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2. The Hamiltonian

Unit of length: Bohr raduis = 1
2mα

Unit of energy: Rydberg = 2mα2
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2. The Hamiltonian

Unit of length: Bohr raduis = 1
2mα

Unit of energy: Rydberg = 2mα2

H =
m

M

Nn∑
j=1

(
pj,x − 2

√
πα

3
2Zj Aλ(αxj)

)2
nuclei

+
Ne∑
j=1

(
pj,y − 2

√
πα

3
2 Aλ(αyj)

)2
electrons

+ Hf photons

+ Ve(y) + Ven(x, y) + Vn(x) electrostatic interactions
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+ Ve(y) + Ven(x, y) + Vn(x) electrostatic interactions

The Born-Oppenheimer approximation is good when ε :=
√
m
M � 1.
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2. The Hamiltonian

Unit of length: Bohr raduis = 1
2mα

Unit of energy: Rydberg = 2mα2

H = ε2
Nn∑
j=1

(
pj,x − 2

√
πα

3
2Zj Aλ(αxj)

)2
nuclei

+
Ne∑
j=1

(
pj,y − 2

√
πα

3
2 Aλ(αyj)

)2
electrons

+ Hf photons

+ Ve(y) + Ven(x, y) + Vn(x) electrostatic interactions

The Born-Oppenheimer approximation is good when ε :=
√
m
M � 1.

⇒ two small parameters, ε and α.
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2.1. Dynamical molecules without field (ε > 0, α = 0)

Let

Hmol := −ε2
Nn∑
j=1

∆xj + He(x)
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2.1. Dynamical molecules without field (ε > 0, α = 0)

Let

Hmol := −ε2
Nn∑
j=1

∆xj + He(x)

Electronic energy surfaces:

Use pointwise eigenprojections

He(x)Pj(x) = Ej(x)Pj(x)

to define projection on the full space

(PjΨ)(x, y) := Pj(x)Ψ(x, y) .
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2.1. Dynamical molecules without field (ε > 0, α = 0)

Let
Hj,diag := PjHmolPj + (1− Pj)Hmol(1− Pj)
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2.1. Dynamical molecules without field (ε > 0, α = 0)

Let
Hj,diag := PjHmolPj + (1− Pj)Hmol(1− Pj)

Typical Result 1 (Time-dependent Born-Oppenheimer)

(c.f. Spohn-T. ’01, Martinez-Sordoni ’02, ’09)

Assume a gap condition. Then for any E <∞∥∥∥∥(e−i tεHmol − e−i tεHj,diag

)
1(−∞,E](Hmol)

∥∥∥∥ ≤ CE ε |t| .
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2.1. Dynamical molecules without field (ε > 0, α = 0)

Let
Hj,diag := PjHmolPj + (1− Pj)Hmol(1− Pj)

Typical Result 1 (Time-dependent Born-Oppenheimer)

(c.f. Spohn-T. ’01, Martinez-Sordoni ’02, ’09)

Assume a gap condition. Then for any E <∞∥∥∥∥(e−i tεHmol − e−i tεHj,diag

)
1(−∞,E](Hmol)

∥∥∥∥ ≤ CE ε |t| .

Since Hj,od := (1− Pj)Hmol Pj + PjHmol (1− Pj) = O(ε)

but not smaller, this does not follow just from time-dependent perturbation

theory,

e−iHmol
t
ε ≈ e−iHj,diag

t
ε −

i

ε

∫ t
0

eiHj,diag
s−t
ε Hj,od e−iHj,diag

s
ε ds
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2.1. Dynamical molecules without field (ε > 0, α = 0)

Let
Hj,diag := PjHmolPj + (1− Pj)Hmol(1− Pj)

Typical Result 1 (Time-dependent Born-Oppenheimer)

(c.f. Spohn-T. ’01, Martinez-Sordoni ’02, ’09)

Assume a gap condition. Then for any E <∞∥∥∥∥(e−i tεHmol − e−i tεHj,diag

)
1(−∞,E](Hmol)

∥∥∥∥ ≤ CE ε |t| .

On Ψ(x, y) = ψ(x)ϕj(x, y) ∈ PjHmol the diagonal Hamiltonian acts as

(Hj,diagΨ)(x, y) =: (Hj,BOψ)(x)ϕj(x, y)

with
Hj,BO = ε2(−i∇x −ABerry(x))2 + Ej(x) +O(ε2) .
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2.2. Electronic resonances for fixed nuclei (ε = 0, α > 0)
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2.2. Electronic resonances for fixed nuclei (ε = 0, α > 0)

Typical Result 2 (Decay of resonances)

(c.f. Bach-Fröhlich-Sigal ’99, Hasler-Herbst-Huber ’07,

Abou Salem-Faupin-Fröhlich-Sigal ’08, Faupin ’08)

Let Ψj = ϕj ⊗Ω, then∣∣∣〈Ψj, e
−itH0,αΨj

〉∣∣∣ = e−tα
3γj +O(α

1
2)

with γj > 0.
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2.2. Electronic resonances for fixed nuclei (ε = 0, α > 0)

Typical Result 2 (Decay of resonances)

(c.f. Bach-Fröhlich-Sigal ’99, Hasler-Herbst-Huber ’07,

Abou Salem-Faupin-Fröhlich-Sigal ’08, Faupin ’08)

Let Ψj = ϕj ⊗Ω, then∣∣∣〈Ψj, e
−itH0,αΨj

〉∣∣∣ = e−tα
3γj +O(α

1
2)

with γj > 0.

⇒ lifetime ∼
1

α3
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2.3. Dynamical molecules coupled to the field (ε > 0, α > 0)

The excited electronic levels turn into resonances.
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2.3. Dynamical molecules coupled to the field (ε > 0, α > 0)

Goal #1: Show that the BO-approximation is still valid, because

lifetime ∼ α−3 � time-scale of molecular dynamics ∼ ε−1
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2.3. Dynamical molecules coupled to the field (ε > 0, α > 0)

Goal #1: Show that the BO-approximation is still valid, because

lifetime ∼ α−3 � time-scale of molecular dynamics ∼ ε−1

Check: mp ≤M ≤ 250mp ⇒ εmin :=
1

680
≤ ε ≤

1

43
=: εmax

Since (137)3 � 680 this assumption is typically satisfied.
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2.3. Dynamical molecules coupled to the field (ε > 0, α > 0)

Goal #1: Show that the BO-approximation is still valid, because

lifetime ∼ α−3 � time-scale of molecular dynamics ∼ ε−1

Check: mp ≤M ≤ 250mp ⇒ εmin :=
1

680
≤ ε ≤

1

43
=: εmax

Since (137)3 � 680 this assumption is typically satisfied.

To keep better track of the relative size of errors we couple the two small

parameters and put

α = εβ with βmin =
lnα

ln εmin
≈ 0,75 , βmax =

lnα

ln εmax
≈ 1,3 .
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2.3. Dynamical molecules coupled to the field (ε > 0, α > 0)

Goal #1: Show that the BO-approximation is still valid, because

lifetime ∼ α−3 � time-scale of molecular dynamics ∼ ε−1

Check: mp ≤M ≤ 250mp ⇒ εmin :=
1

680
≤ ε ≤

1

43
=: εmax

Since (137)3 � 680 this assumption is typically satisfied.

To keep better track of the relative size of errors we couple the two small

parameters and put

α = εβ with βmin =
lnα

ln εmin
≈ 0,75 , βmax =

lnα

ln εmax
≈ 1,3 .

Our results hold for
5

6
< β <

3

2
, corresponding to mp ≤M ≤ 72mp.
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2.3. Dynamical molecules coupled to the field (ε > 0, α > 0)

Goal #1: Show that the BO-approximation is still valid, because

lifetime ∼ α−3 � time-scale of molecular dynamics ∼ ε−1

Goal #2: Quantify spontaneous emission at leading order.

Expectation: probability for spontaneous emission ∼ α3 t

ε
= ε3β−1t .
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2.3. Dynamical molecules coupled to the field (ε > 0, α > 0)

Goal #1: Show that the BO-approximation is still valid, because

lifetime ∼ α−3 � time-scale of molecular dynamics ∼ ε−1

Goal #2: Quantify spontaneous emission at leading order.

Expectation: probability for spontaneous emission ∼ α3 t

ε
= ε3β−1t .

Hε = − ε2
Nn∑
j=1

∆xj + He(x) + Hf O(1)

− ε
3
2β 4
√
π

Ne∑
j=1

Aλ(εβyj) · pj,y O(ε
3
2β)

+O(ε
3
2β+1)
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2.3. Dynamical molecules coupled to the field (ε > 0, α > 0)

Goal #1: Show that the BO-approximation is still valid, because

lifetime ∼ α−3 � time-scale of molecular dynamics ∼ ε−1

Goal #2: Quantify spontaneous emission at leading order.

Expectation: probability for spontaneous emission ∼ α3 t

ε
= ε3β−1t .

Hε = − ε2
Nn∑
j=1

∆xj + He(x) + Hf O(1)

− ε
3
2β 4
√
π

Ne∑
j=1

Aλ(εβyj) · pj,y O(ε
3
2β)

+O(ε
3
2β+1)

⇒ Goal #1 can be achieved by standard time-dep. perturbation theory
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2.3. Dynamical molecules coupled to the field (ε > 0, α > 0)

Goal #2: Quantify spontaneous emission at leading order.

Expectation: probability for spontaneous emission ∼ α3 t

ε
= ε3β−1t .

Hε = − ε2
Nn∑
j=1

∆xj + He(x) + Hf O(1)

− ε
3
2β 4
√
π

Ne∑
j=1

Aλ(εβyj) · pj,y O(ε
3
2β)

+O(ε
3
2β+1)

Problem #1: ‖BO-error‖ ∼ ε and ‖Effect‖ ∼ ε
3
2β−

1
2

⇒ Effect ≤ Error for β ≥ 1.
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2.3. Dynamical molecules coupled to the field (ε > 0, α > 0)

Goal #2: Quantify spontaneous emission at leading order.

Expectation: probability for spontaneous emission ∼ α3 t

ε
= ε3β−1t .

Hε = − ε2
Nn∑
j=1

∆xj + He(x) + Hf O(1)

− ε
3
2β 4
√
π

Ne∑
j=1

Aλ(εβyj) · pj,y O(ε
3
2β)

+O(ε
3
2β+1)

Problem #1: ‖BO-error‖ ∼ ε and ‖Effect‖ ∼ ε
3
2β−

1
2

⇒ Effect ≤ Error for β ≥ 1.

Solution: Improved BO-approximation using super-adiabatic subspaces P εj
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2.3. Dynamical molecules coupled to the field (ε > 0, α > 0)

Goal #2: Quantify spontaneous emission at leading order.

Expectation: probability for spontaneous emission ∼ α3 t

ε
= ε3β−1t .

Hε = − ε2
Nn∑
j=1

∆xj + He(x) + Hf O(1)

− ε
3
2β 4
√
π

Ne∑
j=1

Aλ(εβyj) · pj,y O(ε
3
2β)

+O(ε
3
2β+1)

Problem #2: The effect is smaller than expected from naive perturbation

theory, which would be ∼ (ε
3
2β−1)2 = ε3β−2

e−iHε t
ε ≈ e−iH0

t
ε − i

ε
3
2β

ε

∫ t
0

eiH0
s−t
ε H1 e−iH0

s
ε ds
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2.3. Dynamical molecules coupled to the field (ε > 0, α > 0)

Goal #2: Quantify spontaneous emission at leading order.

Expectation: probability for spontaneous emission ∼ α3 t

ε
= ε3β−1t .

Hε = − ε2
Nn∑
j=1

∆xj + He(x) + Hf O(1)

− ε
3
2β 4
√
π

Ne∑
j=1

Aλ(εβyj) · pj,y O(ε
3
2β)

+O(ε
3
2β+1)

Problem #2: The effect is smaller than expected from naive perturbation

theory, which would be ∼ (ε
3
2β−1)2 = ε3β−2

Solution: “Dressed” super-adiabatic subspaces P ε,δj,vac with

[P ε,δj,vac, H
ε] = O(ε

3
2βδ

1
2)
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3. Main results

Theorem 1 (BO without field)

Let E < ∞ and χE = 1(−∞,E]. For each isolated energy surface Ej
there exists an orthogonal projection P εj such that

‖P εj − Pj‖L(Dn) ≤ Cn ε

and ∥∥∥[Hε
mol, P

ε
j

]
χE(Hε

mol)
∥∥∥
L(H,Dn)

≤ Cn ε3 .
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3. Main results

Theorem 1 (BO without field)

Let E < ∞ and χE = 1(−∞,E]. For each isolated energy surface Ej
there exists an orthogonal projection P εj such that

‖P εj − Pj‖L(Dn) ≤ Cn ε

and ∥∥∥[Hε
mol, P

ε
j

]
χE(Hε

mol)
∥∥∥
L(H,Dn)

≤ Cn ε3 .

As a consequence one has for

Hε
j,diag := P εjH

ε
molP

ε
j + (1− P εj )Hε

mol(1− P εj )

that ∥∥∥∥(e−i tεH
ε
mol − e

−i tεH
ε
j,diag

)
χE(Hε

mol)
∥∥∥∥
L(H,D)

≤ CE ε
2|t| .

Dynamical molecules in the quantized field April 2013



3. Main results

Corollary 1 (BO with field)

Under the same assumptions we have that∥∥∥∥(e−i tεH
ε
− e
−i tε(H

ε
j,diag⊗1+1⊗Hf)

)
χE(Hε)

∥∥∥∥
L(H)

≤ CE ε
3
2β−1|t| .
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3. Main results

Theorem 2 (spontaneous emission: probability)

Let Ψ = ψ ⊗Ω ∈ (P εj ⊗ PΩ)χE(Hε)H , then

∥∥∥∥P εi e−i tεH
ε

Ψ
∥∥∥∥2

=
4α3

3

1

ε

∫ t
0

ds
〈
ψ(s), |Dij|2∆3

E ψ(s)
〉
Hnuc

+ o(ε3β−1)

uniformly on bounded intervals in time.
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3. Main results

Theorem 2 (spontaneous emission: probability)

Let Ψ = ψ ⊗Ω ∈ (P εj ⊗ PΩ)χE(Hε)H , then

∥∥∥∥P εi e−i tεH
ε

Ψ
∥∥∥∥2

=
4α3

3

1

ε

∫ t
0

ds
〈
ψ(s), |Dij|2∆3

E ψ(s)
〉
Hnuc

+ o(ε3β−1)

uniformly on bounded intervals in time.

Here
ψ(s) := e−isεHj,BO Pj ψ

is the nuclear wave function according to the standard BO-approximation,

Dij(x) =
Ne∑
`=1

〈ϕi(x), y`ϕj(x)〉Hel

is the dipole matrix element and ∆E(x) = Ej(x)− Ei(x) the energy gap.
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Thank you for listening !
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