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Let α : R→ Aut A be an action of the real line R on a
C∗-algebra A. (Today A always has an identity.)

In physical models, observables of the system are represented
by self-adjoint elements of A, and states of the system by
positive functionals of norm 1 on A: φ(a) is the expected value
of the observable a in the state φ (which is real because a = a∗

and φ ≥ 0).

The action α represents the time evolution of the system: the
observable a at time 0 moves to αt (a) at time t , or the state φ at
time 0 moves to φ ◦ αt .

In statistical physics, an important role is played by equilibrium
states, which are in particular invariant under the time
evolution. In C∗-algebraic models equilibrium states are called
KMS states, after Kubo, Martin and Schwinger.
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Let α : R→ Aut A be an action. Then a ∈ A is an analytic
element if the function t 7→ αt (a) from R to A has an extension
to an entire function on C.

I The set of analytic elements is always a dense subalgebra
of A.

For a ∈ A set

an :=

√
n
π

∫
R
αt (a)e−nt2

dt ;

then each an is analytic and an → a.

A state φ on A is a KMS state at inverse temperature β if

φ(ab) = φ(bαiβ(a)) for all analytic a,b.

I KMS states are α-invariant.
I It suffices to check the KMSβ condition on a set of analytic

elements which span a dense subspace of A.
I The KMSβ states always form a simplex and the extremal

KMSβ states are factor states.
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In a physical model we expect KMS states for most β. This is
not the case for mathematical models.

Example: Take the systems (T On, α) and (On, α) where the α
are induced from the gauge actions.

I (T On, α) has a unique KMSβ state for each β ≥ ln n and
no KMSβ state if β < ln n.

I The only KMS state of (T On, α) that factors through On is
the ln n state.

Moral from Exel-Laca (2003), Laca-Neshveyev (2004): the
Toeplitz algebra has a much richer supply of KMS states.
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Suppose that E = (E0,E1, r , s) is a directed graph. Today it is
always finite. A Toeplitz-Cuntz-Krieger E-family (Q,T ) consists
of mutually orthogonal projections {Qv : v ∈ E0} and partial
isometries {Te : e ∈ E1} such that T ∗e Te = Ps(e) and

Qv ≥
∑

r(e)=v

TeT ∗e if v is not a source.

It follows that the projections {TeT ∗e : e ∈ E1} are mutually
orthogonal. Then T ∗e Tf = δe,f Qs(e) and

C∗(Q,T ) = span{TµT ∗ν : µ, ν ∈ E∗}.

The Toeplitz algebra T C∗(E) of E is the C∗-algebra generated
by a universal Toeplitz-Cuntz-Krieger family (q, t). There is a
gauge action γ : T→ Aut(T C∗(E)) satisfying γz(te) = zte and
γz(qv ) = qv , which we can lift to an action α of R by αt = γeit .
Crucial for us:

t 7→ αt (tµt∗ν ) = eit(|µ|−|ν|)tµt∗ν

extends to an analytic function (just replace t by z).
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Let I be the ideal of T C∗(E) generated by

{qv −
∑

r(e)=v

tet∗e : v is not a source}.

View the graph algebra C∗(E) as the quotient T C∗(E)/I. There
is a gauge action γ : T→ Aut(C∗(E)) which lifts to an action α
and the quotient map is equivariant for γ (and hence α).



Let φ be a KMSβ state on (T C∗(E), α). Then φ is invariant for
both α and γ. For |µ| 6= |ν|,

φ(tµt∗ν ) =

∫
T
φ(γz(tµt∗ν )) dz =

(∫
T

z |µ|−|ν| dz
)
φ(tµt∗ν ) = 0.

For |µ| = |ν|, the KMS condition and t∗ν tµ = δν,µqs(µ) gives

φ(tµt∗ν ) = φ(t∗ναiβ(tµ)) = e−β|µ|φ(t∗ν tµ) = δµ,νe−β|µ|φ(qs(µ)).

We have proved one half of:
Lemma. A state φ of T C∗(E) is a KMSβ state of (T C∗(E), α) iff

φ(tµt∗ν ) = δµ,νe−β|µ|φ(qs(µ)) for all µ, ν ∈ E∗.
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Let φ be a KMSβ state of (T C∗(E), α). For v ∈ E0 define
m = (mv ) by mv = φ(qv ). Then m is a unit vector:

1 = φ(1) =
∑

v∈E0

φ(qv ) =
∑

v∈E0

mv .

The vertex matrix of E is the E0 × E0 integer matrix A with

A(v ,w) = #paths from w to v .

Suppose v ∈ E0 is not a source. Then

mv = φ(qv ) ≥
∑

r(f )=v

φ(tf t∗f ) =
∑

r(f )=v

e−βφ(qs(f ))

=
∑

r(f )=v

e−βms(f ) = e−β
∑

w∈E0

A(v ,w)mw = e−β(Am)v .

Hence (Amφ)v ≤ eβφ(pv ) = eβmv .
If v is a source then A(v ,w) = 0 ∀w and (Am)v = 0 ≤ eβmv .
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Let φ be a KMSβ state of (T C∗(E), α).
Lemma. For v ∈ E0 define m = (mv ) by mv = φ(qv ). Then m
is a unit vector satisfying the subinvariance relation Am ≤ eβm.

Lemma. φ factors through C∗(E) iff (Am)v = eβmv whenever v
is not a source.

Spse v is not a source. Then

eβφ
(

qv −
∑

r(f )=v

tf t∗f
)

= eβ
(
φ(qv )−

∑
r(f )=v

e−βφ(qs(f ))
)

= eβmv − (Am)v

By a technical lemma, φ factors through iff
φ(qv −

∑
r(f )=v tf t∗f ) = 0 for all such v .
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Temporarily assume that E is strongly connected. Then A is an
irreducible matrix. Perron-Frobenius Theory for m ≥ 0:

I Am = eβm =⇒ m > 0 is the PF eigenvector and
eβ = ρ(A), the spectral radius of A;

I Am ≤ eβm and β = ln ρ(A) =⇒ m is the PF eigenvector;
I Am ≤ eβm and Am 6= eβm =⇒ β > ln ρ(A).

Now we have proved half of:
Theorem (Enomoto-Fujii-Watatani 1984). Let E be a strongly
connected finite graph with vertex matrix A. Then (C∗(E), α)
has a unique KMS state. This state has inverse temperature
β = ln ρ(A), where ρ(A) is the spectral radius of A.

We have shown there is at most one KMSβ state of (C∗(E), α),
when β = ln(ρA). We still need to show existence.

Idea: Show there are lots of KMSβ states of (T C∗(E), α) when
β > ln ρ(A), then take limits.
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(No longer assuming E is strongly connected.) The KMS
condition on a state φ places restraints on m := (φ(pv )). Note
Am ≤ eβm⇐⇒ (I − e−βA)m ≥ 0.
Assume β > ln ρ(A). Then

∑∞
n=0 e−βnAn converges to

(I − e−βA)−1.

Take ε := (I − e−βA)m. Which ε ∈ [0,∞]E
0

arise?

For v ∈ E0, set

yv :=
∑
µ∈E∗v

e−β|µ| =
∞∑

n=0

∑
w∈E0

e−βnAn(w , v)

and take y = (yv ). Then:

Lemma. Let β > ln ρ(A). Then m := (I − e−βA)−1ε is a unit
vector in `1(E0) satisfying Am ≤ eβm if and only if ε · y = 1.



(No longer assuming E is strongly connected.) The KMS
condition on a state φ places restraints on m := (φ(pv )). Note
Am ≤ eβm⇐⇒ (I − e−βA)m ≥ 0.
Assume β > ln ρ(A). Then

∑∞
n=0 e−βnAn converges to

(I − e−βA)−1.

Take ε := (I − e−βA)m. Which ε ∈ [0,∞]E
0

arise?

For v ∈ E0, set

yv :=
∑
µ∈E∗v

e−β|µ| =
∞∑

n=0

∑
w∈E0

e−βnAn(w , v)

and take y = (yv ). Then:

Lemma. Let β > ln ρ(A). Then m := (I − e−βA)−1ε is a unit
vector in `1(E0) satisfying Am ≤ eβm if and only if ε · y = 1.



(No longer assuming E is strongly connected.) The KMS
condition on a state φ places restraints on m := (φ(pv )). Note
Am ≤ eβm⇐⇒ (I − e−βA)m ≥ 0.
Assume β > ln ρ(A). Then

∑∞
n=0 e−βnAn converges to

(I − e−βA)−1.

Take ε := (I − e−βA)m. Which ε ∈ [0,∞]E
0

arise?

For v ∈ E0, set

yv :=
∑
µ∈E∗v

e−β|µ| =
∞∑

n=0

∑
w∈E0

e−βnAn(w , v)

and take y = (yv ). Then:

Lemma. Let β > ln ρ(A). Then m := (I − e−βA)−1ε is a unit
vector in `1(E0) satisfying Am ≤ eβm if and only if ε · y = 1.



(No longer assuming E is strongly connected.) The KMS
condition on a state φ places restraints on m := (φ(pv )). Note
Am ≤ eβm⇐⇒ (I − e−βA)m ≥ 0.
Assume β > ln ρ(A). Then

∑∞
n=0 e−βnAn converges to

(I − e−βA)−1.

Take ε := (I − e−βA)m. Which ε ∈ [0,∞]E
0

arise?

For v ∈ E0, set

yv :=
∑
µ∈E∗v

e−β|µ| =
∞∑

n=0

∑
w∈E0

e−βnAn(w , v)

and take y = (yv ). Then:

Lemma. Let β > ln ρ(A). Then m := (I − e−βA)−1ε is a unit
vector in `1(E0) satisfying Am ≤ eβm if and only if ε · y = 1.



To construct KMS states, we use a concrete representation of
T C∗(E):

Example. Consider the usual orthonormal basis {hµ : µ ∈ E∗}
for `2(E∗) (by convention E0 ⊂ E∗). There are projections Qv
and partial isometries Te on `2(E∗) such that

Qv hµ =

{
0 unless r(µ) = v
hµ if r(µ) = v , and

Tehµ =

{
0 unless r(µ) = s(e)

heµ if r(µ) = s(e).

Then (Q,T ) is a Toeplitz-CK family, and we have a
representation πQ,T of T C∗(E) on `2(E∗) (in fact injective).
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Theorem (an Huef-Laca-Raeburn-Sims, 2013). Suppose E is
a finite graph with vertex matrix A, and β > ln ρ(A). Take
y = (yv ) ∈ [1,∞)E0

as above, and suppose ε · y = 1. Then
there is a KMSβ state φε of T C∗(E) such that

φε(a) =
∑
µ∈E∗

e−β|µ|εs(µ)(πQ,T (a)hµ |hµ).

The map ε 7→ φε is an affine isomorphism of
∆β = {ε ∈ [0,1]E

0
: ε · y = 1} onto the simplex of KMSβ states.

Notice there is no hypothesis on E , hence no irreducibility
assumption on A. So what happens at β = ln ρ(A)? When A is
irreducible, the series defining y diverges, so the simplex ∆β

contracts to {0} as β → ln ρ(A).
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Corollary (Enomoto-Fujii-Watatani). If E is strongly
connected, then (C∗(E), α) has a KMSln ρ(A) state.

Proof. Choose βn decreasing to ln ρ(A), and KMSβn states φn
of T C∗(E). By passing to a subsequence, φn → φ, and φ is a
KMSln ρ(A) state of T C∗(E). Then m := (φ(pv )) satisfies
Am ≤ ρ(A)m. PF implies Am = ρ(A)m. Thus

ρ(A)φ(qv ) = ρ(A)mv = (Am)v =
∑

w∈E0

A(v ,w)φ(qw )

=
∑

r(e)=v

φ(qs(e)) =
∑

r(e)=v

ρ(A)φ(tet∗e )

= ρ(A)φ
( ∑

r(e)=v

tet∗e
)
.

So for all v ∈ E0 which are not sources,

φ
(

qv −
∑

r(e)=v

tet∗e
)

= 0.

Now a technical lemma implies that φ factors through
C∗(E) = T C∗(E)/I.
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This completes the proof of:

Theorem (Enomoto-Fujii-Watatani 1984). Let E be a strongly
connected finite graph with vertex matrix A. Then (C∗(E), α)
has a unique KMS state. This state has inverse temperature
β = ln ρ(A), where ρ(A) is the spectral radius of A.
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