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Abstract. The article contains a survey of results on strong approx-
imation in algebraic groups. We consider in detail the classical form
of strong approximation as well as more recent results on strong ap-
proximation for arbitrary Zariski-dense subgroups. Some other topics,
ranging from strong approximation in homogeneous spaces of algebraic
groups to various applications of strong approximation, are also dis-
cussed.

1. Introduction

The goal of this article, which is an expanded version of the talk given
at the workshop, is to provide a survey of known results related to strong
approximation in algebraic groups. We will focus primarily on two aspects:
the classical form of strong approximation, which is really strong approxima-
tion for S-arithmetic groups (§2), and its more modern version for arbitrary
Zariski-dense subgroups (§3). Along the way we will also mention results
dealing with strong approximation in arbitrary varieties and particularly
homogeneous spaces (which are probably not so well known to the general
audience as some other results in the article) and some applications. The
reader will find more applications of strong approximation for Zariski-dense
subgroups in other articles in this volume.

1. Strong approximation and congruences. The most elementary way
to start thinking about strong approximation is in terms of lifting solutions
of integer polynomial equations mod m for all m > 1, to integer solutions.
So, suppose we have a family of polynomials

fÆ(x1, . . . , xd) 2 Z[x1, . . . , xd], Æ 2 I,

and we let X Ω Ad
Z denote the closed a±ne subscheme defined by these

polynomials. Thus, for any Z-algebra R, the scheme X has the following set
of R-points:

X(R) = {(a1, . . . , ad) 2 Rd | fÆ(a1, . . . , ad) = 0 for all Æ 2 I}.
Then for any integer m > 1, we have a natural reduction modulo m map

Ωm : X(Z) ! X(Z/mZ),

and the question is whether these maps are surjective for all m. (Of course,
this question is meaningful only if we assume that X(Z/mZ) 6= ; for all m.)
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Observe that for m | n, there is a canonical homomorphism Z/nZ ! Z/mZ,
hence a natural map ºn

m : X(Z/nZ) ! X(Z/mZ). Clearly, {X(Z/mZ), ºn
m}

is an inverse system, so we can assemble all the X(Z/mZ)’s together by
taking the inverse limit:

lim
√°

X(Z/mZ) = X(Ẑ),

where Ẑ = lim
√°

Z/mZ. Recall that the Chinese Remainder Theorem furnishes

an isomorphism Ẑ ' Q
p Zp, where Zp is the ring of p-adic integers and the

product is taken over all primes, which allows us to identify X(Ẑ) withQ
p X(Zp).
Just as above, for any integer m > 1, there is a natural map

Ω̂ : X(Ẑ) °! X(Ẑ/mẐ) = X(Z/mZ).

The pre-images of points under the Ω̂m’s form a basis of a natural topology
on X(Ẑ), which coincides with either of the following topologies:
• the topology of the inverse limit on lim

√°
X(Z/mZ), cf. [15, Ch.I, 5.3];

• the topology induced by the embedding X(Ẑ) ,! Ẑd, where Ẑ is
endowed with the inverse limit topology on lim

√°
Z/mZ;

• the direct product topology on
Q

p X(Zp), where X(Zp) receives its
topology via the embedding X(Zp) ,! Zd

p, and Zp is endowed with
the natural p-adic topology.

The following immediately follows from the above discussion.

Lemma 1.1. The following conditions are equivalent:

(1) Ωm : X(Z) ! X(Z/mZ) is surjective for all integers m > 1;
(2) the natural embedding ∂ : X(Z) ,! X(Ẑ) has a dense image in the

above topology.

In this situation, we say X has strong approximation if it satisfies the
equivalent conditions of Lemma 1.1 (of course, this is only a first approx-
imation to the precise definition(s) of strong approximation that will be
given later, cf. § 2.1). Intuitively, strong approximation should not be very
common as there are plentiful examples where X(Ẑ) 6= ; but X(Z) = ; (i.e.,
the Hasse principle fails - note that here we actually omit the archimedean
place of Q), and also examples where X(Z) is nonempty but so “small”
that it cannot possibly be dense in X(Ẑ). A classical example of the second
situation is a cubic hypersurface X Ω A3 given by the equation

3x3 + 4y3 + 5z3 = 0;

it is known that X(Z) = {(0, 0, 0)} but X(Zp) 6= {(0, 0, 0)} (hence infinite
as any point on X other than the origin is smooth) for all prime p. In fact,
very little appears to be known about strong approximation for schemes
(varieties) lying outside some special classes such as homogeneous spaces
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- one can only give some necessary conditions (cf. Proposition 2.2 and
subsequent remarks). So, in this article we will deal almost exclusively with
algebraic groups.

2. SL2 vs. GL2. Let us start with two elementary examples: G1 = SL2 and
G2 = GL2. One doesn’t see much of a diÆerence between these examples
just by looking at the defining equations. Indeed, with the obvious labeling
of coordinates, we see that

• G1 can be realized as a hypersurface in A4 given by x11x22°x12x21 = 1;
and

• G2 can be realized as a hypersurface in A5 given by y(x11x22°x12x21) = 1.

However, G1 has strong approximation, and G2 does not.

Lemma 1.2. For any m > 1, the reduction modulo m map

Ωm : SL2(Z) °! SL2(Z/mZ)

is surjective.

Proof. The argument does not use equations (in fact, it is not a completely
trivial task to prove strong approximation using equations in this case - see
the discussion after Proposition 2.4). The crucial observation is that any
ḡ 2 SL2(Z/mZ) can be written as a product of elementary matrices:

(1) ḡ =
Y

k

eikjk(āk) with (ik , jk) 2 {(1 , 2) , (2 , 1)} and āk 2 Z/mZ.

(As usual, for i 6= j, we let eij(a) denote the elementary matrix having a as
its ij-entry.) For this, one needs to observe that if m = pÆ1

1 · · · pÆr
r then it

follows from the Chinese Remainder Theorem that

SL2(Z/mZ) = SL2(Z/pÆ1
1 Z)£ · · ·£ SL2(Z/pÆr

r Z),

which reduces the problem to the case where m = pÆ. Now, given

ḡ =
µ

x11 x12

x21 x22

∂
2 SL2(Z/pÆZ),

we see that either x11 or x12 is a unit modpÆ, so using Gaussian elimination
one can easily write ḡ as a product of elementaries over Z/pÆZ.

Next, given an arbitrary ḡ 2 SL2(Z/mZ), pick a factorization (1), and
furthermore, for each k pick an integer ak in the class āk modulo m. Set

g =
Y

k

eikjk(ak) 2 SL2(Z).

Then Ωm(g) = ḡ, proving the surjectivity of Ωm. §

Note that the proof of Lemma 1.2 relies on the consideration of unipotent
elements, so it is worth pointing out that, as we will see in the course of
this article, unipotent elements are involved in one way or another in most
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known results on strong approximation (even when the group at hand does
not contain any nontrivial rational unipotent elements, i.e. is anisotropic).

The fact that G2 = GL2 does not have strong approximation is much
easier: in fact, already the map

Ω5 : GL2(Z) °! GL2(Z/5Z)

fails to be surjective. (Indeed, since all matrices in GL2(Z) have determinant
±1, the matrices in Ω5(GL2(Z)) have determinant ±1(mod5), and therefore,

for example,
µ

1̄ 0̄
0̄ 2̄

∂
2 GL2(Z/5Z) does not lie in the image of Ω5.) One

can conceptually articulate the obstruction that prevents GL2 from having
strong approximation in this case by saying that in order for an a±ne Q-
variety X to have strong approximation,

X(Z) must be Zariski-dense in X.

Indeed, let Y = X(Z) be the Zariski-closure of X(Z) in X, and assume that
Y 6= X. Pick a point a 2 X(Q̄) \ Y (Q̄), where Q̄ is an algebraic closure
of Q. Then one can find a polynomial f 2 Z[x1, . . . , xd] that vanishes on
Y and such that f(a) 6= 0. It follows from Tchebotarev’s Density Theorem
that for infinitely many primes p, we have a 2 X(Zp) and f(a) 6¥ 0(mod p).
Let ā 2 X(Fp) be the reduction of a modulo p, where Fp = Z/pZ = Zp/pZp.
(Note that it would be more appropriate to write X(p)(Fp) instead of X(Fp),
where X(p) denotes the reduction of X modulo p, but we will slightly abuse
the notations in this introductory section in order to keep them simple.)
Then clearly

ā 2 X(Fp) \ Y (Fp),

and in particular, X(Fp) 6= Y (Fp). On the other hand, the image of the
reduction map Ωp : X(Z) ! X(Fp) is obviously contained in Y (Fp). Thus,
if X(Z) is not Zariski-dense in X then Ωp fails to be surjective for infinitely
many p, which certainly prevents X from having strong approximation. (In-
cidentally, this observation implies that if G is an algebraic Q-group and
G(Z) is not Zariski-dense in G then the closure of G(Z) in G(Ẑ) is of infinite
index.)

In fact, the conclusion about the absence of strong approximation in X
as above can be made even sharper. First, it is easy to show that X cannot
possibly have strong approximation unless it is absolutely irreducible (cf.
the remark after Proposition 2.2). So, assume that X is such. Then by the
Lang-Weil estimates (cf. [19]) we have

|X(Fp)| º pdim X

for p su±ciently large. Similarly, for any proper Q-subvariety Y Ω X, the
cardinality |Y (Fp)| is bounded above by an expression of the form C · pdim Y

where C is a constant independent of p. It follows that Y (Fp) 6= X(Fp) for
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almost all p, and therefore unless X(Z) is Zariski-dense in X, the reduction
map Ωp : X(Z) ! X(Fp) is not surjective for almost all p.

So, the fact that GL2(Z) is not Zariski-dense in GL2 (its Zariski-closure
is precisely the subgroup consisting of g 2 GL2 that satisfy (det g)2 ° 1 =
0), is definitely one of the factors that prevent GL2 from having strong
approximation; in fact, the reduction maps Ωp are nonsurjective for all p > 5.
Now, let us slightly change the set-up by replacing the ring of integers Z with
some localization, e.g. Z

£
1
2

§
. Then GL2

°
Z

£
1
2

§¢
is already Zariski-dense in

GL2, and in fact the map

Ω5 : GL2

µ
Z

∑
1
2

∏∂
°! GL2(Z/5Z)

is surjective, however the map

Ω17 : GL2

µ
Z

∑
1
2

∏∂
°! GL2(Z/17Z)

is not. The reason is that the possible determinants of matrices in GL2
°
Z

£
1
2

§¢

are of the form ±2` with ` 2 Z, hence squares modulo p = 17 (in fact, this
property will hold for any prime of the form 8k + 1, and by Dirichlet’s
Theorem there are infinitely many such primes, cf. § 2.2).

We see that Zariski-density is definitely not su±cient for strong approxi-
mation in the general case. At the same time, let us consider the following
example involving various subgroups of the group SL2(Z). We have

°0 := SL2(Z) =
ø µ

1 1
0 1

∂
,

µ
1 0
1 1

∂ ¿
.

For ` > 1, we define

°` =
ø µ

1 2`

0 1

∂
,

µ
1 0
2` 1

∂ ¿
.

Then we have the following inclusions

°0 æ °1 æ °2 æ · · · æ °` æ °`+1 æ · · · ,

with
[°0 : °1] = 12 and [°` : °`+1] = 1 for ` > 1.

(We note that the fastest way to verify both of these claims is to use the
virtual Euler-Poincaré characteristic (cf. [47]). It is known that the Euler-
Poincaré characteristic ¬(°0) = ° 1

12 . On the other hand, for any m > 2

the matrices
µ

1 m
0 1

∂
and

µ
1 0
m 1

∂
generate a rank 2 free subgroup

¢m Ω °0 (cf. [12, p. 26]), so ¬(¢m) = °1. It is an elementary exercise to
show that °1 = ¢2 contains the congruence subgroup SL2(Z, 4) modulo 4,
so the index d = [°0 : °1] is finite. So we have

¬(°1) = d · ¬(°0),
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whence d = 12, as claimed. On the other hand, the assumption that [°` :
°`+1] =: d < 1 would imply that

°1 = ¬(°`+1) = d · ¬(°`) = °d,

i.e. °`+1 = °` which is clearly false (consider the reduction modulo 2`+1).
Incidentally, the same argument shows that ¢m is of infinite index in °0

for any m > 3. Indeed, we can now assume that m is not a power of 2. If
[°0 : ¢m] = d < 1 then

°1 = ¬(¢m) = d · ¬(°0) = ° d

12
,

implying that d = 12. But ¢m is contained in the congruence subgroup
SL2(Z,m), so if p is an odd prime divisor of m then

[°0 : ¢m] > [°0 : SL2(Z, m)] > |SL2(Fp)| = p(p2 ° 1) > 24,

a contradiction. We note that the group ¢3 =
øµ

1 3
0 1

∂
,

µ
1 0
3 1

∂¿
has

received a lot of attention during the workshop.)

So, for large `, the subgroup °` is very “thin” in °0, and essentially the
only property it retains is Zariski-density. Nevertheless, for all odd m we
still have

Ωm(°`) = Ωm(°0) = SL2(Z/mZ).

So, if we ignore p = 2 (more precisely, the dyadic component Z2 of Ẑ), then
we still have an analog of the property of strong approximation for °`, for
any ` > 1. At the same time, the closure of °` in SL2(Z2) is open (cf.
Lemma 2.7 for a more general statement). Thus, we eventually obtain that
the closure of °` in SL2(Ẑ) is open – one should think of this property as
being the next best thing to strong approximation. Note that for a general
X as above, the openness of the closure of X(Z) in X(Ẑ) implies that the
reduction maps Ωm : X(Z) ! X(Z/mZ) are surjective for all m co-prime to
some fixed exceptional number N0 = N0(X).

To summarize this discussion, we see that generally speaking the idea that
in certain situations Zariski-density should (or may) imply some version of
strong approximation, at least for subgroups, appears to be sound, but in
order to make it more precise, we need to figure out what is wrong with GL2

(compared to SL2).
Before we do this, however, we would like to generalize our set-up and

also describe a somewhat diÆerent (although closely related) approach to
strong approximation. The issue is that typically an algebraic group does
not come with a fixed geometric (or linear) realization G ,! GLn, and
diÆerent realizations may result in diÆerent groups of integral points. So, it
makes sense to reformulate the property of strong approximation in terms
of the group of rational points.
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2. Strong approximation in algebraic groups and homogeneous

spaces

1. Adele groups and strong approximation. Let G be an algebraic
group defined over a global field K, and let S be a set of places of K.
For now, we fix a matrix realization G ,! GLn, which enables us to define
unambiguously the groups

G(Ov) = G
\

GLn(Ov)

for all nonarchimedean places v of K, where Ov is the valuation ring in the
completion Kv. We let AS denote the ring of S-adeles of K, and let

G(AS) =

(
g = (gv) 2

Y

v/2S

G(Kv) | gv 2 G(Ov) for almost all v /2 S

)

be the group of S-adeles of G. We refer the reader to [34, §5.1] for a more
detailed discussion of adeles, and in particular for the definition of the space
of S-adeles X(AS) for any a±ne algebraic K-variety X (we note that AS

is a K-algebra so we can in fact talk about the set of AS-points X(AS)
in an intrinsic way). Here we recall only that one endows G(AS) with a
natural topology (called the S-adelic topology) that makes it into a locally
compact topological group. When S contains all archimedean places of K,
this topology is obtained by taking the open subgroups of

Q
v/2S G(Ov) for

a fundamental system of neighborhoods of the identity - thus, the S-adelic
topology on G(AS) in this case is the “natural extension” of the product
topology on

Q
v/2S G(Ov). (We note that in the case K = Q, S = {1}, the

latter group coincides with
Q

p G(Zp) = G(Ẑ), so these adelic definitions are
direct generalizations of the notions we discussed in §1.) One proves (cf.
[34, §5.1]) that the topological group G(AS) is independent of the choice of
a K-realization G ,! GLn. Furthermore, there is a canonical embedding
G(K) ,! G(AS), so we can give the following.

Definition. An algebraic K-group G has strong approximation with respect
to S if G(K) is dense in G(AS).

(Of course, one can give a similar definition for an arbitrary a±ne K-
variety X. We note that if S = ; then X(K) is a closed discrete subspace of
X(AS), so in discussing strong approximation one actually needs to assume
from the outset that S is nonempty.)

Defined this way (in terms of rational points), the property of strong
approximation does not depend on the choice of a matrix realization G ,!
GLn. On the other hand, in the case where S contains all nonarchimedean
places, its validity implies that for any realization, the group G(O(S)) of
points over the ring of S-integers O(S), which can alternatively be described
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as
G(O(S)) = G(K)

\ Y

v/2S

G(Ov),

is dense in
Q

v/2S G(Ov) (thus, we have strong approximation in the sense
discussed in §1 for any realization).

2. Absence of strong approximation in algebraic tori. Our next goal
is to explain why GL2 has no chance to possess strong approximation. How-
ever, it is easiest to pin down the reason by working with the 1-dimensional
T = Gm: we will now show that it does not have strong approximation with
respect to any finite set of places S, and will then demonstrate how the same
phenomenon manifests itself in the case of GL2 and other situations.

Let us start with the case K = Q. If S = {1} then T (Z) = {±1} which
is not even Zariski-dense. For S = {1, 2}, we have

T

µ
Z

∑
1
2

∏∂
= ±h2i,

which is already Zariski-dense, but nevertheless T still does not have strong
approximation. Indeed, pick any prime p of the form 8k + 1. Then °1 and
2 are squares modulo p, so the map

±h2i ! (Z/pZ)£

is not surjective. What really happens here is that T possesses a 2-sheeted
cover

º : T ! T, t 7! t2,

and for any prime p ¥ 1(mod 8) we have that

T

µ
Z

∑
1
2

∏∂
Ω º(T (Zp)) $ T (Zp).

Since º(T (Zp)) Ω T (Zp) is a closed subgroup, we obtain that T
°
Z

£
1
2

§¢
is

not dense in T (Zp) for any such p. Moreover, by Dirichlet’s Prime Number
Theorem, for any r > 1 we can find r distinct primes p1, . . . , pr congruent
to 1(mod 8). Then the image of the map

±h2i ! (Z/p1 · · · prZ)£

is contained in (Z/p1 · · · prZ)£2, which has index 2r in (Z/p1 · · · prZ)£. It
follows that the closure of T

°
Z

£
1
2

§¢
in T (Ẑ) =

Q
p T (Zp) is of infinite index.

This approach easily generalizes. First, let T = Gm over an arbitrary
number field K, and let S be an arbitrary finite set of places of K con-
taining all archimedean ones. Then by Dirichlet’s Unit Theorem (cf. [18,
p. 105]), the group T (O(S)) is generated by a finite collection of elements,
say t1, . . . , tr. Set L = K(

p
t1, . . . ,

p
tr). Then by Tchebotarev’s Density

Theorem (cf. [18, p. 169]), there exist infinitely many places v /2 S that
totally split in L (i.e., L Ω Kv). Considering again the covering º : T ! T ,
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º(t) = t2, we see that that for any such nondyadic v we have the following
inclusions

T (O(S)) Ω º(T (Ov)) $ T (Ov).
This implies that the closure of T (O(S)) in

Q
v/2S T (Ov) is of infinite index,

and therefore the closure of T (K) in T (AS) is of infinite index as well.

Next, this argument can be extended to an arbitrary torus T over a global
field K and any finite set S of places of K. Moreover, by considering cover-
ings (isogenies) ºm : T ! T , ºm(t) = tm for various m prime to char K, one
proves the following.

Proposition 2.1. Let T be a nontrivial torus over a global field K, and S
be a finite set of places of K. If T (K) is the closure of T (K) in T (AS) then

the quotient

T (AS)/T (K)
is a group of infinite exponent.

This proposition yields a strong version of the fact that a nontrivial torus
over a global field always fails to have strong approximation with respect to
any finite set of places S. Nevertheless, a torus may have strong approxi-
mation with respect to some infinite (and co-infinite) sets S - see Remark 3
after Theorem 2.3.

3. Simply connectedness as a necessary condition. The discussion
of tori in the previous subsection suggests that the existence of a nontrivial
covering map for a given variety X over a global field K may prevent it
from having strong approximation with respect to any finite set of places
S. Indeed, as we will see soon, simply connectedness of a connected abso-
lutely almost simple group G (i.e., the absence of nontrivial central isogenies
º : eG ! G with connected eG - see [50] for a more detailed discussion) is one
of the essential conditions in the Strong Approximation Theorem for alge-
braic groups (see Theorem 2.3 below). But before we shift our focus entirely
to algebraic groups, we would like to mention the following general result of
Minchev [27] which does not seem to be well-known to the general audience.
(Note that we did not formally define adeles for arbitrary varieties, so the
reader may want to assume that all varieties considered are actually a±ne,
in which case the definitions are completely parallel to the above definitions
for algebraic groups.)

Proposition 2.2. ([27, Theorem 1]) Let X be an irreducible normal variety

over a number field K. If there exists a nontrivial connected unramified

covering f : Y ! X defined over an algebraic closure K, then X does not

have strong approximation with respect to any finite set S of places of K.

Since [27] was published in a journal with rather limited circulation (and
only in Russian), we will give here a sketch of the argument assuming X
and Y to be a±ne and smooth and S to contain all archimedean places.
We may assume that f is a Galois cover of degree n > 1, and pick a finite
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extension L/K such that Y and f are L-defined. For x 2 X(L), we let
L(f°1(x)) denote the extension of L generated by the coordinates of all
preimages of x in Y (K); note that [L(f°1(x)) : L] 6 n!. Using the local
version of the Chevalley-Weil theorem (cf. [17, Ch. 2, Lemma 8.3]), for
which we need f to be unramified, one shows that there exists a finite set of
places S1 of K containing S such that any v /2 S1 is unramified in L(f°1(x))
for all x 2 X(O(S)). Invoking Hermite’s theorem (cf. [18, p. 122]), we now
conclude that there are only finitely many possibilities for L(f°1(x)) as x
ranges in X(O(S)), and therefore there exists a finite extension L1/L such
that f°1(X(O(S))) Ω Y (L1). Enlarging L, we can actually assume that
L = L1 and L/K is a Galois extension. Also, expanding S if necessary, we
can make sure that if v /2 S splits completely in L (i.e., L Ω Kv) then

(2) X(O(S)) Ω fKv(Y (Ov)).

On the other hand, for almost all nonarchimedean places w of L, the re-
ductions X(w) and Y (w) modulo w are smooth irreducible varieties over the
residue field `w, and the reduction f (w) : Y (w) ! X(w) is an n-sheeted Galois
cover. It follows that

(3) |f (w)
`w

(Y (w)(`w))| = |Y (w)(`w)|
n

.

Since X(w) and Y (w) are irreducible, by the Lang-Weil theorem [19], the car-
dinalities |X(w)(`w)| and |Y (w)(`w)| are both “approximately equal” to qd

w,
where qw = |`w| and d is the common dimension of X(w) and Y (w). Compar-
ing this with (3), we see that for almost all w, the cardinality |f (w)

`w
(Y (w)(`w))|

is only a fraction of |X(w)(`w)|; in particular, f (w)
`w

(Y (w)(`w)) 6= X(w)(`w).
Since by Hensel’s lemma, the reduction map X(Ow) ! X(w)(`w) is surjec-
tive, we obtain that

fLw(Y (Ow)) 6= X(Ow).
(in fact, our argument shows that fLw(Y (Ow)) is “much smaller” than – in
some sense, a “fraction” of – X(Ow)).

This discussion, in conjunction with (2) implies that for almost all v that
split completely in L, the set X(O(S)) is not dense in X(Ov). Since by
Tchebotarev’s Density Theorem ([18, p. 169]), there are infinitely many
v’s that split completely in L, we obtain that X does not have strong ap-
proximation with respect to S (and in fact that the closure of X(O(S)) inQ

v/2S X(Ov) is very “thin”). §
(We note that Minchev [27] points out another necessary condition for

strong approximation in a K-variety X (which is much easier to prove): X
needs to be (absolutely) irreducible.)

Remark. It was pointed out to us by Joël Bellaiche that using the version
of the Chevalley-Weil theorem given in [48, section 4.2], one can get rid of
the normality assumption in Proposition 2.2.
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While the proof of Proposition 2.2 for general varieties requires some facts
from arithmetic algebraic geometry, there is a much simpler argument in the
case of algebraic groups (cf. [34, § 7.4]). Since most readers are likely to
be particularly interested in this case, we will explain the idea using the
following example. Consider the canonical isogeny

eG = SL2
º°! PGL2 = G

of algebraic groups over a number field K. By the Skolem-Noether theorem,
one can think of G as the automorphism group Aut(M2) of the degree two
matrix algebra. Then for any field extension F/K, again by the Skolem-
Noether theorem, we have

G(F ) = AutF (M2(F )) = PGL2(F ).

Then there is an exact sequence

(4) eG(F ) ºF°! G(F ) µF°! F£/F£2 ! 1,

where µF is induced by the determinant, viz. gF£ 7! (det g)F£2. (Alter-
natively, one can think of G as the special orthogonal group SO3(q) of the
Killing form q on the Lie algebra sl2 – recall that q = 2x2+yz in the Cheval-
ley basis; then eG can be identified with Spin3(q), and µF becomes simply
the spinor norm map on SO3(q)(F ).)

The point is that given any finitely generated subgroup ° Ω G(K), its
image ¢ := µK(°) is a finite group. Now, if K is a number field, it follows
from Tchebotarev’s Density Theorem that there are infinitey many nonar-
chimedean places v of K such that the image of ¢ under the natural map
K£/K£2 ! K£

v /K£
v

2 is trivial. From the exactness of (4) for F = Kv, we
conclude that for these v we have

° Ω ºKv( eG(Kv)) 6= G(Kv).

Applying this to ° = G(O(S)) (which is finitely generated), we obtain that
for almost all such v,

G(O(S)) Ω ºKv( eG(Ov)) 6= G(Ov).

The latter implies that the closure of G(O(S)) in
Q

v/2S G(Ov) is of infinite
index, for any finite set S of places of K, and hence G fails to have strong
approximation.

This type of argument easily generalizes to prove that if a connected
algebraic group G over a number field K is not simply connected, then G
fails to have strong approximation for any finite set S of places of K (see
[34, § 7.4] for the details).

Example. Let G = GL2. Set eG = G£Gm. Then the product map eG ! G
is an isogeny of degree 2. Moreover, composing it with the map eG ! eG,
(g, t) 7! (g, t`) for ` > 1, we obtain an isogeny eG ! G of an arbitrary even
degree 2`. On the other hand, the map G ! G, g 7! (det g)`g for ` > 1, is
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an isogeny of an arbitrary odd degree (2` + 1). Thus, G has finite-sheeted
connected coverings of any degree, in particular, it is not simply connected.
In view of the results discussed above, this explains why G does not have
strong approximation with respect to any finite S.

4. Strong approximation theorem. So far, we have identified two
necessary conditions for strong approximation in a connected algebraic group
G over a number field K with respect to a finite set S of places of K that
contains all archimedean places: the S-arithmetic subgroups (i.e., subgroups
commensurable with G(O(S))) must be Zariski-dense, and G must be simply
connected. It turns out that for semi-simple groups, these conditions are
also su±cient. Since the general case easily reduces to absolutely almost
simple groups (cf. [34, § 7.4]), we will give a precise statement of the Strong
Approximation Theorem only for this case (however, we will include global
fields of positive characteristic).
Theorem 2.3. (Kneser [16], Platonov [32] in characteristic zero; Margulis
[24], [25], Prasad [35] in positive characteristic) Let G be a connected ab-

solutely almost simple algebraic group over a global field K, and let S be a

finite set of places of K. Then G has strong approximation with respect to

S (i.e., G(K) is dense in G(AS)) if and only if

(1) G is simply connected;

(2) GS :=
Q

v2S G(Kv) is noncompact.

(We note that for an absolutely almost simple group G, condition (2) is
equivalent to G(O(S)) being infinite, and hence Zariski-dense in G, cf. [34,
Theorem 4.10]. It should also be mentioned that in the statement of the
theorem we included only the names of the main contributors; the interested
reader will find more historical remarks at the end of § 7.4 in [34], and also
at the end of the current section.)

Remarks. 1. The condition that G is simply connected is used in the
proof of su±ciency in Theorem 2.3 in a very peculiar way that is totally
unrelated to the above considerations showing that simply connectedness is
necessary for strong approximation. More precisely, what we need is the
fact that for all v /2 S such that G is Kv-isotropic (i.e., has positive rank
over Kv), the group G(Kv) does not have proper (abstract) subgroups of
finite index (see § 2.6). It turns out that in the situation at hand, for G
simply connected, the group G(Kv) does not, in fact, have any proper non-
central normal subgroups. To put this result in perspective, we recall the
result of Tits [49] asserting that given an absolutely almost simple isotropic
algebraic group G over a field P with > 4 elements, the subgroup G(P )+
of G(P ) generated by the P -rational points of P -defined parabolics, does
not have any proper noncentral normal subgroups. In the same paper, Tits
proposed a conjecture, which later became known as the Kneser-Tits con-

jecture, that actually G(P )+ = G(P ) if G is simply connected. While over
general fields this conjecture turned out to be false (cf. Platonov [33]), it
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was proved by Platonov [32] to hold over nonarchimedean local fields of
characteristic zero (i.e., finite extensions of the p-adic field Qp); over R this
fact was established much earlier by E. Cartan (cf. [34, Proposition 7.6]).
This connection between strong approximation and the Kneser-Tits con-
jecture was the centerpiece of Platonov’s paper [32]. We will see another
manifestation of this connection in the analysis of strong approximation for
arbitrary Zariski-dense subgroups (cf. § 3), although in a diÆerent setting
(viz., over finite fields). On the other hand, over a local or a finite field P ,
we have G(P )+ 6= G(P ) if G is not simply connected, and hence in this
case G(P ) does have proper noncentral normal subgroups (of finite index).
This is where the proof of Theorem 2.3 and the corresponding argument in
§3 breaks down if one drops the assumption that G is simply connected.
Finally, we remark that the Kneser-Tits conjecture has generated a lot of
research not associated with strong approximation - see Gille [9] for a recent
survey.

2. The eÆect of non-simply connectedness on strong approximation with
respect to a finite set S is diÆerent for tori and semi-simple groups: for a
K-torus T , the quotient T (AS)/T (K) by the closure of the group of rational
points has infinite exponent (Proposition 2.1), while, as follows from The-
orem 2.3, for a connected absolutely almost simple non-simply connected
K-group G with a universal K-defined cover º : eG ! G such that the group
eGS is not compact, the closure G(K) Ω G(AS) is a normal subgroup with
the infinite quotient G(AS)/G(K) having finite exponent. (This distinction,
of course, reflects the fact that the (algebraic) fundamental group of G is
finite, while that of T is infinite.)

3. A connected K-group G may have strong approximation with respect
to certain infinite sets S of places of K without being simply connected.
For example, in [36], we examined in this context strong approximation in
tori (which can never be valid for finite S - see Proposition 2.1). To avoid
technical definitions, we will just indicate what our results give in the case
of the 1-dimensional split torus T = Gm over K = Q: If S is an infinite set

of places of K that contains the p-adic places for almost all primes p in a

certain arithmetic progression, then the closure T (Q) of T (Q) in the group

of S-adeles T (AS) is of finite index. The result for general tori is basically
the same but contains one important exclusion that has to do with how the
arithmetic progression interacts with the splitting field of the torus. This
fact is instrumental for the analysis of the congruence subgroup problem:
it implies, in particular, that if G is an absolutely almost simple simply
connected algebraic group over a number field K, which is an inner form,
and S is a set of places of K that contains all archimedean places and also
almost all places in a certain generalized arithmetic progression, then the
corresponding congruence kernel CS(G) is trivial, i.e. every subgroup of
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finite index in G(O(S)) contains a suitable congruence subgroup (provided
that G(K) has a standard description of normal subgroups), see [41].

4. For general a±ne varieties, the analogs of conditions (1) and (2) in
Theorem 2.3 may not be su±cient for strong approximation, even in homo-
geneous spaces.
Example. Let f(x, y, z) = ax2 + by2 + cz2 be the nondegenerate ternary
quadratic form over a number field K, and let X Ω A3 be a quadric given
by f(x, y, z) = a. Set g(x, y) = by2 + cz2. Let S be a finite set of places
of K such that XS =

Q
v2S X(Kv) is noncompact (equivalently, for some

v 2 S the form f is Kv-isotropic). Then (see § 2.5 below) X has strong
approximation with respect to S if and only if one of the following two
conditions holds:
(a) g is K-isotropic;
(b) g is K-anisotropic and there exists v 2 S such that g remains anisotropic

over Kv and either v is nonarchimedean or f is Kv-isotropic.

It follows that a rational quadric X defined by x2
1 + x2

2 ° 2x2
3 = 1 (which

is simply connected) does not have strong approximation with respect to
S = {1}.
5. Strong approximation in homogeneous spaces. The fact quoted in
the above example is a consequence of the analysis of strong approximation
in (a±ne) homogeneous spaces of algebraic groups. Since these results (cf.
[2], [42]; a detailed exposition of [42] was given in [44]) are not as widely
known as Theorem 2.3, we briefly mention some of them here for the sake
of completeness. The fact that only connected simply connected varieties
have a chance to possess strong approximation, by and large, forces us to
focus our attention on homogeneous spaces of the form X = G/H where
G is a semi-simple simply connected algebraic K-group, and H is a K-
defined connected reductive subgroup (any such variety is a±ne and simply
connected). Furthermore, given a set S of places of K, it is not di±cult
to show that for such X, the space XS is noncompact if and only if GS is
noncompact. Assuming now that G is actually absolutely almost simple, we
conclude from Theorem 2.3 that G has strong approximation with respect
to S (for a general semi-simple group G we need to consider its simple
components). Then using Galois cohomology one investigates when strong
approximation in G implies strong approximation in X = G/H. Here is one
easy result in this direction.

Proposition 2.4. ([42]) Let X = G/H be the quotient of a connected ab-

solutely almost simple simply connected algebraic group G defined over a

number field K by a connected semi-simple simply connected K-subgroup

H. Then X has strong approximation with respect to a finite set S of places

of K if and only if the space XS =
Q

v2S X(Kv) is noncompact.
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Now, let q = q(x1, . . . , xn) be a nondegenerate quadratic form in n > 3
variables. Consider the quadric X Ω An given by the equation q(x1, . . . , xn) =
a for some a 2 K£. Assuming that X(K) 6= ;, pick x 2 X(K). Then
X = G/H where G = Spinn(q) and H = G(x) (the stabilizer of x); note
that H ' Spinn°1(q0) where q0 is the restriction of q to the orthogonal com-
plement of x. So, it follows from Proposition 2.4 that for n > 5, the quadric
X has strong approximation with respect to X if and only if there exists
v 2 S such that q is Kv-isotropic. The same result remains valid for n = 4
even though in this case G is not absolutely almost simple. (Incidentally,
this result applies to the equation that defines SL2 (cf. § 1.2), yielding
thereby another proof of strong approximations for this group, cf. Lemma
1.2.)

The case n = 3 is diÆerent as here H is a torus. This case can also be
treated in a rather explicit form using the results of Nakayama-Tate on the
Galois cohomology of tori. More precisely, let T be a K-torus, and let L
be the splitting field of T . As usual, given a module M over the Galois
group Gal(L/K), we let H i(L/K,M) denote the Galois cohomology group
H i(Gal(L/K),M). Given a finite set S of places of K, we let S denote the
set of all extensions of places in S to L, and let AL and AL,S denote the
rings of adeles and S-adeles of L. Finally, let cL(T ) = T (AL)/T (L) be the
adele class group of T over L, and let

± : H1(L/K, T (AL)) °! H1(L/K, cL(T ))

be the corresponding map on cohomology. Then, viewing TS and T (AL,S)
as subgroups of T (AL), we have the following statement.

Proposition 2.5. ([42]) Let X = G/T , where G is an absolutely almost

simple simply connected K-group and T Ω G is a K-torus. Then X has

strong approximation with respect to a finite set S of places of K if and only

if XS is noncompact and

±
≥
H1(L/K, T (AL,S))

¥
Ω ±

°
Ker

°
H1(L/K, TS) ! H1(L/K, GS)

¢¢
,

where L is the splitting field of T and S consists of all extensions of places

in S to L.

This proposition yields the criterion for strong approximation for the
quadrics defined by ternary forms we used in Remark 4 of § 2.4. It also
implies that for X = G/T , one can find a finite set of places S0 (depending
on T ) such that X has strong approximation with respect to S whenever
S æ S0. It turns out that this qualitative statement remains valid for quo-
tients by arbitrary connected reductive subgroups. More precisely, using
some ideas that eventually led him to theorems of the Nakayama-Tate type
for Galois cohomology of arbitrary connected groups, Borovoi proved the
following.
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Proposition 2.6. ([2]) Let X = G/H be the quotient of a connected abso-

lutely almost simple algebraic group G over a number field K by its connected

reductive K-defined subgroup H. There exists a finite set S0 of places of K
such that X has strong approximation with respect to S0 (and then, of course,

it also has strong approximation with respect to any S æ S0).

We remark in passing that the results on strong approximation in homoge-
neous spaces were used to extend Kneser’s method for proving the centrality
of the congruence kernel for spinor groups to groups of other classical types
as well as G2 [42], [43], [44] (cf. also [51], [52]), to establish bounded gen-
eration of some S-arithmetic subgroups in orthogonal groups [8], and to
study some Diophantine questions involving quadratic forms [6] (we should
mention that the results of the latter work were recently generalized in [7]
where the deviation from strong approximation in a connected K-group G
has been expressed in terms of a certain subquotient of the Brauer group of
G).

6. On the proof of su±ciency in Theorem 2.3. We begin with the
following statement that applies to arbitrary Zariski-dense subgroups.

Lemma 2.7. Let G be an absolutely almost simple algebraic Q-group, and

let ° Ω G(Z) be a Zariski-dense subgroup of G. Then for any prime p, the

closure °(p) Ω G(Zp) is open.

Proof. Let g be the Lie algebra of G as an algebraic group, so that gQp

is the Lie algebra of G(Zp) as a p-adic analytic group. By a theorem of
Cartan (cf. [34, Theorem 3.4]), ¢ := °(p) is a p-adic Lie group, of positive
dimension as ° is non-discrete in G(Zp) (the discreteness would force it to
be finite, and therefore prevent it from being Zariski-dense). So, the Lie
algebra h of ¢ as a p-adic analytic group is a nonzero Qp-subalgebra of gQp .
Clearly, h is invariant under Ad °, so the Zariski-density of ° in G implies
that h ≠Qp Qp is invariant under Ad G. Since the adjoint representation of
G on g is irreducible, we conclude that h = gQp , and therefore ¢ is open in
G(Zp) by the Implicit Function Theorem. §

As we will discuss at the beginning of § 3, this lemma, though useful,
falls short of proving any definite form of strong approximation. We will
now indicate additional considerations needed to prove the su±ciency in
Theorem 2.3 in characteristic zero, following Platonov’s original argument
[32]. Let us assume that S contains all archimedean valuations of K. In
this case, it is easy to see from the definition of the topology on G(AS) that
strong approximation is equivalent to the following statement:

for any finite set of places S1 of K which is disjoint from S,

the group G(O(S [ S1)) is dense in GS1 :=
Q

v2S1
G(Kv).

To showcase the idea, we will now prove this statement in the case where
K = Q and S1 = {p}, a single p-adic place such that G is Qp-isotropic
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- see [34, §7.4] for the general case. First, by the reduction theory for S-
arithmetic groups, G(O(S [ S1)) is a lattice (i.e., a discrete subgroup of
finite covolume) in GS[S1 , see [34, Theorem 5.7]. Since by assumption the
group GS is non-compact, it is not di±cult to show (cf. [34, Lemma 3.17])
that G(O(S [ S1)) Ω G(Qp) is nondiscrete (in particular, infinite), and if
¢ denotes the p-adic closure G(O(S [ S1))

(p)
then G(Qp)/¢ carries a finite

invariant measure. Next, the fact that G(O(S [ S1)) is infinite implies that
it is actually Zariski-dense in G (Borel’s Density Theorem, cf. [34, Theorem
4.10]). Taking into account the nondiscreteness of G(O(S [ S1)) in G(Qp)
and repeating the proof of Lemma 2.7, we conclude that ¢ is open in G(Qp).
Then the existence of a finite invariant measure on G(Qp)/¢ implies that
¢ Ω G(Qp) is a subgroup of finite index. On the other hand, since the group
G is connected, absolutely almost simple, simply connected and Qp-isotropic,
by the Kneser-Tits conjecture over p-adic fields we have G(Qp) = G(Qp)+,
and therefore the group G(Qp) does not have any proper noncentral normal
subgroup. In particular, it does not contain any proper subgroups of finite
index, and we obtain that ¢ = G(Qp), as required.

This argument breaks down in positive characteristic, first and foremost,
because Cartan’s theorem, which is at the heart of the proof of Lemma 2.7,
is valid only in characteristic zero. It should be mentioned that eventually
Pink [29] proved a result which in some sense can be viewed as an analog
(or replacement) of Cartan’s theorem. The precise general statement is too
technical for us to discuss here, so we will only indicate what it yields in
one particular case (see Theorem 0.7 in [29]): Let G be an absolutely simple

connected adjoint group over a local field F , and assume that the adjoint

representation of G is irreducible. If ° Ω G(F ) is a compact Zariski-dense

subgroup, then there exists a closed subfield E Ω F and a model H of G
over E such that ° is open in H(E). This sort of result can be used to
prove Theorem 2.3 in positive characteristic, but the original argument given
virtually simultaneously by Margulis [24] and Prasad [35], was diÆerent.
They derived strong approximation (arguing along the lines indicated above)
from the following statement:

Let G be a connected semi-simple algebraic group over a local field F , and

let H Ω G(F ) be a nondiscrete closed subgroup such that G(F )/H
carries a finite invariant Borel measure. Then H æ G(F )+.

Their argument used ergodic considerations and representation theory. More
than 25 years later, Pink [31] used his results from [29] to give a purely
algebraic proof of this theorem, and hence of strong approximation.

3. Strong approximation for Zariski-dense subgroups

1. Overview. The Strong Approximation Theorem 2.3 gives us precise

information about the adelic closure of S-arithmetic subgroups: for example,
if G is an algebraic Q-group that has strong approximation with respect to
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S = {1} then for any matrix realization of G, the group G(Z) is dense in
G(Ẑ) =

Q
p G(Zp) - cf. §2. At the same time, as we explained in §1, one

can expect a general qualitative openness result for the adelic closure of an
arbitrary Zariski-dense subgroup. The goal of this section is to discuss some
results in this direction.

First, we note one consequence of Lemma 2.7. Let G be a connected
absolutely almost simple algebraic Q-group, and let ° Ω G(Z) be a Zariski-
dense subgroup of G. Then using the fact that G(Zp) is a virtually pro-p
group, one easily deduces from Lemma 2.7 that given a finite set S of distinct
primes, the closure

°(S) Ω
Y

p2S

G(Zp)

is open. This statement is already su±cient for some applications; for exam-
ple, it was used in [37] to prove the existence of generic elements in arbitrary
finitely generated Zariski-dense subgroups ° Ω G(K), where G is a semi-
simple algebraic group over a finitely generated field K of characteristic zero;
see [10], [14] and [22] for more recent work in this direction. (In his talk at
the workshop (see [40]), G. Prasad surveyed applications of generic elements
to the analysis of isospectral locally symmetric spaces, cf. [38], [39].) On
the other hand, if we take S to be the set of all primes, the best we can get
from Lemma 2.7 is the following:

the closure

b° of ° in G(Ẑ) =
Q

p G(Zp) contains

Q
p Wp

where Wp Ω G(Zp) is open for each p.
(§)

Of course, this does not imply that b° is open in G(Ẑ) - for this we need to
show that actually Wp = G(Zp) for almost all p. The first general result in
this direction was the following.

Theorem 3.1. (Matthews, Vaserstein, Weisfeiler [26]) Let G be a connected

absolutely almost simple simply connected algebraic group over Q.

(1) If ° Ω G(Z) is a Zariski-dense subgroup, then the closure

b° Ω G(Ẑ) is

open.

(2) If ° Ω G(Q) is a finitely generated Zariski-dense subgroup, then for some

finite set S of places of Q containing 1, the closure of ° in the group

of S-adeles G(AS) is open.

The paper [26] appeared in 1984, but the interest in these sorts of results
arose at least 20 years earlier in connection with the study of Galois repre-
sentations on torsion points of elliptic curves. In fact, in his book [46] on
`-adic representations, Serre pretty much had this theorem for G = SL2 (at
least, all the ingredients of the proof were there).

Parts (1) and (2) are proved in the same way, so let us focus our dis-
cussion on the proof of (1) as this will allow us to keep our notations sim-
ple. First, it is enough to prove that for almost all primes p, the closure
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°(p) Ω G(Zp) coincides with G(Zp). This reduction step is achieved using
(§) in conjunction with the fact that for almost all primes p, the group G
has a smooth reduction G(p) modulo p and the groups G(p)(Fp) are pairwise
non-isomorphic almost simple groups (for the reader who is interested only
in the case G = SLn, we will indicate that here, of course, G(p) = SLn/Fp,
and the structural facts quoted above are well-known). Next, it turns out
that for almost all p, proving that °(p) = G(Zp) reduces to showing that the
reduction map Ωp : G(Zp) ! G(p)(Fp) has the property Ωp(°) = G(p)(Fp).

Proposition 3.2. (cf. [26, 7.3])For almost all p, if ¢ Ω G(Zp) is a closed

subgroup such that Ωp(¢) = G(p)(Fp) then ¢ = G(Zp).

The proof for G = SL2 was given by Serre [46, Ch. IV, 3.4].

Lemma 3.3. Let ¢ Ω SL2(Zp), where p > 3, be a closed subgroup such that

for the reduction map Ωp : SL2(Zp) ! SL2(Fp) we have Ωp(¢) = SL2(Fp).
Then ¢ = SL2(Zp).

Proof. By assumption, there exists g 2 ¢ such that

g =
µ

1 1
0 1

∂
+ ps with s 2 M2(Zp).

We claim that

(5) gp =
µ

1 p
0 1

∂
+ p2t with t 2 M2(Zp).

Indeed,

gp =
µ

I2 +
µµ

0 1
0 0

∂
+ ps

∂∂p

=

I2+p

µµ
0 1
0 0

∂
+ ps

∂
+

µ
p

2

∂ µµ
0 1
0 0

∂
+ ps

∂2

+· · ·+
µµ

0 1
0 0

∂
+ ps

∂p

.

But clearly
µµ

0 1
0 0

∂
+ ps

∂k

¥ O2(mod p) for any k > 2,

and in fact
µµ

0 1
0 0

∂
+ ps

∂k

¥ O2(mod p2) for any k > 4

as
µ

0 1
0 0

∂2

= O2 (the zero matrix). So, since p > 3, the equation (5)

follows.
As gp 2 ¢, we conclude from (5) that the image © of the intersection

¢ \ SL2(Zp, p) with the congruence subgroup modulo p in

SL2(Zp, p)/SL2(Zp, p
2) ' sl2(Fp),
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where sl2 is the Lie algebra of SL2 (i.e., 2 £ 2-matrices with trace zero), is
nontrivial. On the other hand, © is obviously invariant under ¢, and as
Ωp(¢) = SL2(Fp), it is actually invariant under SL2(Fp). But since p 6= 2,
the group SL2(Fp) acts on sl2(Fp) irreducibly, implying that ¢\SL2(Zp, p)
surjects onto SL2(Zp, p)/SL2(Zp, p2). However, SL2(Zp, p) is in fact the
Frattini subgroup of the pro-p group SL2(Zp, p), so the latter fact implies
that ¢ \ SL2(Zp, p) = SL2(Zp, p), and our claim follows. §

The general case in Proposition 3.2 is obtained by reduction to the case
of SL2. For this one observes that the group G is quasi-split, and therefore
G(Zp) contains H = SL2(Zp), for almost all p. We refer the reader to [26]
for further details. (Note that one needs to argue a bit more carefully on p.
529 in [26] to make sure that ¢ \ H maps onto SL2(Fp) surjectively; this
can be achieved by choosing a special H.)

So, to complete the proof of (both parts of) Theorem 3.1, one needs to
prove the following.

Theorem 3.4. Let G be a connected absolutely almost simple simply con-

nected algebraic group over Q, and let ° Ω G(Q) be a finitely generated

Zariski-dense subgroup. Then there exists a finite set of primes ¶ = {p1, . . . , pr}
such that

(1) ° Ω G(Z¶) where Z¶ = Z
h

1
p1

, . . . , 1
pr

i
;

(2) for p /2 ¶ there exists a smooth reduction G(p)
;

(3) if p /2 ¶ and Ωp : G(Zp) ! G(p)(Fp) is the corresponding reduction map

then Ωp(°) = G(p)(Fp).

The conditions (1) and (2) are routine (in fact, (1) holds automatically if
° Ω G(Z)), so the main point is to ensure condition (3). The general idea is
the following. Let g and g(p) be the Lie algebras of G and G(p). Since ° is
Zariski-dense in G, we conclude that Ad° acts on gQ absolutely irreducibly.
By Burnside’s Theorem this means that Ad ° spans EndQ gQ as a Q-vector
space. Excluding finitely many primes, we can achieve that for any of the
remaining primes p, the group Ad Ωp(°) acts on g

(p)
Fp

absolutely irreducibly.
This eventually implies that for almost all p we have Ωp(°) = G(p)(Fp). This
implication would be obvious if we could say that Ωp(°) is necessarily of
the form H(Fp), where H Ω G(p) is some connected algebraic Fp-subgroup.
(Indeed, then the Lie algebra h of H would be a nonzero Ωp(°)-invariant
subspace of g(p), so h = g(p) and H = G(p), as G(p) is connected for almost
all p, yielding the required fact.) Of course, such an a priori description
of Ωp(°) would be too much to hope for, but important information along
these lines, which is su±cient for the proof of Theorem 3.4, is contained in
a theorem due to Nori [28].
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2. Theorem of Nori. Let H be an arbitrary subgroup of GLn(Fp). Set

X = {x 2 H | xp = 1}
(we will write 1 in place of In to simplify notations). Note that if we assume
that p > n (which we will throughout this subsection), then the condition
xp = 1 characterizes precisely unipotent elements, i.e. is equivalent to the
condition (x° 1)n = 0. For x 2 X, we can define

log x := °
p°1X

i=1

(1° x)i

i
.

Furthermore, observing that (log x)n = 0, we see that for any t 2 Fp (alge-
braic closure), we can define

x(t) := exp(t · log x) where exp z =
p°1X

i=0

zi

i!

(note that x(1) = x). We will regard x(t) as a 1-parameter subgroup Ga !
GLn. Set

H+ = hXi Ω H,

and let eH denote the connected Fp-subgroup of GLn generated by the 1-
parameter subgroups x(t) for all x 2 X.

Theorem 3.5. ([28]) If p is large enough (for a given n), then H+
coincides

with

eH(Fp)+, the subgroup of

eH(Fp) generated by all unipotents contained

in it.

Thus, Nori’s theorem asserts that if p is large enough compared to n, then
any subgroup of GLn(Fp) generated by p-elements is essentially the group of
Fp-points of some connected Fp-defined algebraic subgroup of GLn. Actually,
in his paper [28], Nori proves a stronger result stating that for a field F
which either has characteristic zero or positive characteristic p that is large
enough compared to n, the maps log and exp yield bijective correspondences
between nilpotently generated Lie subalgebras of Mn(F ) and exponentially
generated subgroups of GLn(F ) (we refer the reader to the original paper
[28] for precise definitions and detailed statements of these results). The
argument in [28] was based on algebro-geometric ideas; a diÆerent proof was
given by Hrushovski and Pillay [13] using model-theoretic techniques (the
idea of their argument is explained in [23, pp. 399-400]). A very strong
result of Larsen and Pink [20] describing the structure of finite linear groups
over fields of positive characteristic gives yet another way of saying that a
“typical” subgroup of GLn(Fp) is algebraic.

Given the nature of this article, we will not be able to discuss any details
of Nori’s argument. All we can oÆer as compensation is a proof of Nori’s
results for GL2(Fp).
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Lemma 3.6. Let H Ω GL2(Fp) be a subgroup of order divisible by p, and

let Hp Ω H be a Sylow p-subgroup. Then either Hp C H or H æ SL2(Fp).

Proof. We may assume that Hp coincides with

U :=
Ω µ

1 a
0 1

∂
| a 2 Fp

æ
.

It is well-known that the normalizer of U in GL2(Fp) coincides with B = TU
where

T :=
Ω µ

a 0
0 b

∂
| a, b 2 F£p

æ
.

Furthermore, we have the Bruhat decomposition

GL2(Fp) = B [BwB where w =
µ

0 1
°1 0

∂

(recall that w normalizes T ). Now, if Hp is not normal in H, then it follows
from the Bruhat decomposition that H contains an element of the form tw
with t 2 T . Consequently, it also contains

U° := (tw)°1U(tw) =
Ω µ

1 0
a 1

∂
| a 2 Fp

æ
.

But hU , U°i = SL2(Fp), and our assertion follows. §

So, for any subgroup H Ω GL2(Fp), we have only the following three
possibilities:

(1) H+ = {1};
(2) H+ is conjugate to U ;
(3) H+ = SL2(Fp).

In either case, the assertion of Nori’s Theorem is valid.

3. Proof of Theorem 3.4. Recall that the famous Jordan Theorem states
the following:

There exists a function j(n) on positive integers such that if G Ω GLn(K)
is a finite linear group over a field K of characteristic zero, then G con-

tains an abelian normal subgroup N such the index [G : N ] divides j(n).

(In a more common form, Jordan’s Theorem provides a function j0(n) for
which G,N as above satisfy [G : N ] 6 j0(n); note that given such a function
j0(n), the above statement holds with j(n) = (j0(n))!.)1 What we need
to observe for the proof of Theorem 3.4 is that the assertion of Jordan’s
theorem remains valid (with the same j(n)) for any subgroup G Ω GLn(Fp)
of order not divisible by p.

1Various sources give diÆerent expressions for a Jordan function j0(n); the optimal
function is known to be j0(n) = (n + 1)! for n > 71 - see [4].
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Indeed, consider the reduction modulo p map Ω : GLn(Zp) ! GLn(Fp).
The kernel Ker Ω = GLn(Zp, p) is a pro-p group, so since the order of G Ω
GLn(Fp) is prime to p there is a section æ : G ! GLn(Zp) for Ω over G.
Applying the standard Jordan theorem for characteristic zero to G̃ := æ(G),
we obtain the corresponding assertion for G. (For the sake of completeness,
we would like to indicate that there are various “modular” forms of Jordan’s
theorem that treat finite subgroups G Ω GLn(K) of order divisible by p
where p = charK, starting with [3] - see [5], [54] for subsequent results (we
also note that [1] provides a generalization to algebraic groups). As we have
already mentioned, the most general results about finite linear groups in
positive characteristic are contained in [20].)

Now, suppose that G Ω GLn. Let j = j(n) be the value of the Jordan
function for this n. Set

°(j) = h∞j | ∞ 2 °i,
and © = [°(j),°(j)]. Since the regular map G ! G, x 7! xj , is dominant,
and G = [G,G], we conclude that © is Zariski-dense in G, in particular, it
is nontrivial. Then, by expanding ¶, which initially needs to be chosen to
satisfy conditions (1) and (2) of the theorem, we may assume that for all
p /2 ¶ we have Ωp(©) 6= {1} where Ωp : G(Zp) ! G(p)(Fp) is the reduction
modulo p map. In addition, as we explained earlier, by expanding ¶ further,
we may assume for p /2 ¶, the group Ad Ωp(°) acts on g(p) (= the Lie
algebra of G(p)) absolutely irreducibly, and also Nori’s theorem is applicable
to GLn(Fp). We will now show that the resulting ¶ is as required.

Let p /2 ¶, and set H = Ωp(°) Ω GLn(Fp). First, we observe that
p divides the order of H. Indeed, otherwise by the version of Jordan’s
theorem mentioned above, there would exist an abelian normal subgroup
N Ω H of index dividing j. Then Ωp(°(j)) Ω N , and therefore Ωp(©) = {1},
a contradiction. This means that if we define H+ and eH as in the Nori’s
theorem, then eH 6= {1}, and hence the Lie algebra eh of eH is a nonzero
subspace of g(p). On the other hand, by our construction, eH is normalized
by Ωp(°), so the space eh is Ad Ωp(°)-invariant. Combining this with the
absolute irreducibility of the latter, we obtain that eh = g(p), i.e. eH = G(p).
Furthermore, since G is simply connected, so is G(p), and therefore by the
a±rmative answer to the Kneser-Tits conjecture over finite fields, we have
G(p)(Fp) = G(p)(Fp)+. Invoking Nori’s theorem, we obtain

H = eH(Fp)+ = G(p)(Fp)+ = G(p)(Fp),

as required. §

Remarks. 1. The proof of Theorem 3.4 sketched above is based on Nori’s
paper [28], and is diÆerent from the original argument in [26]. The interested
reader can find an outline of this argument (which relied on the classification
of finite simple groups) in [23, pp. 397-398].
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2. Combining Lemmas 3.3, 3.6 with the above argument, we obtain a
virtually complete proof of Theorem 3.1 for G = SL2, which, as we have
pointed out earlier, was essentially present already in Serre’s book [46].

3. It is worth pointing out that the simply connectedness of G was again
used to conclude that the group G(p)(Fp) is generated by unipotent ele-
ments. This is yet another manifestation of the connection between strong
approximation and the Kneser-Tits conjecture that was first pointed out by
Platonov [32].

4. During the workshop, I. Rivin asked if one can give an explicit bound
N = N(°) such that for any p > N we have Ωp(°) = G(p)(Fp). In ongoing
work with my student A. Morgan, we have been able to produce some bounds
of this kind. More precisely, for g = (gij) 2 SLn(Z), set

||g|| = max
i,j

|gij |.

Furthermore, given a Zariski-dense subgroup ° = hg1, . . . , gdi Ω SLn(Z), set

m = max
k=1,...,d

||gk||.

Then there exists N = N(d,m, n) such that for any prime p > N we have
Ωp(°) = SLn(Fp). However, at the time of this writing our bounds are too
large to be of practical use.

5. (Due to the referee) It is worth pointing out two additional results.
First, Guralnick [11, Theorem B] using the classification of finite simple
groups proved the following: Let G be a finite subgroup of GLn(k) where

k is a field of characteristic p with p > max(n ° 3, 12). Assume that G
has no normal p-subgroups and that G is generated by its elements of order

p. Then G is a central product of finite quasi-simple Chevalley groups in

characteristic p. This gives a very strong quantitative version of Nori’s
theorem (under the assumption that G has no normal p-subgroups). Second,
it is proved in [45, Appendix] that the lower bound on characteristic in Nori’s
theorem is recursively defined, i.e. there is a recursively defined function f
such that if p > f(n) then for any subgroup H Ω GLn(Fp) there is an
algebraic Fp-subgroup eH of GLn such that H+ = eH(Fp)+.

4. Weisfeiler’s theorem. A far-reaching generalization of Theorem 3.1
was given by B. Weisfeiler [53]. We will state his result using the original
notations (which are somewhat diÆerent from the notations used in the rest
of our article).

Theorem 3.7. ([53]) Let k be an algebraically closed field of characteristic

diÆerent from 2 and 3, and let G be an almost simple, connected and simply

connected algebraic group defined over k. Let ° be a Zariski-dense finitely

generated subgroup of G(k), and let A be the subring of k generated by the

traces tr Ad ∞, ∞ 2 °. Then there exists b 2 A, a subgroup °0 Ω °, and
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a structure GAb of a group scheme over Ab on G such that °0 µ GAb(Ab)
and °0 is dense in GAb(cAb).

(Here Ab denotes the localization of A with respect to b, and cAb the
profinite completion of the ring Ab, i.e., the completion with respect to the
topology given by all ideals of finite index. To connect this with our previous
results, we note that for A = Z, the ring Ab coincides with Z[ 1

p1
, . . . , 1

pr
]

where p1, . . . , pr are the primes dividing b, and the completion cAb is preciselyQ
p/2{p1,...,pr} Zp, i.e. the ring of integral S-adeles for S = {1, p1, . . . , pr}.)
In characteristic 2 and 3, one encounters additional problems due to the

existence of so-called nonstandard isogenies. We will not get into these
technical details here, but roughly speaking one of the problems is that in
these exceptional cases the “right” ring (or field) of definition of ° may not
be the trace ring (resp., field), i.e. the subring (subfield) of the algebraically
closed field k generated by the traces tr Ad ∞ for ∞ 2 °. The adequate
definitions were given by Pink [30] using the notion of so-called minimal
triples (which we will not discuss here). In fact, Pink’s paper [30], where
he proved an appropriate version of the openness statement for the adelic
closures of Zariski-dense subgroups in all characteristics, was really the final
word in the strong approximation saga.

5. Applications to group theory: Lubotzky’s alternative. One of the
most notable applications of strong approximation is the so-called Lubotzky

alternative for linear groups. It is discussed in detail in [15, Ch. II] and
[23, Window 9], so here we will only state it for linear groups over fields of
characteristic zero.

Theorem 3.8. ([21]) Let ° be a finitely generated linear group over a field

of characteristic zero. Then one of the following holds:

(a) ° is virtually solvable;

(b) there exists a connected absolutely almost simple simply connected alge-

braic Q-group G, a finite set ¶ = {p1, . . . , pr} of primes such that the

group G(Z¶), where Z¶ = Z[ 1
p1

, . . . , 1
pr

], is infinite, and a subgroup

°1 Ω ° of finite index for which the profinite completion

c°1 admits

a continuous epimorphism onto G(cZ¶).

This statement was applied in [21] to study the subgroup growth (= num-
ber of subgroups of a given index n) of linear groups; in particular, it leads to
the following dichotomy (which we will state here only in characteristic zero,
referring the reader to [23] for some minor distinctions that can occur in the
case of positive characteristic): if a linear group has polynomial subgroup
growth, then it is virtually solvable, but if the growth is not polynomial
(hence the group is not virtually solvable), then it is at least nlog n.
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The interested reader will find more group-theoretic applications of strong
approximation in [15], [23] and references therein, and, of course, in other
articles contained in this volume.
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