KMS states on the C^{*}-algebras associated to finite graphs

Astrid an Huef

University of Otago

25 November 2013
Banff workshop "Operator algebras and dynamical systems from number theory"

This talk contains some results obtained in
A. an Huef, M. Laca, I. Raeburn and A. Sims, KMS states on C^{*}-algebras of finite graphs, J. Math. Anal. Appl., 2013.

Let $\alpha: \mathbb{R} \rightarrow$ Aut A be an action of the real line \mathbb{R} on a C^{*}-algebra A. (Today A always has an identity.)

Let $\alpha: \mathbb{R} \rightarrow$ Aut A be an action of the real line \mathbb{R} on a C^{*}-algebra A. (Today A always has an identity.)

In physical models, observables of the system are represented by self-adjoint elements of A, and states of the system by positive functionals of norm 1 on $A: \phi(a)$ is the expected value of the observable a in the state ϕ (which is real because $a=a^{*}$ and $\phi \geq 0$).

Let $\alpha: \mathbb{R} \rightarrow$ Aut A be an action of the real line \mathbb{R} on a C^{*}-algebra A. (Today A always has an identity.)

In physical models, observables of the system are represented by self-adjoint elements of A, and states of the system by positive functionals of norm 1 on $A: \phi(a)$ is the expected value of the observable a in the state ϕ (which is real because $a=a^{*}$ and $\phi \geq 0$).
The action α represents the time evolution of the system: the observable a at time 0 moves to $\alpha_{t}(a)$ at time t, or the state ϕ at time 0 moves to $\phi \circ \alpha_{t}$.

Let $\alpha: \mathbb{R} \rightarrow$ Aut A be an action of the real line \mathbb{R} on a C^{*}-algebra A. (Today A always has an identity.)

In physical models, observables of the system are represented by self-adjoint elements of A, and states of the system by positive functionals of norm 1 on $A: \phi(a)$ is the expected value of the observable a in the state ϕ (which is real because $a=a^{*}$ and $\phi \geq 0$).
The action α represents the time evolution of the system: the observable a at time 0 moves to $\alpha_{t}(a)$ at time t, or the state ϕ at time 0 moves to $\phi \circ \alpha_{t}$.

In statistical physics, an important role is played by equilibrium states, which are in particular invariant under the time evolution. In C^{*}-algebraic models equilibrium states are called KMS states, after Kubo, Martin and Schwinger.

Let $\alpha: \mathbb{R} \rightarrow$ Aut A be an action. Then $a \in A$ is an analytic element if the function $t \mapsto \alpha_{t}(a)$ from \mathbb{R} to A has an extension to an entire function on \mathbb{C}.

- The set of analytic elements is always a dense subalgebra of A.

Let $\alpha: \mathbb{R} \rightarrow$ Aut A be an action. Then $a \in A$ is an analytic element if the function $t \mapsto \alpha_{t}(a)$ from \mathbb{R} to A has an extension to an entire function on \mathbb{C}.

- The set of analytic elements is always a dense subalgebra of A. For $a \in A$ set

$$
a_{n}:=\sqrt{\frac{n}{\pi}} \int_{\mathbb{R}} \alpha_{t}(a) e^{-n t^{2}} d t
$$

then each a_{n} is analytic and $a_{n} \rightarrow a$.

A state ϕ on A is a KMS state at inverse temperature β if

$$
\phi(a b)=\phi\left(b \alpha_{i \beta}(a)\right) \text { for all analytic } a, b
$$

Let $\alpha: \mathbb{R} \rightarrow$ Aut A be an action. Then $a \in A$ is an analytic element if the function $t \mapsto \alpha_{t}(a)$ from \mathbb{R} to A has an extension to an entire function on \mathbb{C}.

- The set of analytic elements is always a dense subalgebra of A. For $a \in A$ set

$$
a_{n}:=\sqrt{\frac{n}{\pi}} \int_{\mathbb{R}} \alpha_{t}(a) e^{-n t^{2}} d t
$$

then each a_{n} is analytic and $a_{n} \rightarrow a$.

A state ϕ on A is a KMS state at inverse temperature β if

$$
\phi(a b)=\phi\left(b \alpha_{i \beta}(a)\right) \text { for all analytic } a, b
$$

- KMS states are α-invariant.

Let $\alpha: \mathbb{R} \rightarrow$ Aut A be an action. Then $a \in A$ is an analytic element if the function $t \mapsto \alpha_{t}($ a) from \mathbb{R} to A has an extension to an entire function on \mathbb{C}.

- The set of analytic elements is always a dense subalgebra of A. For $a \in A$ set

$$
a_{n}:=\sqrt{\frac{n}{\pi}} \int_{\mathbb{R}} \alpha_{t}(a) e^{-n t^{2}} d t
$$

then each a_{n} is analytic and $a_{n} \rightarrow a$.

A state ϕ on A is a KMS state at inverse temperature β if

$$
\phi(a b)=\phi\left(b \alpha_{i \beta}(a)\right) \text { for all analytic } a, b .
$$

- KMS states are α-invariant.
- It suffices to check the KMS_{β} condition on a set of analytic elements which span a dense subspace of A.

Let $\alpha: \mathbb{R} \rightarrow$ Aut A be an action. Then $a \in A$ is an analytic element if the function $t \mapsto \alpha_{t}($ a) from \mathbb{R} to A has an extension to an entire function on \mathbb{C}.

- The set of analytic elements is always a dense subalgebra of A. For $a \in A$ set

$$
a_{n}:=\sqrt{\frac{n}{\pi}} \int_{\mathbb{R}} \alpha_{t}(a) e^{-n t^{2}} d t
$$

then each a_{n} is analytic and $a_{n} \rightarrow a$.

A state ϕ on A is a KMS state at inverse temperature β if

$$
\phi(a b)=\phi\left(b \alpha_{i \beta}(a)\right) \text { for all analytic } a, b .
$$

- KMS states are α-invariant.
- It suffices to check the KMS_{β} condition on a set of analytic elements which span a dense subspace of A.
- The KMS_{β} states always form a simplex and the extremal KMS_{β} states are factor states.

In a physical model we expect KMS states for most β. This is not the case for mathematical models.

In a physical model we expect KMS states for most β. This is not the case for mathematical models.

Example: Take the systems $\left(\mathcal{T} \mathcal{O}_{n}, \alpha\right)$ and $\left(\mathcal{O}_{n}, \alpha\right)$ where the α are induced from the gauge actions.

- $\left(\mathcal{T} \mathcal{O}_{n}, \alpha\right)$ has a unique KMS_{β} state for each $\beta \geq \ln n$ and no KMS_{β} state if $\beta<\ln n$.
- The only KMS state of $\left(\mathcal{T} \mathcal{O}_{n}, \alpha\right)$ that factors through \mathcal{O}_{n} is the $\ln n$ state.
Moral from Exel-Laca (2003), Laca-Neshveyev (2004): the Toeplitz algebra has a much richer supply of KMS states.

Suppose that $E=\left(E^{0}, E^{1}, r, s\right)$ is a directed graph. Today it is always finite. A Toeplitz-Cuntz-Krieger E-family (Q, T) consists of mutually orthogonal projections $\left\{Q_{v}: v \in E^{0}\right\}$ and partial isometries $\left\{T_{e}: e \in E^{1}\right\}$ such that $T_{e}^{*} T_{e}=P_{s(e)}$ and

$$
Q_{v} \geq \sum_{r(e)=v} T_{e} T_{e}^{*} \quad \text { if } v \text { is not a source. }
$$

Suppose that $E=\left(E^{0}, E^{1}, r, s\right)$ is a directed graph. Today it is always finite. A Toeplitz-Cuntz-Krieger E-family (Q, T) consists of mutually orthogonal projections $\left\{Q_{v}: v \in E^{0}\right\}$ and partial isometries $\left\{T_{e}: e \in E^{1}\right\}$ such that $T_{e}^{*} T_{e}=P_{s(e)}$ and

$$
Q_{v} \geq \sum_{r(e)=v} T_{e} T_{e}^{*} \quad \text { if } v \text { is not a source. }
$$

It follows that the projections $\left\{T_{e} T_{e}^{*}: e \in E^{1}\right\}$ are mutually orthogonal. Then $T_{e}^{*} T_{f}=\delta_{e, f} Q_{S(e)}$ and

$$
C^{*}(Q, T)=\overline{\operatorname{span}}\left\{T_{\mu} T_{\nu}^{*}: \mu, \nu \in E^{*}\right\}
$$

Suppose that $E=\left(E^{0}, E^{1}, r, s\right)$ is a directed graph. Today it is always finite. A Toeplitz-Cuntz-Krieger E-family (Q, T) consists of mutually orthogonal projections $\left\{Q_{v}: v \in E^{0}\right\}$ and partial isometries $\left\{T_{e}: e \in E^{1}\right\}$ such that $T_{e}^{*} T_{e}=P_{s(e)}$ and

$$
Q_{v} \geq \sum_{r(e)=v} T_{e} T_{e}^{*} \quad \text { if } v \text { is not a source. }
$$

It follows that the projections $\left\{T_{e} T_{e}^{*}: e \in E^{1}\right\}$ are mutually orthogonal. Then $T_{e}^{*} T_{f}=\delta_{e, f} Q_{S(e)}$ and

$$
C^{*}(Q, T)=\overline{\operatorname{span}}\left\{T_{\mu} T_{\nu}^{*}: \mu, \nu \in E^{*}\right\}
$$

The Toeplitz algebra $\mathcal{T} C^{*}(E)$ of E is the C^{*}-algebra generated by a universal Toeplitz-Cuntz-Krieger family (q, t). There is a gauge action $\gamma: \mathbb{T} \rightarrow \operatorname{Aut}\left(\mathcal{T} C^{*}(E)\right)$ satisfying $\gamma_{z}\left(t_{e}\right)=z t_{e}$ and $\gamma_{z}\left(q_{v}\right)=q_{v}$, which we can lift to an action α of \mathbb{R} by $\alpha_{t}=\gamma_{e^{i t}}$.

Suppose that $E=\left(E^{0}, E^{1}, r, s\right)$ is a directed graph. Today it is always finite. A Toeplitz-Cuntz-Krieger E-family (Q, T) consists of mutually orthogonal projections $\left\{Q_{v}: v \in E^{0}\right\}$ and partial isometries $\left\{T_{e}: e \in E^{1}\right\}$ such that $T_{e}^{*} T_{e}=P_{s(e)}$ and

$$
Q_{v} \geq \sum_{r(e)=v} T_{e} T_{e}^{*} \text { if } v \text { is not a source. }
$$

It follows that the projections $\left\{T_{e} T_{e}^{*}: e \in E^{1}\right\}$ are mutually orthogonal. Then $T_{e}^{*} T_{f}=\delta_{e, f} Q_{S(e)}$ and

$$
C^{*}(Q, T)=\overline{\operatorname{span}}\left\{T_{\mu} T_{\nu}^{*}: \mu, \nu \in E^{*}\right\}
$$

The Toeplitz algebra $\mathcal{T} C^{*}(E)$ of E is the C^{*}-algebra generated by a universal Toeplitz-Cuntz-Krieger family (q, t). There is a gauge action $\gamma: \mathbb{T} \rightarrow \operatorname{Aut}\left(\mathcal{T} C^{*}(E)\right)$ satisfying $\gamma_{z}\left(t_{e}\right)=z t_{e}$ and $\gamma_{z}\left(q_{v}\right)=q_{v}$, which we can lift to an action α of \mathbb{R} by $\alpha_{t}=\gamma_{e^{i t}}$. Crucial for us:

$$
t \mapsto \alpha_{t}\left(t_{\mu} t_{\nu}^{*}\right)=e^{i t(|\mu|-|\nu|)} t_{\mu} t_{\nu}^{*}
$$

extends to an analytic function (just replace t by z),

Let I be the ideal of $\mathcal{T} C^{*}(E)$ generated by

$$
\left\{q_{v}-\sum_{r(e)=v} t_{e} t_{e}^{*}: v \text { is not a source }\right\}
$$

View the graph algebra $C^{*}(E)$ as the quotient $\mathcal{T} C^{*}(E) / I$. There is a gauge action $\gamma: \mathbb{T} \rightarrow \operatorname{Aut}\left(C^{*}(E)\right)$ which lifts to an action α and the quotient map is equivariant for γ (and hence α).

Let ϕ be a KMS_{β} state on $\left(\mathcal{T} C^{*}(E), \alpha\right)$. Then ϕ is invariant for both α and γ. For $|\mu| \neq|\nu|$,

$$
\phi\left(t_{\mu} t_{\nu}^{*}\right)=\int_{\mathbb{T}} \phi\left(\gamma_{z}\left(t_{\mu} t_{\nu}^{*}\right)\right) d z=\left(\int_{\mathbb{T}} z^{|\mu|-|\nu|} d z\right) \phi\left(t_{\mu} t_{\nu}^{*}\right)=0
$$

For $|\mu|=|\nu|$, the KMS condition and $t_{\nu}^{*} t_{\mu}=\delta_{\nu, \mu} q_{s(\mu)}$ gives

$$
\phi\left(t_{\mu} t_{\nu}^{*}\right)=\phi\left(t_{\nu}^{*} \alpha_{i \beta}\left(t_{\mu}\right)\right)=e^{-\beta|\mu|} \phi\left(t_{\nu}^{*} t_{\mu}\right)=\delta_{\mu, \nu} e^{-\beta|\mu|} \phi\left(q_{s(\mu)}\right) .
$$

Let ϕ be a KMS_{β} state on $\left(\mathcal{T} C^{*}(E), \alpha\right)$. Then ϕ is invariant for both α and γ. For $|\mu| \neq|\nu|$,

$$
\phi\left(t_{\mu} t_{\nu}^{*}\right)=\int_{\mathbb{T}} \phi\left(\gamma_{z}\left(t_{\mu} t_{\nu}^{*}\right)\right) d z=\left(\int_{\mathbb{T}} z^{|\mu|-|\nu|} d z\right) \phi\left(t_{\mu} t_{\nu}^{*}\right)=0
$$

For $|\mu|=|\nu|$, the KMS condition and $t_{\nu}^{*} t_{\mu}=\delta_{\nu, \mu} q_{s(\mu)}$ gives

$$
\phi\left(t_{\mu} t_{\nu}^{*}\right)=\phi\left(t_{\nu}^{*} \alpha_{i \beta}\left(t_{\mu}\right)\right)=e^{-\beta|\mu|} \phi\left(t_{\nu}^{*} t_{\mu}\right)=\delta_{\mu, \nu} e^{-\beta|\mu|} \phi\left(q_{s(\mu)}\right) .
$$

We have proved one half of:
Lemma. A state ϕ of $\mathcal{T} C^{*}(E)$ is a $\operatorname{KMS}_{\beta}$ state of $\left(\mathcal{T C} C^{*}(E), \alpha\right)$ iff

$$
\phi\left(t_{\mu} t_{\nu}^{*}\right)=\delta_{\mu, \nu} e^{-\beta|\mu|} \phi\left(q_{s(\mu)}\right) \quad \text { for all } \mu, \nu \in E^{*}
$$

Let ϕ be a KMS_{β} state of $\left(\mathcal{T} C^{*}(E), \alpha\right)$. For $v \in E^{0}$ define $m=\left(m_{v}\right)$ by $m_{v}=\phi\left(q_{v}\right)$. Then m is a unit vector:

$$
1=\phi(1)=\sum_{v \in E^{0}} \phi\left(q_{v}\right)=\sum_{v \in E^{0}} m_{v}
$$

Let ϕ be a KMS_{β} state of $\left(\mathcal{T} C^{*}(E), \alpha\right)$. For $v \in E^{0}$ define $m=\left(m_{v}\right)$ by $m_{v}=\phi\left(q_{v}\right)$. Then m is a unit vector:

$$
1=\phi(1)=\sum_{v \in E^{0}} \phi\left(q_{v}\right)=\sum_{v \in E^{0}} m_{v}
$$

The vertex matrix of E is the $E^{0} \times E^{0}$ integer matrix A with

$$
A(v, w)=\# \text { paths from } w \text { to } v
$$

Let ϕ be a $\operatorname{KMS}_{\beta}$ state of $\left(\mathcal{T} C^{*}(E), \alpha\right)$. For $v \in E^{0}$ define $m=\left(m_{v}\right)$ by $m_{v}=\phi\left(q_{v}\right)$. Then m is a unit vector:

$$
1=\phi(1)=\sum_{v \in E^{0}} \phi\left(q_{v}\right)=\sum_{v \in E^{0}} m_{v} .
$$

The vertex matrix of E is the $E^{0} \times E^{0}$ integer matrix A with

$$
A(v, w)=\# \text { paths from } w \text { to } v .
$$

Suppose $v \in E^{0}$ is not a source. Then

$$
\begin{aligned}
m_{v} & =\phi\left(q_{v}\right) \geq \sum_{r(f)=v} \phi\left(t_{f} t_{f}^{*}\right)=\sum_{r(f)=v} e^{-\beta} \phi\left(q_{s(f)}\right) \\
& =\sum_{r(f)=v} e^{-\beta} m_{s(f)}=e^{-\beta} \sum_{w \in E^{0}} A(v, w) m_{w}=e^{-\beta}(A m)_{v} .
\end{aligned}
$$

Hence $\left(A m^{\phi}\right)_{v} \leq e^{\beta} \phi\left(p_{v}\right)=e^{\beta} m_{v}$.

Let ϕ be a $\operatorname{KMS}_{\beta}$ state of $\left(\mathcal{T} C^{*}(E), \alpha\right)$. For $v \in E^{0}$ define $m=\left(m_{v}\right)$ by $m_{v}=\phi\left(q_{v}\right)$. Then m is a unit vector:

$$
1=\phi(1)=\sum_{v \in E^{0}} \phi\left(q_{v}\right)=\sum_{v \in E^{0}} m_{v} .
$$

The vertex matrix of E is the $E^{0} \times E^{0}$ integer matrix A with

$$
A(v, w)=\# \text { paths from } w \text { to } v .
$$

Suppose $v \in E^{0}$ is not a source. Then

$$
\begin{aligned}
m_{v} & =\phi\left(q_{v}\right) \geq \sum_{r(f)=v} \phi\left(t_{f} t_{f}^{*}\right)=\sum_{r(f)=v} e^{-\beta} \phi\left(q_{s(f)}\right) \\
& =\sum_{r(f)=v} e^{-\beta} m_{s(f)}=e^{-\beta} \sum_{w \in E^{0}} A(v, w) m_{w}=e^{-\beta}(A m)_{v} .
\end{aligned}
$$

Hence $\left(A m^{\phi}\right)_{v} \leq e^{\beta} \phi\left(p_{v}\right)=e^{\beta} m_{v}$.
If v is a source then $A(v, w)=0 \forall w$ and $(A m)_{v}=0 \leq e^{\beta} m_{v}$.

Let ϕ be a KMS_{β} state of $\left(\mathcal{T} C^{*}(E), \alpha\right)$.
Lemma. For $v \in E^{0}$ define $m=\left(m_{v}\right)$ by $m_{v}=\phi\left(q_{v}\right)$. Then m is a unit vector satisfying the subinvariance relation $A m \leq e^{\beta} m$.

Let ϕ be a $\operatorname{KMS}_{\beta}$ state of $\left(\mathcal{T C} C^{*}(E), \alpha\right)$.
Lemma. For $v \in E^{0}$ define $m=\left(m_{v}\right)$ by $m_{v}=\phi\left(q_{v}\right)$. Then m is a unit vector satisfying the subinvariance relation $A m \leq e^{\beta} m$.
Lemma. ϕ factors through $C^{*}(E)$ iff $(A m)_{v}=e^{\beta} m_{v}$ whenever v is not a source.

Let ϕ be a $\operatorname{KMS}_{\beta}$ state of $\left(\mathcal{T C} C^{*}(E), \alpha\right)$.
Lemma. For $v \in E^{0}$ define $m=\left(m_{v}\right)$ by $m_{v}=\phi\left(q_{v}\right)$. Then m is a unit vector satisfying the subinvariance relation $A m \leq e^{\beta} m$.
Lemma. ϕ factors through $C^{*}(E)$ iff $(A m)_{v}=e^{\beta} m_{v}$ whenever v is not a source.

Spse v is not a source. Then

$$
\begin{aligned}
e^{\beta} \phi\left(q_{v}-\sum_{r(f)=v} t_{f} t_{f}^{*}\right) & =e^{\beta}\left(\phi\left(q_{v}\right)-\sum_{r(f)=v} e^{-\beta} \phi\left(q_{s(f)}\right)\right) \\
& =e^{\beta} m_{v}-(A m)_{v}
\end{aligned}
$$

By a technical lemma, ϕ factors through iff $\phi\left(q_{v}-\sum_{r(f)=v} t_{f} t_{f}^{*}\right)=0$ for all such v.

Temporarily assume that E is strongly connected. Then A is an irreducible matrix. Perron-Frobenius Theory for $m \geq 0$:

- $A m=e^{\beta} m \Longrightarrow m>0$ is the PF eigenvector and $e^{\beta}=\rho(A)$, the spectral radius of A;
- $A m \leq e^{\beta} m$ and $\beta=\ln \rho(A) \Longrightarrow m$ is the PF eigenvector;
- $A m \leq e^{\beta} m$ and $A m \neq e^{\beta} m \Longrightarrow \beta>\ln \rho(A)$.

Temporarily assume that E is strongly connected. Then A is an irreducible matrix. Perron-Frobenius Theory for $m \geq 0$:

- $A m=e^{\beta} m \Longrightarrow m>0$ is the PF eigenvector and $e^{\beta}=\rho(A)$, the spectral radius of A;
- $A m \leq e^{\beta} m$ and $\beta=\ln \rho(A) \Longrightarrow m$ is the PF eigenvector;
- $A m \leq e^{\beta} m$ and $A m \neq e^{\beta} m \Longrightarrow \beta>\ln \rho(A)$.

Now we have proved half of:
Theorem (Enomoto-Fujii-Watatani 1984). Let E be a strongly connected finite graph with vertex matrix A. Then $\left(C^{*}(E), \alpha\right)$ has a unique KMS state. This state has inverse temperature $\beta=\ln \rho(A)$, where $\rho(A)$ is the spectral radius of A.

Temporarily assume that E is strongly connected. Then A is an irreducible matrix. Perron-Frobenius Theory for $m \geq 0$:

- $A m=e^{\beta} m \Longrightarrow m>0$ is the PF eigenvector and $e^{\beta}=\rho(A)$, the spectral radius of A;
- $A m \leq e^{\beta} m$ and $\beta=\ln \rho(A) \Longrightarrow m$ is the PF eigenvector;
- $A m \leq e^{\beta} m$ and $A m \neq e^{\beta} m \Longrightarrow \beta>\ln \rho(A)$.

Now we have proved half of:
Theorem (Enomoto-Fujii-Watatani 1984). Let E be a strongly connected finite graph with vertex matrix A. Then $\left(C^{*}(E), \alpha\right)$ has a unique KMS state. This state has inverse temperature $\beta=\ln \rho(\boldsymbol{A})$, where $\rho(\boldsymbol{A})$ is the spectral radius of A.

We have shown there is at most one KMS_{β} state of $\left(C^{*}(E), \alpha\right)$, when $\beta=\ln (\rho A)$. We still need to show existence.

Idea: Show there are lots of KMS_{β} states of $\left(\mathcal{T} C^{*}(E), \alpha\right)$ when $\beta>\ln \rho(A)$, then take limits.
(No longer assuming E is strongly connected.) The KMS condition on a state ϕ places restraints on $m:=\left(\phi\left(p_{v}\right)\right)$. Note $A m \leq e^{\beta} m \Longleftrightarrow\left(I-e^{-\beta} A\right) m \geq 0$. Assume $\beta>\ln \rho(A)$. Then $\sum_{n=0}^{\infty} e^{-\beta n} A^{n}$ converges to $\left(I-e^{-\beta} A\right)^{-1}$.
(No longer assuming E is strongly connected.) The KMS condition on a state ϕ places restraints on $m:=\left(\phi\left(p_{v}\right)\right)$. Note $A m \leq e^{\beta} m \Longleftrightarrow\left(I-e^{-\beta} A\right) m \geq 0$.
Assume $\beta>\ln \rho(A)$. Then $\sum_{n=0}^{\infty} e^{-\beta n} A^{n}$ converges to $\left(I-e^{-\beta} A\right)^{-1}$.
Take $\epsilon:=\left(I-e^{-\beta} A\right) m$. Which $\epsilon \in[0, \infty]^{E^{0}}$ arise?
(No longer assuming E is strongly connected.) The KMS condition on a state ϕ places restraints on $m:=\left(\phi\left(p_{v}\right)\right)$. Note $A m \leq e^{\beta} m \Longleftrightarrow\left(I-e^{-\beta} A\right) m \geq 0$.
Assume $\beta>\ln \rho(A)$. Then $\sum_{n=0}^{\infty} e^{-\beta n} A^{n}$ converges to $\left(I-e^{-\beta} A\right)^{-1}$.
Take $\epsilon:=\left(I-e^{-\beta} A\right) m$. Which $\epsilon \in[0, \infty]^{E^{0}}$ arise?
For $v \in E^{0}$, set

$$
y_{v}:=\sum_{\mu \in E^{*} v} e^{-\beta|\mu|}=\sum_{n=0}^{\infty} \sum_{w \in E^{0}} e^{-\beta n} A^{n}(w, v)
$$

and take $y=\left(y_{v}\right)$. Then:
(No longer assuming E is strongly connected.) The KMS condition on a state ϕ places restraints on $m:=\left(\phi\left(p_{V}\right)\right)$. Note $A m \leq e^{\beta} m \Longleftrightarrow\left(I-e^{-\beta} A\right) m \geq 0$.
Assume $\beta>\ln \rho(A)$. Then $\sum_{n=0}^{\infty} e^{-\beta n} A^{n}$ converges to $\left(I-e^{-\beta} A\right)^{-1}$.
Take $\epsilon:=\left(I-e^{-\beta} A\right) m$. Which $\epsilon \in[0, \infty]^{E^{0}}$ arise?
For $v \in E^{0}$, set

$$
y_{v}:=\sum_{\mu \in E^{*} v} e^{-\beta|\mu|}=\sum_{n=0}^{\infty} \sum_{w \in E^{0}} e^{-\beta n} A^{n}(w, v)
$$

and take $y=\left(y_{v}\right)$. Then:
Lemma. Let $\beta>\ln \rho(A)$. Then $m:=\left(I-e^{-\beta} A\right)^{-1} \epsilon$ is a unit vector in $\ell^{1}\left(E^{0}\right)$ satisfying $A m \leq e^{\beta} m$ if and only if $\epsilon \cdot y=1$.

To construct KMS states, we use a concrete representation of $\mathcal{T} C^{*}(E)$:

To construct KMS states, we use a concrete representation of $\mathcal{T} C^{*}(E)$:

Example. Consider the usual orthonormal basis $\left\{h_{\mu}: \mu \in E^{*}\right\}$ for $\ell^{2}\left(E^{*}\right)$ (by convention $E^{0} \subset E^{*}$). There are projections Q_{v} and partial isometries T_{e} on $\ell^{2}\left(E^{*}\right)$ such that

$$
\begin{aligned}
Q_{v} h_{\mu} & = \begin{cases}0 & \text { unless } r(\mu)=v \\
h_{\mu} & \text { if } r(\mu)=v, \text { and }\end{cases} \\
T_{e} h_{\mu} & = \begin{cases}0 & \text { unless } r(\mu)=s(e) \\
h_{e \mu} & \text { if } r(\mu)=s(e)\end{cases}
\end{aligned}
$$

Then (Q, T) is a Toeplitz-CK family, and we have a representation $\pi_{Q, T}$ of $\mathcal{T} C^{*}(E)$ on $\ell^{2}\left(E^{*}\right)$ (in fact injective).

Theorem (an Huef-Laca-Raeburn-Sims, 2013). Suppose E is a finite graph with vertex matrix A, and $\beta>\ln \rho(A)$. Take $y=\left(y_{v}\right) \in[1, \infty)^{E^{0}}$ as above, and suppose $\epsilon \cdot y=1$. Then there is a KMS_{β} state ϕ_{ϵ} of $\mathcal{T} C^{*}(E)$ such that

$$
\phi_{\epsilon}(a)=\sum_{\mu \in E^{*}} e^{-\beta|\mu|} \epsilon_{s(\mu)}\left(\pi_{Q, T}(a) h_{\mu} \mid h_{\mu}\right)
$$

The map $\epsilon \mapsto \phi_{\epsilon}$ is an affine isomorphism of $\Delta_{\beta}=\left\{\epsilon \in[0,1]^{E^{0}}: \epsilon \cdot y=1\right\}$ onto the simplex of KMS_{β} states.

Theorem (an Huef-Laca-Raeburn-Sims, 2013). Suppose E is a finite graph with vertex matrix A, and $\beta>\ln \rho(A)$. Take $y=\left(y_{v}\right) \in[1, \infty)^{E^{0}}$ as above, and suppose $\epsilon \cdot y=1$. Then there is a KMS_{β} state ϕ_{ϵ} of $\mathcal{T} C^{*}(E)$ such that

$$
\phi_{\epsilon}(a)=\sum_{\mu \in E^{*}} e^{-\beta|\mu|} \epsilon_{s(\mu)}\left(\pi_{Q, T}(a) h_{\mu} \mid h_{\mu}\right)
$$

The map $\epsilon \mapsto \phi_{\epsilon}$ is an affine isomorphism of $\Delta_{\beta}=\left\{\epsilon \in[0,1]^{E^{0}}: \epsilon \cdot y=1\right\}$ onto the simplex of KMS_{β} states.

Notice there is no hypothesis on E, hence no irreducibility assumption on A. So what happens at $\beta=\ln \rho(A)$? When A is irreducible, the series defining y diverges, so the simplex Δ_{β} contracts to $\{0\}$ as $\beta \rightarrow \ln \rho(A)$.

Corollary (Enomoto-Fujii-Watatani). If E is strongly connected, then $\left(C^{*}(E), \alpha\right)$ has a $\mathrm{KMS}_{\ln \rho(A)}$ state.

Corollary (Enomoto-Fujii-Watatani). If E is strongly connected, then $\left(C^{*}(E), \alpha\right)$ has a $\mathrm{KMS}_{\ln \rho(A)}$ state.
Proof. Choose β_{n} decreasing to $\operatorname{In} \rho(A)$, and $\mathrm{KMS}_{\beta_{n}}$ states ϕ_{n} of $\mathcal{T} C^{*}(E)$. By passing to a subsequence, $\phi_{n} \rightarrow \phi$, and ϕ is a $\mathrm{KMS}_{\text {In } \rho(A)}$ state of $\mathcal{T} C^{*}(E)$.

Corollary (Enomoto-Fujii-Watatani). If E is strongly connected, then $\left(C^{*}(E), \alpha\right)$ has a $\mathrm{KMS}_{\ln \rho(A)}$ state.
Proof. Choose β_{n} decreasing to $\ln \rho(A)$, and $\mathrm{KMS}_{\beta_{n}}$ states ϕ_{n} of $\mathcal{T} C^{*}(E)$. By passing to a subsequence, $\phi_{n} \rightarrow \phi$, and ϕ is a $\mathrm{KMS}_{\text {In } \rho(A)}$ state of $\mathcal{T} C^{*}(E)$. Then $m:=\left(\phi\left(p_{v}\right)\right)$ satisfies $A m \leq \rho(A) m$. PF implies $A m=\rho(A) m$.

Corollary (Enomoto-Fujii-Watatani). If E is strongly connected, then $\left(C^{*}(E), \alpha\right)$ has a $\mathrm{KMS}_{\ln \rho(A)}$ state.
Proof. Choose β_{n} decreasing to $\ln \rho(A)$, and $\mathrm{KMS}_{\beta_{n}}$ states ϕ_{n} of $\mathcal{T} C^{*}(E)$. By passing to a subsequence, $\phi_{n} \rightarrow \phi$, and ϕ is a $\mathrm{KMS}_{\text {In } \rho(A)}$ state of $\mathcal{T} C^{*}(E)$. Then $m:=\left(\phi\left(p_{v}\right)\right)$ satisfies $A m \leq \rho(A) m$. PF implies $A m=\rho(A) m$. Thus

$$
\begin{aligned}
\rho(A) \phi\left(q_{v}\right) & =\rho(A) m_{v}=(A m)_{v}=\sum_{w \in E^{0}} A(v, w) \phi\left(q_{w}\right) \\
& =\sum_{r(e)=v} \phi\left(q_{s}(e)\right)=\sum_{r(e)=v} \rho(A) \phi\left(t_{e} t_{e}^{*}\right) \\
& =\rho(A) \phi\left(\sum_{r(e)=v} t_{e} t_{e}^{*}\right) .
\end{aligned}
$$

Corollary (Enomoto-Fujii-Watatani). If E is strongly connected, then $\left(C^{*}(E), \alpha\right)$ has a $\mathrm{KMS}_{\ln \rho(A)}$ state.
Proof. Choose β_{n} decreasing to $\ln \rho(A)$, and $\mathrm{KMS}_{\beta_{n}}$ states ϕ_{n} of $\mathcal{T} C^{*}(E)$. By passing to a subsequence, $\phi_{n} \rightarrow \phi$, and ϕ is a $\mathrm{KMS}_{\text {In } \rho(A)}$ state of $\mathcal{T} C^{*}(E)$. Then $m:=\left(\phi\left(p_{v}\right)\right)$ satisfies $A m \leq \rho(A) m$. PF implies $A m=\rho(A) m$. Thus

$$
\begin{aligned}
\rho(A) \phi\left(q_{v}\right) & =\rho(A) m_{v}=(A m)_{v}=\sum_{w \in E^{0}} A(v, w) \phi\left(q_{w}\right) \\
& =\sum_{r(e)=v} \phi\left(q_{s}(e)\right)=\sum_{r(e)=v} \rho(A) \phi\left(t_{e} t_{e}^{*}\right) \\
& =\rho(A) \phi\left(\sum_{r(e)=v} t_{e} t_{e}^{*}\right) .
\end{aligned}
$$

So for all $v \in E^{0}$ which are not sources,

$$
\phi\left(q_{v}-\sum_{r(e)=v} t_{e} t_{e}^{*}\right)=0 .
$$

Now a technical lemma implies that ϕ factors through $C^{*}(E)=\mathcal{T} C^{*}(E) / I$.

This completes the proof of:
Theorem (Enomoto-Fujii-Watatani 1984). Let E be a strongly connected finite graph with vertex matrix A. Then $\left(C^{*}(E), \alpha\right)$ has a unique KMS state. This state has inverse temperature $\beta=\ln \rho(A)$, where $\rho(A)$ is the spectral radius of A.

目 T．Carlsen and N．Larsen．Partial actions and KMS states on relative graph C^{*}－algebras，preprint 2013.
：M．Enomoto，M．Fujii and Y．Watatani．KMS states for gauge action on \mathcal{O}_{A} ，Math．Japon． 29 （1984）．

國 R．Exel and M．Laca．Partial dynamical systems and the KMS condition，Comm．Math．Phys． 232 （2003）．

雷 A．an Huef，M．Laca，I．Raeburn and A．Sims．KMS states on C^{*}－algebras of finite graphs II：reducible graphs，in preparation．
：A．an Huef，M．Laca，I．Raeburn and A．Sims．KMS states on the C^{*}－algebras associated to higher－rank graphs，J． Funct．Anal．（2014）
［ T．Kajiwara and Y．Watatani．KMS states on finite－graph C＊－algebras，Kyushu J．Math．（2013）．

囯 M．Laca and S．Neshveyev．KMS states of quasi－free dynamics on Pimsner algebras，J．Funct．Anal． 211 （2004）．

