 - 8 control trees
 - 8 experimental trees w/ non-induced and induced branches
- Sprayed every other day for 3 weeks
 - Collect leaf samples prior to spraying and at 3 weeks
- Coincides with 3rd instar of gypsy moth



Within Season Same level as natural defoliation

Within Season Same level as natural defoliation



3.0

The Experiments - Lab

Dose-Response Experiments

- Feed leaf disk with varying amounts of virus
- Need to eat all of the leaf disk full dose of virus & tannins
- Place on individual diet cups
- Rear for 3 weeks
- Record mortality & cause

The Experiments - Field

- Infect 1st Instars
 - 0, 10, and 40 infected 1st instars
 - ► 40 red oak (*Quercus rubra*) leaves

超す イヨト イヨト

• Healthy 3rd Instars

The Experiments - Field

- Infect 1st Instars
 - 0, 10, and 40 infected 1st instars
 - 40 red oak (Quercus rubra) leaves
- Healthy 3rd Instars
- 3rd Instars feed for 7 days

< ロト < 同ト < ヨト < ヨト

The Experiments - Field

- Infect 1st Instars
 - 0, 10, and 40 infected 1st instars
 - 40 red oak (Quercus rubra) leaves

• • = • • = •

- Healthy 3rd Instars
- 3rd Instars feed for 7 days
- Place on individual diet cups
- Rear for 3 weeks
- Record mortality & cause

Fitting Models to Data - within seasons

Dose-Response Experiments (Laboratory Results)

Treatment	\log_{10} LD ₅₀ (95% CI)	
Non-induced	3.04 (2.24, 3.84)	
Induced	3.89 (3.77, 4.03)	

Lab Experiments – as gypsy moth density $\uparrow\uparrow$, infection \Downarrow .

ヘロト 人間ト 人間ト 人目ト

Fitting Models to Data - within seasons

Dose-Response Experiments (Laboratory Results)

Treatment	log ₁₀ LD ₅₀ (95% CI)	CV (95% CI)
Non-induced	3.04 (2.24, 3.84)	0.204 (0.173, 0.235)
Induced	3.89 (3.77, 4.03)	0.058 (0.038, 0.079)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Within Season Models

Standard Model

Susceptible
$$\frac{dS}{dt} = -\nu SP$$

Latent $\frac{dE_1}{dt} = \nu SP - m\delta E_1$
 $\frac{dE_i}{dt} = m\delta E_{i-1} - m\delta E_i, i = 2, \dots m$
Pathogen $\frac{dP}{dt} = m\delta E_m - \mu P$

Elderd (LSU)

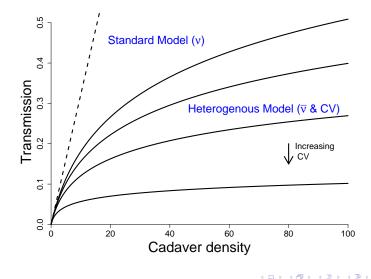
15 / 40

3

・ロト ・聞ト ・ヨト ・ヨト

Within Season Models

Heterogenous Model


Susceptible
$$\frac{dS}{dt} = -\bar{\nu}SP\left[\frac{S(t)}{S(0)}\right]^{C^2}$$

Latent $\frac{dE_1}{dt} = \bar{\nu}SP\left[\frac{S(t)}{S(0)}\right]^{C^2} - m\delta E_1$
 $\frac{dE_i}{dt} = m\delta E_{i-1} - m\delta E_i, \ i = 2, \dots m$
Pathogen $\frac{dP}{dt} = m\delta E_m - \mu P$

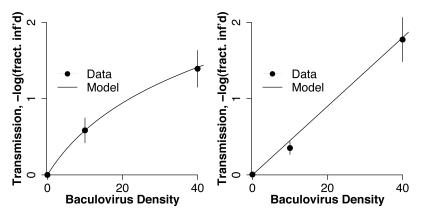
Elderd (LSU)

3

→ 圖 ▶ → 国 ▶ → 国 ▶

Within Season Models

16 / 40

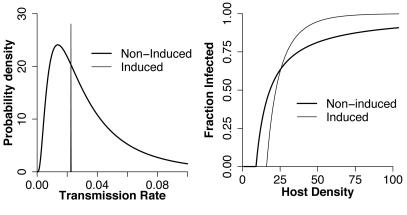

э

Fitting Models to Data - within seasons

Transmission Experiments (Field Results)

Non-induced Branches

Induced Branches


Elderd (LSU)

Fitting Models to Data - within seasons

Transmission Experiments (Field Results)

Variability in Transmission

Infection Risk

Field Experiments – as gypsy moth density \uparrow , infection \uparrow .

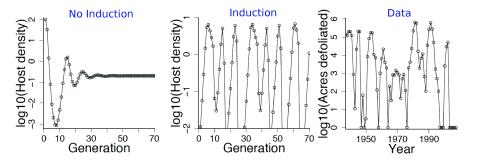
Elderd (LSU)

Between Seasons Model

Host
$$N_{T+1} = \lambda N_T (1 - i(N_T, Z_T, D_T)) \left(1 - \frac{2abN_T}{(b^2 + N_T^2)} \right)$$

Cadavers $Z_{T+1} = \phi N_T i(N_T, Z_T, D_T) + \gamma Z_T$
Tannins $D_{T+1} = \alpha N_T \frac{D_T}{\beta + D_T}$

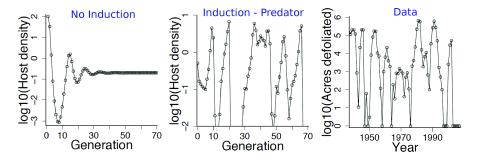
Elderd (LSU)

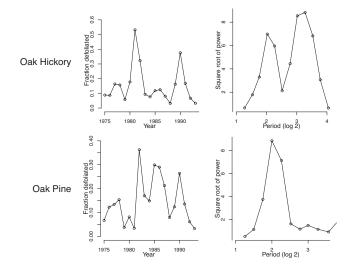

18 / 40

Э

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Fitting Models to Data - between seasons

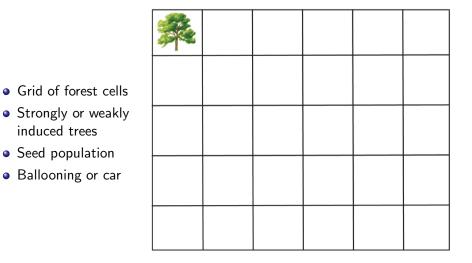

Transmission Experiments (Field Results)


• 3 • • 3

Fitting Models to Data - between seasons

Transmission Experiments (Field Results)

Defoliation


Elderd (LSU)

20 / 40

3

回 と く ヨ と く ヨ と

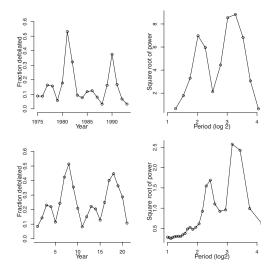
The Spatial Model

21 / 40

크

<ロ> (日) (日) (日) (日) (日)

The Spatial Model

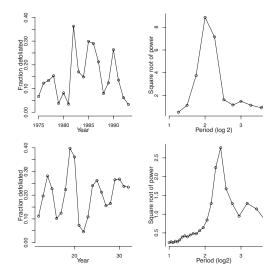

- Grid of forest cells
- Strongly or weakly induced trees
- Seed population
- Ballooning or car

*	-	······································	All a	-	A.
······································	-		-		······································
A REAL	-	*	A A	-	-
*	·	A.	彝	*	*
-	*	······································	······································	*	-

3

A B K A B K

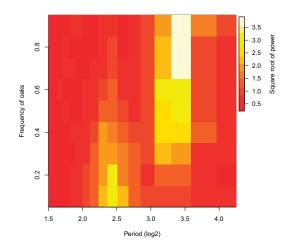
Oak Hickory Forest


22 / 40

э

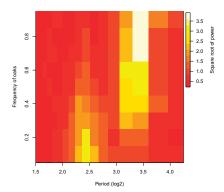
∃ ⊳

3

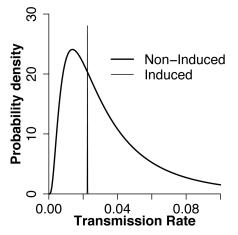

Oak Pine Forest

3

過す イヨト イヨト


Forest Composition and Outbreak Cycles

24 / 40

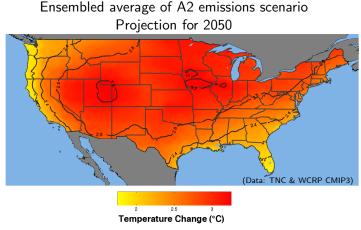

Biotic Factors Conclusions

- Influence top-down & bottom-up important for other systems
- Forest diversity affects population cycles
- Influence use of baculoviruses as bioinsecticides

Biotic Factors Conclusions

- Influence top-down & bottom-up important for other systems
- Forest diversity affects population cycles
- Influence use of baculoviruses as bioinsecticides
- Induction decreases variability in transmission rate
- Interaction between tannins & OB in mid-gut
- Occurs in both lab & field

25 / 40


Outline

• Biotic Factors & Disease Transmission

- Tri-trophic interactions & induced-plant defenses
- ► The experimental system gypsy moth
- ▶ Red oaks their tannins, gypsy moth, & disease transmission
- Short-term gypsy moth dynamics (within season)
- Long-term gypsy moth dynamics (between seasons)
- Abiotic Factors & Disease Transmission
 - Global warming & species interactions
 - The experimental system fall armyworm
 - Field & lab experiments
 - Disease transmission under a warmer climate
- Conclusions

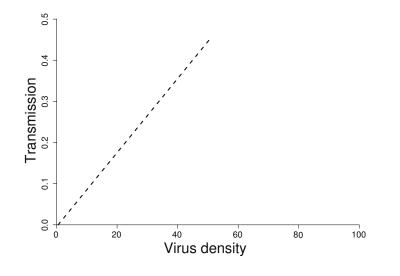
A B K A B K

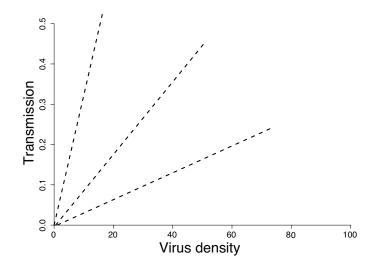
Abiotic Factors – Global Warming

- Shift in species ranges.
- Emerging importance of species interactions.

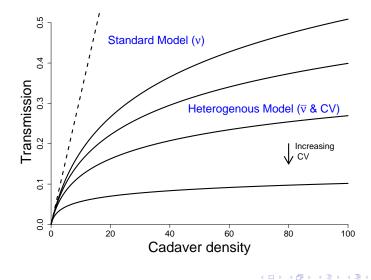
• • = • • = •

Species Interactions & Global Warming


- Weak interactions typified by generalists
- Strong interactions typified by specialists
 - Plant–Pollinator
 - Predator–Prey
 - Host–Pathogen


.

Disease Models


문 문 문

Disease Models

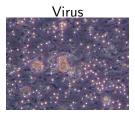
29 / 40

Disease Models

29 / 40

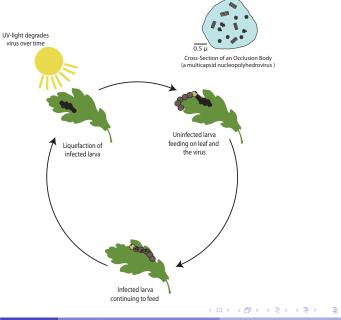
Host-Pathogen interactions: The fall armyworm

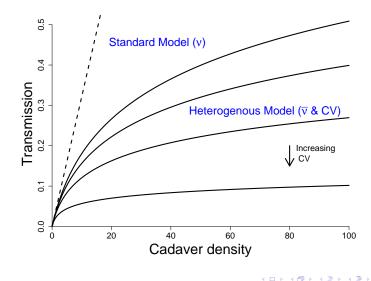
Fall armyworm


- The fall armyworm
 - Six larval instars
 - Multivoltine

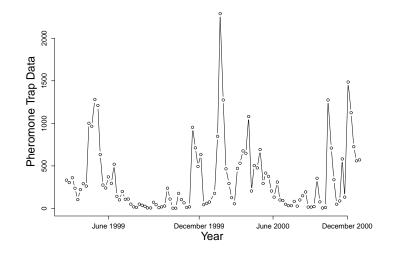
Host-Pathogen interactions: The fall armyworm

- The fall armyworm
 - Six larval instars
 - Multivoltine
- Baculovirus
 - SfNPV
 - Species-specific
 - Occlusion bodies with multiple virions




- 4 周 ト - 4 日 ト - 4 日 ト

Host-Pathogen Interaction


Elderd (LSU)

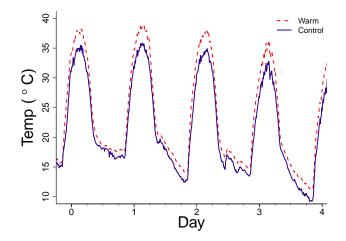
Short-term dynamics & Long-term consequences

32 / 40

Short-term dynamics & Long-term consequences

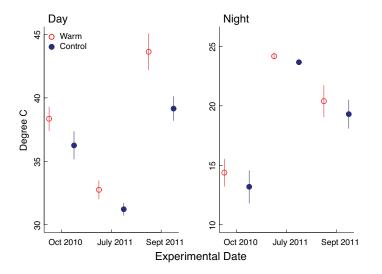
Field Experiment

- Control or 4-sided
 - Open-top chambers
- iButtons in selected plots
- 5 tri-foliate soybean leaves (*Glycine max*)
- Infect 1st instars
 - 0, 15, 30, and 60


< ∃ > <

Field Experiment

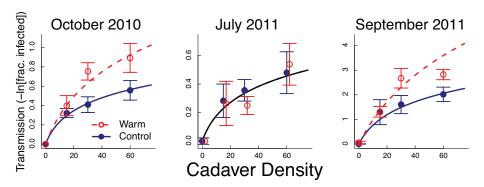
- Control or 4-sided
 - Open-top chambers
- iButtons in selected plots
- 5 tri-foliate soybean leaves (*Glycine max*)
- Infect 1st instars
 - 0, 15, 30, and 60
- Healthy 4th Instars
- Feed for two to four days
- Place on individual diet cups
- Rear until pupation or death
- Conducted three times
 - October 2010, July 2011, September 2011


Temperature Differences

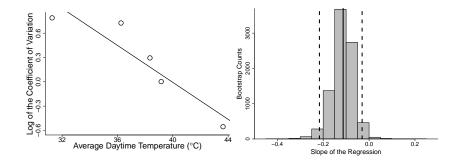
Elderd (LSU)

臣

Temperature Differences

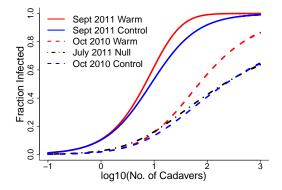

34 / 40

3


• • = • • = •

A.

Field Experimental Results



Field Experimental Results

3

Field Experimental Results

∃ ⊳

- ∢ ∃ →

Lab Experiment - Feeding Rates

< ∃ >

• Disease Transmission

- Increased transmission under warmer conditions
- Epizootic intensity increases
- Due to a decrease in population heterogeneity
- Behavior or physiology

A B K A B K

• Disease Transmission

- Increased transmission under warmer conditions
- Epizootic intensity increases
- Due to a decrease in population heterogeneity
- Behavior or physiology
- Long-term dynamics
- Effects of other climatic factors

< 3 > < 3 >

Disease Transmission

- Increased transmission under warmer conditions
- Epizootic intensity increases
- Due to a decrease in population heterogeneity
- Behavior or physiology
- Long-term dynamics
- Effects of other climatic factors
- Both ecological and economic consequences

- Disease Transmission
 - Increased transmission under warmer conditions
 - Epizootic intensity increases
 - Due to a decrease in population heterogeneity
 - Behavior or physiology
- Long-term dynamics
- Effects of other climatic factors
- Both ecological and economic consequences
- Importance of considering tightly-linked species interactions

Conclusions

Disease Transmission

- Importance of Biotic and Abiotic Interactions
- Plant Defenses
- Changes in Temperature

3

(4 間) トイヨト イヨト

Conclusions

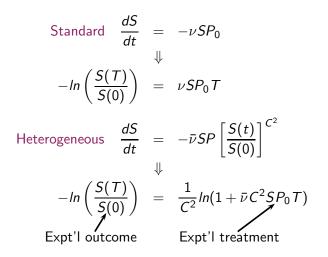
Disease Transmission

- Importance of Biotic and Abiotic Interactions
- Plant Defenses
- Changes in Temperature
- Deconstructing the mechanisms

• • = • • = •

Conclusions

Disease Transmission


- Importance of Biotic and Abiotic Interactions
- Plant Defenses
- Changes in Temperature
- Deconstructing the mechanisms
- Future Work
 - Climate Change
 - Long-term dynamics
 - Plant defenses
 - Fall armyworm and Soybean

A B K A B K

Acknowledgments

- National Science Foundation, Louisiana State University, Louisiana Board of Regents
- Kellog Biological Station and LSU's Burden Center
- Greg Dwyer, Kyle Haynes, Brian Rehill, James Reilly
- Libby Eakin, Emma Fuller, Dave Kennedy, & Ben Parker
- Kyle McCauley, Maynard Milks, William Vial, and Jennie Kluse

Within Season Dynamics Solution

Note: As $K \to \infty$, the heterogeneous model becomes the standard model

Elderd (LSU)