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| thank the organisers for their invitation to take part in this workshop.

| will talk about hypergeometric functions and the monodromy group
associated to them. To set up the notation, | will recall some very
elementary results from differential equations.
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Differential Equations on the Unit Disc

Let z € A where A be the open unit disc in the plane. Suppose

fo,- -, f,_1 are holomorphic functions on the disc. Consider the
differential equation

d'X a—'x
W + fr_1 (Z)F + Tt + fO(Z)X — 0
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Differential Equations on the Unit Disc

Let z € A where A be the open unit disc in the plane. Suppose
fo,- -, f,_1 are holomorphic functions on the disc. Consider the
differential equation
d'X a—1x
F + fr_1 (Z)F + -+ fo(Z)X =0.
Then

(Cauchy) There are r linearly independent solutions X of the foregoing
equation, which are all holomorphic on the disc A.
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Differential Equations on the Unit Disc

Let z € A where A be the open unit disc in the plane. Suppose
fo,- -, f,_1 are holomorphic functions on the disc. Consider the
differential equation
d'X a—1x
F + fr_1 (Z)F + -+ fo(Z)X =0.
Then

(Cauchy) There are r linearly independent solutions X of the foregoing
equation, which are all holomorphic on the disc A.

Almost the same is true if we assume that f;(z) have at most a simple
pole at 0 but are holomorphic elsewhere on the disc.

There are n — 1 linearly independent solutions which are holomorphic
on the disc A to the foregoing equation.
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Differential Equations

Suppose g € A* lies in the punctured unit disc (punctured at 0) and for
each i, fi(q) = qn(q,), where P; are holomorphic in g. We write g = 7%
where z is on the upper half plane. By Cauchy’s theorem, the equation

above has n linearly independent solutions on b, which are
holomorphic on b.
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Differential Equations

Suppose g € A* lies in the punctured unit disc (punctured at 0) and for
each i, fi(q) = qn(q,), where P; are holomorphic in g. We write g = 7%
where z is on the upper half plane. By Cauchy’s theorem, the equation
above has n linearly independent solutions on b, which are
holomorphic on b.

The exponential map h — A* given by z — @ is a covering map and
the functions f;(q) are invariant under the deck transformation group,
which is a cyclic group generated by gg : z+— z + 1.
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Differential Equations

Suppose g € A* lies in the punctured unit disc (punctured at 0) and for
each i, fi(q) = qn(q,), where P; are holomorphic in g. We write g = 7%
where z is on the upper half plane. By Cauchy’s theorem, the equation
above has n linearly independent solutions on b, which are
holomorphic on b.

The exponential map h — A* given by z — @ is a covering map and
the functions f;(q) are invariant under the deck transformation group,
which is a cyclic group generated by gg : z+— z + 1.

Thus the space of solutions X of the differential equation is invariant
under the group gg. This action is the “local monodrmy action”. If a
solution X is actually holomorphic in g even at 0, then the monodromy
action is trivial on X.
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Local Monodromy

If f;,(q) have at most a simple pole at g = 0, then by a result mentioned
earlier, the space of holomorphic solutions in z is n dimensional and
has an n — 1 dimensional subspace which consists of solutions
holomorphic in g, on the disc A. In particular, the monodromy action
on this subspace is trivial. Hence there exists a basis of solutions X,
such that the matrix of gg is of the form

i 0 0 --- 0 a
0 1 0O --- 0 a4
0O 0 O 1 a
0O 0 O 0 a

where a; # 0 is called the exceptional eigenvalue of the local
monodromy element go. The matrix gg is called a complex refelction.
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Gauss’ Hypergeometric Function

Let us begin with Gauss’s Hypergeometric function. Let a, b, ¢ be real
numbers with ¢ not a non-negative integer. Denote, for an integer
n>0by

(ap=a(a+1)---(a+n-1),
the Pochhammer Symbol, with (a); = 1.
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Gauss’ Hypergeometric Function

Let us begin with Gauss’s Hypergeometric function. Let a, b, ¢ be real
numbers with ¢ not a non-negative integer. Denote, for an integer
n>0by

(@p=ala+1)---(a+n—1),
the Pochhammer Symbol, with (a); = 1.
The Gauss hypergeometric function is

Flabs =3 b2l
n=0

This series converges absolutely and uniformly on compact sets in the
region | z |< 1.
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Gauss’ Hypergeometric Function

Let us begin with Gauss’s Hypergeometric function. Let a, b, ¢ be real
numbers with ¢ not a non-negative integer. Denote, for an integer
n>0by

(@p=ala+1)---(a+n—1),
the Pochhammer Symbol, with (a); = 1.
The Gauss hypergeometric function is

(@)n(b)n 2"
n’

F(a,b,c;z) = o).
n=0

This series converges absolutely and uniformly on compact sets in the
region | z |< 1.

This is a simple consequence of the ratio test. Ol \
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Analytic Continuation

We may view the open unit disc A* punctured at 0, as a subset of the
thrice punctured projective line: A* ¢ P!\ {0, 1,c0}. The latter is
covered by the upper half plane h and so we may write z = A\(7) for

z € A, with 7 € A='(A) C b. Then it is known that F(z) admits an
analytic continuation to the whole of h.
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Differential Equation satisfied by F

Write 6 = qd%. We will view 6 as a differential operator on

C =P'\ {0,1,00}. The Gauss hypergeometric function F satisfies the
differential equation

q@+a)0+bF=(0+c—1)0F.
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Differential Equation satisfied by F

Write 6 = qd%. We will view 6 as a differential operator on

C =P'\ {0,1,00}. The Gauss hypergeometric function F satisfies the
differential equation

q@+a)0+bF=(0+c—1)0F.

On the (two dimensional) space of solutions of this differential equation
(viewd as functions on the upper half plane in the variable 7 with

q = €%™7), the deck-transformation group I operates and hence we
get a two dimensional representation of I'. This is called the
monodromy representation of I'.
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Differential Equation satisfied by F

Write 6 = qd%. We will view 6 as a differential operator on

C =P'\ {0,1,00}. The Gauss hypergeometric function F satisfies the
differential equation

q@+a)0+bF=(0+c—1)0F.

On the (two dimensional) space of solutions of this differential equation
(viewd as functions on the upper half plane in the variable 7 with

q = €%™7), the deck-transformation group I operates and hence we
get a two dimensional representation of I'. This is called the
monodromy representation of I'.

The group I may be identified with the fundamental group of the curve
C, which is free on two generators gy and g.., two small loops in C
going counterclockwise exactly once around 0 and oo respectively.
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Monodromy Representation

The monodromy representation has the property that gy fixes the
solution F since F is analytic at the puncture 0. One can then describe
the monodromy representation by two matrices A and B~' namely the
images of ggp and g-.. It can be shown that there exists a basis of
solutions for which The images of go and g.. are of the form

. 0 —ag o 0 —bo
A_<1 —a1>3_(1 —b1>'
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Generalised Hypergeometric Functions in one variable

Suppose that g € C =P'\ {0,1, 00}, and put 6 = qdiq. Let
a= (a1, ,ar) €C,y=(y1, - ,7r—1) € C"~1. We then have the
(one variable) generalised hypergeometric function of type ,F,_1:

[e.9]

Flon): q)—z((o‘1)n"-(ar)n q"

0 ')’1)n e (’Yr—1)n n'’
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Clausen-Thomae Differential Equation

Theorem 4
The function F,_1(q) satisfies the differential equation

g+ 1) (0+a)F=0+v) - (0+—_1)0F.
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Clausen-Thomae Differential Equation

Theorem 4
The function F,_1(q) satisfies the differential equation

g+ 1) (0+a)F=0+v) - (0+—_1)0F.

Written out, the differential equation may be seen to be of the form

d'F dF
-+ fr—1(Q)W

g + -+ fo(q)F =0.

Here, fi(q) are holomorphic on C but have simple poles at g = 1. In
that case, the local monodromy matrix g is a complex reflection.
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A Theorem of Levelt

Write g(X) = [T/_;(X — €2™) and f(X) = (X — 1) [[[Z{ (X — &),
Let A and B be the companion matrices of f, g respectively. We have a
representation of m1(C) =< 9o, 9~ ) into GL,(C) given by go — A and

Joo — B,
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A Theorem of Levelt

Write g(X) = [T/_;(X — €2™) and f(X) = (X — 1) [[[Z{ (X — &),
Let A and B be the companion matrices of f, g respectively. We have a
representation of 71(C) =< go, g ) into GL,(C) given by go — A and
Joo — B,

Theorem 5

(Levelt) There exists a basis of solutions of the differential equation
satisfied by the hypergeometric equation ,F,_1 such that the
monodromy representation on the space of solutions of this equation is
the above representation.
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A Theorem of Levelt

Write g(X) = [T/_;(X — €2™) and f(X) = (X — 1) [[[Z{ (X — &),
Let A and B be the companion matrices of f, g respectively. We have a
representation of 71(C) =< go, g ) into GL,(C) given by go — A and
Joo — B,

Theorem 5

(Levelt) There exists a basis of solutions of the differential equation
satisfied by the hypergeometric equation ,F,_1 such that the
monodromy representation on the space of solutions of this equation is
the above representation.

Moreover, if p : T — GL,(C) is any representation such that the
characteristic polynomials of gy and g_' are f and g, and such that
909~ IS a complex reflection, then p is equivalent to this
representation.
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A Theorem of Beukers and Heckman

Suppose now that f(X) and g(X) are reciprocal, have no common
factors, and have integral coefficients with f(0) = g(0) = £1. We also
assume that (f, g) is primitive pairi.e. there do not exist polynomials
f;, g1 and an integer k > 2 such that f;(X*) = f(X) and

91(X¥) = g(X). Then
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A Theorem of Beukers and Heckman

Suppose now that f(X) and g(X) are reciprocal, have no common
factors, and have integral coefficients with f(0) = g(0) = £1. We also
assume that (f, g) is primitive pairi.e. there do not exist polynomials
f;, g1 and an integer k > 2 such that f;(X*) = f(X) and

91(X¥) = g(X). Then

Theorem 6

(Beukers-Heckman) The identity connected component of the Zariski
closure of A and B is Sp,(C) if f(0) = g(0) = 1 and SO, otherwise.
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Beukers and Heckman also determine when the monodromy group is
finite (this is the same thing as saying that F(z) is an algebraic
function). The next question is when the monodromy group an

arithmetic group?
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Beukers and Heckman also determine when the monodromy group is
finite (this is the same thing as saying that F(z) is an algebraic
function). The next question is when the monodromy group an
arithmetic group?

We will say that a subgroup I' € SL,(Z) is an arithmetic group, if I
has finite index in the integral points of its Zariski closure in SL.
Otherwise, we will say that I is thin.
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Beukers and Heckman also determine when the monodromy group is
finite (this is the same thing as saying that F(z) is an algebraic

function). The next question is when the monodromy group an
arithmetic group?

We will say that a subgroup I' € SL,(Z) is an arithmetic group, if I
has finite index in the integral points of its Zariski closure in SL.
Otherwise, we will say that I is thin.

It is hoped that for most of monodromy groups are thin.
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Suppose f, g € Z[X] have no common root, are primitive of degree r,
with f(0) = g(0) = 1. Suppose that the difference f — g is monic, or
has leading coefficient not exceding two in absolute value. Under
these assumptions, we have the

(S.Singh and V.) The monodromy group I (f, g) C Spr(Z) has finite
index.
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Other Results

There are infinitely many examples (Sarnak-Fuchs-Meiri) for which the

real Zariski closure is SO(r — 1, 1) and the monodromy group is thin
(has infinite index in its integral Zariski closure).
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Other Results

There are infinitely many examples (Sarnak-Fuchs-Meiri) for which the
real Zariski closure is SO(r — 1, 1) and the monodromy group is thin
(has infinite index in its integral Zariski closure).

Brav-Thomas give examples of f, g with thin monodromy in Sp4(Z).
Among themis f = (X® —1)/(X — 1) and g = (X — 1)*. (The leading
coefficient of the difference is 5). They also give 6 other pairs f with
g = (X — 1)*) with thin monodromy.
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Other Results

There are infinitely many examples (Sarnak-Fuchs-Meiri) for which the
real Zariski closure is SO(r — 1, 1) and the monodromy group is thin
(has infinite index in its integral Zariski closure).

Brav-Thomas give examples of f, g with thin monodromy in Sp4(Z).
Among themis f = (X° —1)/(X —1) and g = (X — 1)*. (The leading
coefficient of the difference is 5). They also give 6 other pairs f with
g = (X — 1)*) with thin monodromy.

There are 14 examples of f, g with g = (X — 1)* (families of Calabi-Yau
3 folds) whose monodromy lies in Sp4(Z); of these, 7 are thin by
Brav-Thomas. The criterion above by Singh and V., shwsh that 3 are
arithmetic. The other 4 are unknown.
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Sketch of Proof for n =4

Suppose I' C Sp4(Z is a subgroup. In order that I' have finite index, it is
necessary that I' is Zariksi dense in Sp,.
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Sketch of Proof for n =4

Suppose I' C Sp4(Z is a subgroup. In order that I' have finite index, it is
necessary that I' is Zariksi dense in Sp,.

Secondly, it is necessary that I' intersects the unipotent radical of a
parabolic Q-subgroup of Sp,. A result of Tits implies that these two
conditions are both necessary and sufficient.
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Sketch of Proof for n =4

Suppose I' C Sp4(Z is a subgroup. In order that I' have finite index, it is
necessary that I' is Zariksi dense in Sp,.

Secondly, it is necessary that I' intersects the unipotent radical of a
parabolic Q-subgroup of Sp,. A result of Tits implies that these two
conditions are both necessary and sufficient.

We need only prove that the reflection subgroup generated by the
conjugates of C = A~'B by the elements 1, A, A%, A3 has finite index.
But one can show that C, ACA~! and A2CA~2 lie in a maximal
parabolic subgroup P and that under the assumption on the leading
coefficient of the difference f — g not exceeding two, the group
generated by these two elements contain a finite index subgroup of the
integral points of the unipotent rdical of P. Now by appealing to the
result of Tits, we see that I' has finite index.
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Sketch of Proof

First of all, the elements A and B have the same effect on Eq, e, €3
since they are companion matrices. Hence C = A~ 1B fixes e1, ey, es.
Therefore, the conjugate ACA~" also fixes a three dimensional
subspace. Hence, in Q*, the group A generated by the three elements
C,ACA~" and A2CA~2 has at least a one dimensional space of fixed
vectors.
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Sketch of Proof

First of all, the elements A and B have the same effect on Eq, e, €3
since they are companion matrices. Hence C = A~ 1B fixes e1, ey, es.
Therefore, the conjugate ACA~" also fixes a three dimensional
subspace. Hence, in Q*, the group A generated by the three elements
C,ACA~" and A2CA~2 has at least a one dimensional space of fixed
vectors.

Now, consider the parabolic subgroup P of SSp,4, which fixes the flag
Qv Cc vt c Q*.

It is easy to see that the semi-simple part of the Levi subgroup of P is
SL,. Hence A lies in P.
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Sketch of Proof

First of all, the elements A and B have the same effect on Eq, e, €3
since they are companion matrices. Hence C = A~ 1B fixes e1, ey, es.
Therefore, the conjugate ACA~" also fixes a three dimensional
subspace. Hence, in Q*, the group A generated by the three elements
C,ACA~" and A2CA~2 has at least a one dimensional space of fixed
vectors.

Now, consider the parabolic subgroup P of SSp,4, which fixes the flag
Qv Cc vt c Q*.

It is easy to see that the semi-simple part of the Levi subgroup of P is
SL,. Hence A lies in P.

The condition on coefficients ensures that the projection of the
elements C and ACA~' to SL,(Q) contains the unipotent generators of
SL,(27Z). Hence A intersects the unipotent radical of P non-trivially.
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Table: List of primitive Symplectic pairs of polynomials of degree 4 (which are
products of cyclotomic polynomials), for which arithmeticity follows from Main
Theorem

No. f(X) 9(X) o B f(X) — g(X)

1 x*—axd X2 —ax+1 | x*—2x3+3x2 —2X+1 | 00,00 11558 —2x3 4+ 3x2 — 2X
2 X4 —2x2 +1 X4 +2x® +3x2 +2X+1 | 00,54 1.1.2.2 —2x3 —5x% —2x
3 X4 —2x2 41 X x®rax2 4+ X+1 | 0045 1.5.1.2 —x3 _ax? —x
4 Xt —2x% +1 XX+ X2+ x+1 | 00,53 123¢ —x3 —3x% - X
5 Xt —2x% +1 Xt —2x8+ax® —2x+1] 0033 11483 2x® — 5x% + 2X
6 X4 —2x2 41 Xt —x®y2x2 —x+1 | 0033 1.3.4.8 X3 —ax? 4+ x
7 X+ —2X2 41 XX+ X2 —x+1 | 004} | 535 | XP-3xP+x
8 | X' +ax®rex2rax+1 | xtraxd4ax®frox+1 | 5,400 1,122 2x3 4+ 3x2 4+ 2x
9 X = X% — X +1 X* +2X2 +1 0042 | 1,133 i S
10 Xt - X% - X+ 1 XX 4 X2+ X +1 00.3.2 1.88.2 —2x8 — X2 —2x
1 X=X — X 41 x*—2x3+3x2—2x+1] 0042 | 11382 X% —3x2 4+ X
12 Xt — X3 — X +1 X+ X8 4 X 41 00.4.2 1,142 —2x% —2x
13 X=X — X 41 Xt —x34+2x2 —x+1 | 00,4.2 1313 —2x?

14 Xt — X3 — X +1 X* 41 00,4,2 1.3.3.2 -x® - X

15 X=X — X +1 XX+ x2—x+1 | 0042 | §.5. %5 —X?

16 Xt — X% — X +1 X — X% +1 003.2 | L. 3% 8| —X¥+x2-x
17 | x4 +2x3 +3x% 42X + 1 X* 42X +1 1122 1182 2x3 + X2 4+ 2x
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Table: Continued...

No. (X) 9(X) a B f(X) — g(X)
18 | x*+2x3+3x2 4ox+1 | Xt 4ox®rox®yox+1 | 1122 1118 X2

19 | X* +2x3 +3X2 42X + 1 X+ X3+ X2 4 X +1 1,122 1.28.¢ X3 +2x2 4 x
20 | X*+2X% +3X2 42X 4 1 X+ X%+ X+ 1 1122 1118 X3 +3x%+ X
21 | X* +2x3 +3X% 42X 41 X* 1 1,122 1351 2x3 +3X2 4+ 2X
22 | X* +2x3 +3X% 42X 41 X* — X2 41 1122 L5 51| 2x8 +4x2 4 2x
23 | X* +3X% +4X% +3X 41 X+ X3+ X2 4 X +1 1.3.1.2 1,284 2x% 4+ 3x2 4+ 2x
24 | x* —2x®42x2 —ox 41 | x*—2x®+ax®—2x+1| 0013 | {138 —X?

25 | x* —2x3 4+ 2X2 —2X +1 X* 4+ X% 41 00,13 1218 —2x% + X2 —2x
26 | X* —2x3 +2X% —2X +1 X441 00,1.2 1.3.3.2 —2x8 1 2x2% — 2x
27 | x4 —2x®+ax? —o2xX 41| X — X34+ X2 X+1 00,33 | 535563 X34 X2 X
28 | x* —2x® +2x% —2X +1 Xt — X2 41 0012 | &5, 5.1 | —2x® y3x® —2x
29 X* 4 2Xx2 41 X+ X3+ X2 4 X +1 11382 1.238¢ X3+ X2 - X
30 X* +2x2% 41 Xt —2x® +3x® —2x+1| 1,138 1188 2x3 — x? 4+ 2x
31 X4 4 2x2 41 X4+ X3 X 41 1188 11id X3 12x2 — X
32 X4 +2X% 41 X X34 X2 —x41 | 1388 L3 ES X3+ X2+ X
33 | x*+2x% +2X% y2X +1 X+ X+ X2 4 X +1 1113 1.238¢ X34+ X2+ X
34 | X* +2x3 +2X% 42X 41 X* 4+ X% 41 1118 12158 2x3 + X2 +2x
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Table: Continued...

No. f(X) 9(X) a B f(X) — g9(X)
35 | X* +2x3 +2X% + 2X + 1 X4 41 1158 1351 2 1 2X2 1 2X
36 | X*+2x% +2x2 22X +1 Xt — X2 41 1333 5550 | 2x® +3x2 4 2x
37 | X4+ X3 42X2 4+ X +1 XX x24x+1 | 4213 1284 X2

38 | X*+x3+2xX2 4+ X +1 X+ X3 4 X 41 1213 1.5.4.8 2x?2

39 | X*+x342X2 + X 41 X* 1 1,213 1857 X3 42x2 4+ X
40 | X*+x3+2X2 4 X+ 1 X X3 x2—x+1 | 3213 | S % | 22X+ X% t2x
4| X xP 42X+ X +1 X4 — X2 41 1213 45545 X3 +3X%2 + X
42 X+ X+ X2 4 X +1 X+ X3+ X 41 1.238¢ 1.5.4.8 X2

| XXX X [ L23d] 1843 XX

44 | X xS x2e x4t [ xP-xSyax® x| 4238 1313 2x% — X2 2%
45 | X 4+ X3+ X2+ X +1 X* 41 12848 3.85% X34+ X2+ x
46 | X* 4+ X34+ X2+ X+1 XV x¥ex2—x+1 1284 L8 L8 2x8 4 2x

47 X+ X3+ X2 4 X +1 X* — X2 41 128t L.5.54 X3 42x2 + X
48 | Xx* —3x3 4 ax? —ax +1 | X X34+ x2—x+1 | 0042 | {5555 | 2x®+ax® —2x
49 | x4 —2x% +3x% —2X +1 X* 41 1188 13887 | —2x343x%—2x
50 | Xt —2x®3+ax2 —2x+1 | X - X34 xP—x+1 | 135 | L& L2 —x3+ax? X
51 | x* —2x3 +3x% —2X + 1 X* — X% 41 1158 L5 L1 | —2x®+ax® —2x
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Table: Continued...

No. (X) 9(Xx) o B f(X) — g(X)
s2 | X X LEERE | 48gd | xox

53 XX x4t [ XX x4t | bhAE | 5808 | ax® — X2t ax
54 X4+ X34 X 41 Xt — X2 41 1ALE | LE L] X¥ex+x
55 X4+ X2 41 XXX —x1| 12ls L 8T8 X3+ X

56 | X — X% +2x2 — X +1 X4 +1 13138 1357 | -x3+42x2—x
57 | X —x®rax® x4+t [ X - x4 x2 x4+ | 1315 L S 7S X2

58 | X4 — X3 42x2 — X +1 X4 — X2 41 1.3.4.8 Lo 5| —x®1ex2 —x
59 X441 X oxdex2_x41| L35 | LE5LS| X¥-X+x
W[ XXXt | O | bk | bkl et X
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Table: List of primitive Symplectic pairs of polynomials of degree 4 (which are
products of cyclotomic polynomials), to which Main Theorem does not apply

No. f(X) 9(X) a
1| X —ax®+6X2 —ax+1 | X*+4ax®+6X2+4X+1 | 0,0,0,0
2 | x*—ax®rex? —ax+1 | x*+2x34+3x2 42X +1 | 0,000
3| x4 —axdiex2—ax+1 | x4 +3x3+4x24+3X+1 | 0,0,0,0
4 | x* —ax® +6X2 —4X +1 X* +2x% 41 0,0,0,0
5 | X*—ax®iex2—ax+1 | x*+2x3+2x24+2X+1 | 0,0,0,0
6 | X*—axPreX2 —ax+1| X+ x342X2 4 X 41 0,0,0,0

™

f(X) — g(X)
—8x3 —8x
—6x3 +3x% —6X
—7x3 4 2x2 — 7X
—4x3 4+ 4x? —ax
—6X3 + 4x2 — 6X
—5x3 4 4x? —5X

00/ = [5]= [col— [Nl = [0l = ool = [N]= [ 5] — [Nl = ool — [rol =
0/ |00l (031 001 [enleo [l 881 [ 1o [edl— [coiro Nl

7 | X% —ax3 +6X2 —4ax +1 XX X2 X 41 0,0,0,0 2,3, —5X3 + 5X2 — 5X
8 | X* —4x3 +6x2 —4X+1 X434+ X +1 0,0,0,0 ERY —5%3 + 6X2 — 5X
9 | X* —ax®+6X2 —4xX +1 X* 4 X% 41 0,0,0,0 21 —4x% 4 5x% —4x
10 | X*—ax®rex2—ax+1 | X*—x342x2 — X1 0,0,0,0 3 —3x3 + 4x? — 3X
117 | x* —ax® 4 6x2 —4x + 1 X4 41 0,0,0,0 3.5, —ax3 + 6x2 — 4x
122 | Xt -adex®—ax+1 | X -x34x2—X41 0000 | 4.3, 5.3 | —3x3 +5x2 —3x
13 | X* —ax® 1 6X2 — 4X + 1 Xt —x2 1 0,0,0,0 | 5.5 7 1| —ax3+7x% - ax
14 | X +4x®+ X% +4X +1 Xt — X% — X +1 1355 00%.2 5x% + 6X2 45X
15 | X*+4x3+6x2 +ax+1 [ x*—2x®+ox®—2x+1| £.1.5.5 | 0,012 6X% +4X% 4+ 6X
16 | X* +4X3 +6X2 +4X +1 X4 +2X% 41 1353 311438 4x® + ax? + 4x
17 | X*raxdrex?rax+1 | xtex®rax?ex+1 | 5140 1312 3X3 +4X2 43X
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Table: Continued...

No. f(X) g(X) a B f(X) — g(X)
18 | X* +4x% 4 6X2 +4X +1 X+ X3+ X2 4 X +1 1111 1,23¢ 3x3 +5X2 +3X
19 | X +ax® 1 ex2+ax+1 | Xt —3x®+ax2 —ax+1 | L1101 00,12 7X% +2X2 + 7X
20 | X4 rexZaax 1| X —2x v axe—ox+1 | bibd | 5158 | extiaxtiex
21 | X* +4Xx3 4 6X2 44X 41 X* 4 X% 41 1133 12158 ax® £ 5X% +4x
22 [ Xt +ax®rex?rax+1 | Xt —x342x2—x+1 | 1,1.0.] 13,13 5x3 + 4X2 + 5X
23 | X* +4x% + 6X2 +4X +1 X4 1 1111 1351 4x°% + 6X2 +4X
24 | X a® e rax 41| XXX X+1 | 1500 | 4,845 | 5X% +5x% 45X
25 | X* +4x% 4 6X2 +4X +1 X* — X% 41 1333 | 5.5 | ax3+7x% +ax
26 Xt — X8 — X +1 X4 +2x® +2x2+2x+1 | 00,4,2 1,143 —3x3 —2x% —3Xx
27 | X*+2x® +3x2 4ax+1 | x* —2x®yox® —ox+1 | 1,122 00.1.2 ax® + X2 4+ ax
28 | X*+2x®+3x®+ox+1 | x*—ax®+ax? —ox+1| 1,122 0012 5X% — X2+ 5X
29 | Xt +2x® +ax®rax+1 | x* —2x3+3x%2 —ax+1| 1,122 1158 ax® +4x
30 | x*+2x®4ax2rax+1 | x*—xdyox®-x+1 | 1122 12318 3x% + x2 4 3x
31 | X4 +2x3+3x2 42X +1 | X — X3+ X2 - X+4+1 1322 | .85 % | 3X°+2x®+ax
32 | x*+3x®+ax?+ax+1 | x*—axdyox®—ox+1 | 5302 0042 5x% + 2x% + 5X
33 | X* +3x% +4X2 +3X +1 X4 4+ 2x% +1 1.1.3.2 1188 3x3 +2X2 +3X
34 | Xt +3x® +ax®+3x+1 | x* —3x3 +ax? —ax+1| 1,112 0012 6X3 + 6X
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Table: Continued...

No. f(X) g(X) a B8 f(X) — g(X)
35 | X*+3x%+ax2+3x+1 | x*—2x®yax2—2x+1| L.4.0.2 1,183 5x% + X2 + 5X
36 | X*+3X3+4X2 43X +1 | X —x3+2X2 — X +1 1.5.4.2 13,12 ax3 £ 2x2 y 4x
37 | X*+3X3 +4X2 +3X + 1 X4 +1 1.3.3.8 183872 3x% +4X% + 3X
38 | X430 +axf+3x+1 | X x4+ X2 - X1 1332 | 585535 | ax®+3x%+ax
39 | X*+3x% 44X 43X + 1 X4 — X% 41 1132 | .55 5| 3x®+5x%+3x
40 | X* —2x® +2X2 — 2X +1 XX+ X2+ X +1 00.1.2 1.238¢ —3X3 + X2 —3X
41 | x* —2x® +2x® —2x +1 X+ X3+ X+1 00,1.2 1548 | —ax®+2x® —3x
42 X* 4+ 2x2 4+ 1 Xt —3x3+ax?—ax+1| 1,133 0013 3x% —2x2 43X
43 | Xt 4ox®rox®rax+1 | x* —ax3+ax? —ax+1| 1,118 00.1.3 5x3 — 2X2 4+ 5X
a4 | x4 pox®rax®rax+1 | Xt —2xd4ax2 —ax+1 | 1118 1482 4x3 — X2 4 ax
45 | x4 4exd42x?yox+1 | X — X34 X% — X 41 1533 | 5,855 3ax®+x2+3x
46 | X+ x®+ox®ex+1 | x*—3x34+4ax? —3x+1| 1,218 0013 4x® —2X2 +4x
47 Xt X3 422 4 X+ 1 Xt —2x34ax2—2x+1 [ 1,2 18] 11588 3x3 — x2 + 3X
48 X+ X8+ X2+ X 41 x*—3x®+ax? —ax+1| L2%¢ 00,4.2 4x3 —3X2 44X
49 | X+ X34+ x4+ x+1 | xt—2ax®4ax?—ax+1| L2384 1188 | 3x® —2x%+3x
50 | X* —3x% +4X% —3X +1 X* +1 00,12 1852 —3X% +4x% — 3x
51 | X* —3X% +4x2 —3X +1 X4 — X% +1 0012 | &.5.5. 1 | —3x®+5x% —3x
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